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Abstract 

Single-cell transcriptomic assays have enabled the de novo reconstruction of lineage differentiation trajectories, along 

with the characterization of cellular heterogeneity and state transitions. Several methods have been developed for 

reconstructing developmental trajectories from single-cell transcriptomic data, but efforts on analyzing single-cell 

epigenomic data and on trajectory visualization remain limited. Here we present STREAM, an interactive pipeline 

capable of disentangling and visualizing complex branching trajectories from both single-cell transcriptomic and 

epigenomic data. 

Main text 

STREAM (Single-cell Trajectories Reconstruction, Exploration And Mapping) can accurately recover complex 

developmental trajectories and provide informative and intuitive visualizations to highlight important genes that define 

subpopulations and cell types. STREAM reliably reconstructs trajectories and pseudotime (the distance from the start of 

a developmental trajectory) when multiple branching points are present, assumes no prior knowledge about the 

structure or the number of trajectories, and does not require extensive bioinformatics knowledge thanks to a user-

friendly and interactive web interface. Additionally, STREAM has four innovations compared to other existing methods: 

1) a novel density-level trajectory visualization useful to study subpopulation composition and cell-fate genes along 

branching trajectories, 2) a documented end-to-end pipeline to reconstruct trajectories from chromatin-accessibility 

data, 3) the first interactive database focused on single-cell trajectory visualization for several published studies ,and 4) a 

trajectory mapping procedure to readily map new cells to precomputed structures without pooling data and re-

computing trajectories.  This last innovation allows facile analysis of data from genetic perturbation studies or to assign 

diseased/stimulated cells to a normal/resting developmental hierarchy. STREAM has been extensively tested using 

several published datasets from different organisms (zebrafish, mouse, human) and single-cell technologies (qPCR, 

scRNA-seq, scATAC-seq). It also has been compared to 10 other methods on both synthetic and real datasets. 

STREAM takes as input a single-cell gene expression or epigenomic profile matrix and approximates the data in three or 

more dimensions with a structure called the principal graph, a set of curves that naturally describe the cells’ 

pseudotime, trajectories and branching points (Fig. 1a). STREAM first identifies informative features such as variable 

genes or top principal components. Using these features, cells are then projected to a lower dimensional space using a 

non-linear dimensionality reduction method called Modified Locally Linear Embedding (MLLE), which preserves 

distances within local neighborhoods. In the MLLE embedding, STREAM infers cellular trajectories using a novel  Elastic 

Principal Graph implementation called ElPiGraph
1
. ElPiGraph is a completely redesigned algorithm for elastic principal 

graph optimization introducing the elastic matrix Laplacian, trimmed mean square error, explicit control for topological 

complexity and scalability to millions of points. In STREAM, ElPiGraph is integrated with a heuristic graph structure 

seeding and several graph grammars rules optimized for single-cell data. In contrast to the majority of existing methods, 

ElPiGraph does not rely on kNN graphs or minimum spanning trees. ElPiGraph is very robust to background noise, does 

not require pre-clustering, can work in multidimensional space, and is able to manage large-scale datasets on an 

ordinary laptop (Online Methods).  

To illustrate STREAM, we first reanalyzed scRNA-seq data from Nestorowa et al. 2016 
2
, which sorted and profiled 1,656 

single mouse hematopoietic stem and progenitor cells. Starting from the hematopoietic stem cells (HSCs), STREAM 

accurately recapitulates known bifurcation events in lymphoid, myeloid and erythroid lineages and positions the 

multipotent progenitors before the first bifurcation event. To facilitate the exploration of the inferred structure, 

STREAM includes a flat tree plot that intuitively represents trajectories as linear segments in a 2D plane. In this 

representation, the lengths of tree branches are preserved from the MLLE embedding (Fig. 1b). In addition, cells are 

projected onto the tree according to their pseudotime locations and the distances from their assigned branches. If the 

process under study has a natural starting point (for example a known origin in a developmental hierarchy), the user can 
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specify a root node. This allows easy re-organization of the tree using a breadth-first search to obtain a subway map plot 

that better represents pseudotime progression from a selected starting node (Fig. 1c). Although these visualizations 

capture trajectories and branching points, they are not informative on the density and composition of cell types along 

pseudotime, a common challenge when modeling large datasets. To solve this problem, we propose a novel trajectory 

visualization method called the stream plot. This compact representation summarizes cellular developmental 

trajectories, user-defined annotations, branching points, cell density, and gene expression patterns (Fig. 1d). Density 

information, an aspect overlooked by other methods, is very important to track how the composition of subpopulations 

changes along a trajectory or gets partitioned around branching events. Additionally, STREAM detects potential marker 

genes of different types: diverging genes, i.e. genes important in defining branching points that are differentially 

expressed between diverging branches, and transition genes, i.e. genes for which the expression correlates with the cell 

pseudotime on a given branch. The expression patterns of the discovered genes can then be visualized using either 

subway maps or stream plots (Fig. 1e-f, Supplementary Fig. 1-2, Supplementary Note 1). 

STREAM is the only trajectory inference method that explicitly implements a mapping procedure, which allows reusing a 

previously inferred principal graph as reference to map new cells not included in the original fitting procedure. This 

avoids pooling old and new cells and re-computing trajectories from scratch, a computationally-intensive operation that 

also perturbs the original structure and complicates the interpretation of the pseudotime. This feature is particularly 

helpful when studying genetic perturbation data or exploring unlabeled data. To show the utility of the mapping feature, 

we applied STREAM to scRNA-seq data from Olsson et al
3
. This study focused on the mouse hematopoietic system, 

specifically on the consequences of cell determination within the granulocyte-monocyte progenitors (GMP) population 

after the transcription factors Gfi1 and/or Irf8 are knocked out. STREAM recovers the correct trajectories for the wild-

type cells and, using the mapping feature, also predicts and effectively visualizes the consequences of the genetic 

perturbation as validated in the original study (Supplementary Fig. 3-4, Supplementary Note 2).  

To test the robustness and scalability of STREAM, we next explored data derived from different platforms and 

organisms. We used two recently published zebrafish datasets obtained with single-cell qPCR
4
 and inDrop

5
 (profiling 

~10000 cells) assays. These data provided the first comprehensive model of the zebrafish hematopoiesis system without 

biases introduced by FACS sorting subpopulations. Our analyses successfully recovered developmental trajectories at 

unprecedented resolution compared to previous analysis (Supplementary Fig. 5-6, Supplementary Note 3-4). 

We next systematically compared STREAM with 10 other state of the art methods for pseudotime inference on three 

different datasets
6-14

. First, we assessed the quality of the topology using a previously proposed synthetic dataset 
14

. 

Second, we assessed the pseudotime accuracy using known marker genes on scRNA-seq data for myoblast 

differentiation, a classic dataset to compare trajectory inference methods 
15

. Finally, we quantitatively compared the 

number and quality of trajectories in terms of precision and recall for known marker genes that completely diverge 

during development. In all the comparisons, STREAM consistently outperforms the other methods in inferring the 

correct topology, provides smooth pseudotime for myoblast differentiation and reconstructs the most balanced 

branching structure (avoiding under/over branching) in terms of precision and recall (F1-score) among the methods 

(Supplementary Figs. 7-14, Supplementary Note 5). 

Importantly, we extended STREAM to infer trajectories from human single-cell epigenomic data. This task is particularly 

challenging since the number of chromatin peaks (~450,000 peaks across hematopoiesis) far exceeds the number of 

genes and the accessibility at each peak is sparse, often containing only 0, 1, or 2 reads. Additionally, trajectory 

reconstruction based on scATAC-seq human data is more difficult than the recently obtained trajectories in non-

mammalian organisms
16

 with much smaller genomes. STREAM is able to perform pseudotime ordering on human cell 

chromatin-accessibility data without relying on accessibility of known transcription factor binding sites
17

 or a priori 

knowledge of sampling time
18

, hence providing a truly unbiased approach. STREAM in fact uses an unbiased set of DNA 

sequence features (7-mers), scoring each cell with chromVAR 
19

 based on its accessibility deviations across cells (Fig. 2a). 
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To test the effectiveness of STREAM, we examined open chromatin profiles of > 2,000 cells profiled by scATAC-seq in 

known human hematopoietic lineages
20

. STREAM not only accurately reconstructs cellular developmental trajectories of 

the human blood system, but also recovers key sequence features and master regulators that have been implicated in 

differentiation and lineage commitment for different subpopulations (Supplementary Fig. 15, Supplementary Note 6). 

For example, two of the detected 7-mer sequences match binding models for the transcription factors GATA1 and 

CEPBA, which regulate differentiation towards erythroid and myeloid lineages, respectively (Fig. 15b-c).  

STREAM is available as user-friendly open source software and can be used interactively to explore several precomputed 

datasets and to compute new trajectories at stream.pinellolab.org (Supplementary Fig 16 ), or as a standalone 

command-line tool using Docker (github.com/pinellolab/stream) (Supplementary Note 7-8). 
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Figures legends 

 

Figure 1 STREAM pipeline overview on single-cell RNA-seq data from the mouse hematopoietic system. (a) STREAM 

trajectory inference. Starting with a single-cell gene expression matrix, STREAM performs three main steps: selection of 

informative genes, dimensionality reduction, and simultaneous tree structure learning and fitting by ElPiGraph. The 

optimal structure is selected based on the elastic energy minimization among a set of candidate structures that are 

constructed every time a tree node is added.  The final tree is interpreted as a set of connected curves representing 

different trajectories. (b-d) STREAM visualization of inferred branching points, trajectories and expression of key genes 

at both single-cell level and density level. (b) Flat tree plot, branches are represented as straight lines and each circle 

represents a single cell. The lengths of the branches and the distances between cells and their assigned branches are 

preserved from the space where trajectories were inferred. (c) Subway map plot, after selecting an initial state in the flat 

tree plot, the tree is re-ordered to facilitate visualization. Each cell is colored by a cell label, if provided (top), or based on 

the expression of a gene of interest (bottom). (d) Stream plot, a novel and intuitive visualization to show cell density 

along different trajectories: at a given pseudotime, the width of each branch is proportional to the total number of cells 

(top). Stream plots can also visualize the expression of a gene of interest (bottom). (e-f) STREAM detection of marker 

genes. (e) STREAM automatically discovers important marker genes for each branch. Left, identification of differentially 

expressed genes between bifurcating branches. (f) Identification of transition genes (expression values correlate with 

pseudotime) along one specific branch. Top two detected differentially expressed genes (Car2 and Prtn3) and transition 

genes (Tmsb4x and Blvrb) are shown respectively with stream plots.  

 

Figure 2 STREAM on single cell epigenomic data from the human hematopoietic system. (a) Single cell ATAC-seq 

workflow. FACS sorting is used to isolate populations from CD34+ human bone marrow and single-cell ATAC-seq 

measurements are performed. After mapping reads to the reference genome, reads within peaks are selected and 

ChromVAR is used to calculate k-mers’ z-scores. Finally, PCA is applied to the z-score matrix and top principal 

components are selected as features for STREAM analysis. (b) STREAM learns a principal graph from chromatin 

accessibility data and accurately reconstructs cellular developmental trajectories of the human hematopoiesis. As in 

Figure 1, the structure can be easily visualized thanks to the subway map and stream plots. In the first branch, the HSCs 

segregate through MPP into lymphocyte-committed, erythrocyte-committed and myelocyte-committed branches. 

STREAM also reconstructs the bifurcation from lymphoid multipotent progenitors (LMPP) to CLP and plasmacytoid 

dendritic cells (pDC). (c) Discovery of transcription factors important for lineage commitment. 7-mer DNA sequences are 

automatically detected and their frequencies are visualized in both the subway map and stream plots. Recovered 7-mer 

DNA sequences are mapped to known transcription factors motifs. We recovered GATA1 and CEBPA as top hits, two 

classic master regulators in blood development, which correlate with directionality toward erythroid differentiation and 

myeloid differentiation, respectively. 
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ONLINE METHODS 

STREAM framework 

Trajectories inference 

Feature selection: For transcriptomic data (single-cell RNA-seq or qPCR), the input of STREAM is a gene expression 

matrix, where rows represent genes, columns represent cells. Each entry contains an adjusted gene expression value 

(library size normalization and log2 transformation) (Supplementary Note 7). The most variable genes are selected as 

features, using a procedure we have previously proposed
1
. Briefly, for each gene, its mean value and standard deviation 

are calculated across all the cells. Then a non-parametric local regression method (LOESS) is used to fit the relationship 

between mean and standard deviation values. Genes above the curve that diverge significantly are selected as variable 

genes. 

Dimensionality reduction: Each cell can be thought as a vector in a multidimensional vector space in which each 

component is the expression level of a gene. Typically, even after feature selection, each cell has still hundreds of 

components, making it difficult to reliably assess similarity or distances between cells, a problem often referred as the 

curse of dimensionality 
2
. To mitigate this problem, starting from the genes selected in the previous step we project cells 

to a lower dimensional space using a non-linear dimensionality reduction method called Modified Locally Linear 

Embedding (MLLE)
3
. MLLE takes into account local similarity of each cell with its neighbors and addresses the 

regularization problem of standard LLE by introducing multiple weight vectors in each neighborhood. The neighbor size 

is chosen based on the number of cells and is set by default to 10% of the total number of cells. The number of MLLE 

components to use depends on the number of branches and on the complexity of the structure to learn. Typically, three 

components capture the main structure for most datasets, increasing them may recover finer structures (although we 

observed that there is no benefit for selecting more than 5 components in all the datasets tested). 

ElPiGraph: structure learning and fitting  

Seeding initial tree structure 

To create an initial seed structure for the principal graph learning by ElPiGraph we first used the affinity propagation
4
 

method to cluster cells in the MLLE space. Affinity propagation is based on the idea of message-passing between sample 

points, and finds a small set of exemplars which are considered to be most representative of the other samples. For all 

our tests we used the scikit-learn implementation
5
 with a damping factor set to 0.75. Based on the exemplars obtained 

by the affinity propagation procedure, a minimum spanning tree (MST) was constructed using the Kruskal’s algorithm. 

The obtained tree is then used as initial tree structure for the ElPiGraph procedure. 

Elastic principal graph method (ElPiGraph) 

Elastic principal graphs are structured data approximators
6-8

, consisting of vertices and edges. The vertices are 

embedded into the space of the data, minimizing the mean squared distance (MSD) to the data points, similarly to k-

means. Unlike unstructured k-means, the edges connecting the vertices are used to define an elastic energy term. The 

elastic energy term and MSD are used to create penalties for graph edge stretching and the bending of branches. To find 

the optimal graph structure, ElPiGraph uses a graph grammar approach, which is described below. This approach allows 

an effective exploration of the graph structure space via a gradient descent-like search. In STREAM, the set of graph 

grammars 
9
used always result in the construction of a principal tree (i.e., a graph without cycles) but alternative graph 

grammars can produce more complex (e.g., circular) topologies. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/302554doi: bioRxiv preprint 

https://doi.org/10.1101/302554
http://creativecommons.org/licenses/by/4.0/


Let G be a simple undirected graph with a set of vertices V and a set of edges E and φ:V → R
m

 a map that describes an 

embedding of the graph into the multidimensional space R
m

 by mapping a node of the graph to a point in the data 

space. Let a k-star be a subgraph of G with k + 1 vertices v0,1,...,k ∈ V and k edges over these vertices {(v0, vi)|i = 1, .., k}. 

Let �����0�, �����1� denote two ends of the graph edge ����and ������0� ,..., �������� denote the vertices of a k-star ����� 
(where ������0� is the central vertex, to which all other vertices are connected). Let deg(vi) denote a function returning 

the order k of the star with the central vertex vi and zero if there is no any star centered in vi. 

The elastic energy of the graph embedment is defined as the sum of squared edge lengths (weighted by the λi elasticity 

moduli and a penalty for excessive branching α) and the sum of squared deviations from harmonicity for each star 

(weighted by the μj) 

	��
� � � �� � � �max �2, deg ������0�� , deg ������1��� � 2�� ��������0�� � �������1����
����

� �  �

	
�

���

!��������0�� � 1k � ��������#��


���

$
�

 

The second term (the deviation from star harmonicity) in the case of 2-star is a simple surrogate for minimizing the local 

curvature. In the case of k-stars with k>2 it can be considered as a generalization of local curvature defined for a 

branching point
8, 10

. 

Let K be a partition of all the data point under consideration (��, �� , … ��) such that K(i) = arg min���…���� � ������ 

returns an index of the vertex in the graph which is the closest to the ith data point among all graph vertices. The 

objective function that we want to minimize is defined as 

����, �� � 1∑ ��
� � �� · min ���� � ������, �	

��

�����

|�|

���

� �����, 
where wi is a weight of the data point i (can be unity for all points), |�| is the number of vertices, ||..|| is the usual 

Euclidean distance and �	 is a trimming radius that can be used to limit the effect of points distant from the graph (and 

hence to enforce a local construction that is more robust to noise) 
11

. 

Given a graph topology for approximating a set of vectors �, our goal is to find a map φ:V→ R
m

 such that U
φ
(X,G) → min 

over all possible elastic graph G embedment in R
m

. The local minimum of U
φ
(X,G) is found by applying the usual splitting 

type algorithm: 

1) Given the partition K of the data points by proximity to the graph vertices, we minimize ����, ��. Note that this 

functional is quadratic if K is fixed, therefore, the solution can be found very fast by solving a system of |V| 

linear equations. 

2) Update K using new vertex positions. This simple step can be also implemented very fast.  

3) Repeat 1) and 2) until a convergence criterion is met (i.e., the vertices are being displaced by less than a fixed 

threshold). Note that convergence is guaranteed by the form of ����, ��, which is a Lyapunov function wrt to 

the iterations 1-2.  

 

A graph grammar-based approach for simultaneous learning of the graph topology and embedment of the graph into 

the data space starts from a seed graph G0 and a map φ0(G0). A set of grammar operations are then applied iteratively to 

transform the graph topology, and hence the map, starting from a given pair {Gi, φi(Gi)} 
12

. Each grammar operation Ψp
 

produces a set of s new candidate graph topologies  �, possibly taking into account the dataset X: 

!! � , � ��", # � 1 … $" �  Ψ��!�� , �����", ��  
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Given the pair {Gi, φi(Gi)} characterizing the i
th

 step of the algorithm, a set of r different graph operations {Ψ1
,…, 

Ψr
} (which we call a “graph grammar”), and an energy function ����, ��, the algorithm applies all the grammar 

operations selected, fit the newly derived graph topologies to the data, and choose the most energetically 

favorable embedment as principal graph of the step (i+1)
th

: 

!����, ���������" � argmin���,������ %������� � , ��: ' � , � ��( ) * Ψ
��!�� , �����", ��

���…�

+ 

where ! � , � ��" is supposed to be fit to the data after the application of a graph grammar. 

In order to produce principal trees, one defines two operations for graph growth (‘bisect an edge’ and ‘add a node’) and 

one operation for graph shrinking (‘remove an edge’). Afterwards, two applications of growth operations are followed 

by one of shrinking. Such an approach allows avoiding local minima in the structure space of all possible tree topologies. 

The ElPiGraph algorithm has four parameters with clear meaning and effect on the final result: 

1) λ = λi controls the total length of the graph and, at the same time, promotes equal distance between neighbour 

graph nodes in the data space 

2) μ = μi controls the smoothness of the graph embedment (for the tree, smoothness of tree branches and 

harmonicity of graph stars). 

3) α  controls for excessive branching such that sufficiently large α (e.g., α = 1) hardly penalizes any branching 

while smaller values (e.g., α = 0.01) leads to keeping essential branches. 
4) R0 is the trimming radius, allowing robust estimation of node positions. ElPiGraph implements a simple scaling 

statistics allowing to automatically estimate R0 if needed. 
 

In the simplest case, R0 = ∞, α = 0, and it is recommended to keep λ ≈ μ/10. For all the single cell datasets in this paper it 

is desirable to set α = 0.02 and sometimes use trimming (automatically defined finite value for R0).  

Adjusting the final tree structure 

The resulting principal graph is refined based on the following procedures: 1) Principal tree branches can be 

extrapolated from the terminal vertices, i.e. a branch can grow, if necessary, to better fit cells that maybe fall far away 

from a terminal node. This allows a smoother pseudotime mapping and a more reliable characterization of cells close to 

initial or terminal points 2) Branches not supported by at least nminload data points can be removed or shrunk. 3) A k-star 

node, (node with connectivity k>2) can be rewired to another graph node if the latter has a higher local density or a 

larger number of cells projected into it to improve the positioning of candidate branching points. 

In this paper, the ElPiGraph.R R package has been used, available at https://github.com/sysbio-curie/ElPiGraph.R. 

Implementations of the ElPiGraph are also available in other programming languages (Matlab, Java, Python, Scala) 
13

. 

Visualization 

Flat Tree Plot: The tree structure learned in the 3D space (or higher dimensional space), is first approximated by linear 

segments (each representing a branch) and mapped to a 2D plane based on a modified version of the force-directed 

layout Fruchterman-Reingold algorithm
14

. In particular, we adjust each edge length in order to preserve the lengths of 

the branches of the original tree. Finally, using both the pseudotime location on the assigned branch and the distance 

from it in the MLLE space, we map cells to the obtained tree in the 2D plane. Cells are represented as dots and randomly 

placed to either side of the assigned branches. Each node in the tree indicates one cell state (cell states are sequentially 

named S0, S1, … starting from a randomly selected node) and the resulting structure is called flat tree plot. 
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Subway map plot: Starting from the flat tree plot and with a designated root or start node, breadth-first search is used 

to order and arrange nodes and edges horizontally on a 2d plane. Because we preserve the branch lengths of the original 

tree, the x-axis represents the distance (namely pseudotime) from the start node along the different branches. Cells are 

then mapped to the obtained structure, called subway map plot with the same strategy used for the flat tree plot. To 

display gene expression, each cell is colored according to its gene expression (the maximum value in the colormap is set 

as 90 percentile of gene expression values across all cells).  

Stream plot: Starting from the subway map plot, for each cell type (if cell labels are provided), using a sliding window 

approach, we first calculate the number of cells in each window along a developmental branch. To provide smooth 

transitions around the branching nodes, in those regions the sliding window spans both parent branch and children 

branches and then proceeds independently on each branch. Then, the numbers of cells in all sliding windows are 

normalized based on the length of the longest path in the tree. The vertical layout of different branches is optimized by 

taking into consideration normalized numbers of cells to make sure there will not be overlap between branches. Based 

on the normalized sliding window values, we first use linear interpolation to construct a set of supporting points. Then 

the Savitzky-Golay filter (a smoothing filter able to preserve well the signal and avoid oscillations)
15

 is applied to create 

smooth curves based on the set of supporting points. Finally, the obtained curves polygons (one for each cell type) are 

assembled to form the stream plot. On stream plot, the length of each branch is the same as in the subway map plot and 

represents pseudotime, whereas the width is proportional to the number of cells at a given position. To display gene 

expression, we consider, for each sliding window, not only the number of cells but also their average gene expression 

values smoothed by bicubic interpolation (the maximum value is set as the 90th percentile of the average gene 

expression values from all the sliding windows). 

Discovery of marker genes: 

Diverging gene detection: For each pair of branches ,�  and ,�, and for the gene -, the gene expression values across 

cells from both branches are scaled to the range .0,10. For gene expression -�  from ,�   and gene expression -� from ,�, 

we first calculate their mean values. Then, we check the difference between mean values to make sure it is above a 

specified threshold (the default value is 0.2). Mann-Whitney U test is then used to test whether -�  is greater than -� or -�  is less than -�. Since the statistic � could be approximated by a normal distribution for large samples, and � depends 

on specific datasets, we standardize � to Z-score to make it comparable between different datasets. For small samples 

where this test is underpowered (<20 cells per branch), we report only the fold change to qualitatively evaluate the 

differences between -�  and -�. Genes with Z-score or fold change greater than the specified threshold (2.0 by default) 

are considered as differentially expressed genes between branches. Formally: 

1 �  � � 2�3�  

Where 2�, 3� are the mean and standard deviation, and 

2� �  4�4�2                 3� � 64�4�12 7�4 � 1� � � 8�� � 8�4�4 � 1��

���
9 

Where 4 �  4� � 4�  4� , 4� are the number of cells in each branch, 8�  is the number of cells sharing rank : and # is the 

number of distinct ranks. 

Transition gene detection: For each branch ,�  and for each gene E we first scale the gene expression values to .0,10 for 

convenience. Then we check if the candidate gene has a reasonable dynamic range considering cells close to the start 

and end points. To this end, we consider the difference in average gene expressions of the first 20% and the last 80% of 
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the cells based on the inferred pseudotime. If the difference is greater than a specified threshold (the default value is 

0.2), we then calculate Spearman’s rank correlation between inferred pseudotime and gene expression of all the cells 

along  ,� . Genes with Spearman’s correlation coefficient above a specified threshold (0.4 by default) are identified and 

reported as transition genes. 

Mapping procedure: For a set of unmapped cells X =  !;�  | < � 1, … , =" and a fitted tree T built using the set of cells Y =  !>�   | ? � 1, … , @", currently we have the assumption that X and Y have the same measured genes and are sequenced 

using the same experiment protocol. Both are X and Y are library size normalized and log2 transformed. To map cell ;�  
into the embedding, we first find its nearest A neighbors in B, based on the same feature genes and K used to build T.  

The largest distance between  ;�  and its A neighbors is then chosen as the radius r. Then all the cells in B  within the 

radius C� � '>�D E�;� , >�� F G"  are used to compute a set of weights H� � '��� , ? ) C�( as defined in the original MLLE 

procedure. Finally, using the MLLE embedding vectors � � !I�, … , I�", the new cell position ;J�  is calculated in the 

embedding with the following equation: 

;J� �  � I� K ���
����

 

After mapping, each cell is assigned to its closest branch in T.  

STREAM analysis on scATAC-seq data: For the scATAC-seq analysis, a total of 3,072 cells were profiled using FACS to 

isolate 9 distinct populations from CD34+ human bone marrow, which encompassed progenitors for four well-defined 

lineages
16

.  2,034 high-quality cells passed quality control filtering and were used in the downstream analysis with 

STREAM. Specifically, cells were filtered so that 1000 unique nuclear fragments were observed for each cell and at least 

60% of these reads aligned in open chromatin peaks. After filtering low quality cells, the mean intensity and GC content 

for each peak that was called for this dataset was computed using the addGCBias function for the hg19 genome using 

the BSgenome.Hsapiens.UCSC.hg19 package available through chromVAR 
17

. These two coordinates were used to infer 

an empirically-defined set of background peaks to compute accessibility deviations, which have been described 

elsewhere
16, 18

. As features we used an unbiased k-mer scoring, which is naive to any known transcription factor motif 

and thus generalizable to other systems. We used the matchKmers function in chromVAR with parameters k = 7 and 

genome = BSgenome.Hsapiens.UCSC.hg19, which returns a matrix of dimension number of peaks by number of k-mers 

where a 1 indicates that the peak contains the k-mer sequence. The output of this function was then included in the 

computeDeviations function to compute chromatin accessibility z-scores for each of the k-mers in our dataset. This 

matrix of cells by k-mer accessibility z-scores serves as a data-driven dimensionality reduction of the chromatin 

accessibility profiles of these cells. Based on the z-score matrix of k-mer DNA sequences, all the 7-mer features are 

standardized to have zero mean and unit variance. PCA is performed on the scaled matrix to convert z-score to principal 

components. According to the variance ratio elbow plot we selected the top 15 PCs, but excluded the first component 

since it captured technical noise (dropout and number of reads). The obtained matrix is used to reconstruct trajectories 

as previously described. Diverging and transition k-mers were selected with the same procedures used for gene 

selection. Finally, detected k-mers were mapped to known transcription factors using Tomtom 
19

(http://meme-

suite.org/tools/tomtom) and a motif database previously assembled 

[chromvar_and_hocomoco.meme](https://github.com/buenrostrolab/chromVARmotifs)
16

. 

Comparison of methods for trajectory inference 

Simulated datasets: Given a set of n cells and assuming we know their developmental/sampling time and topological 

organization, i.e. how they are organized in branches, we can easily evaluate a generic reconstruction method with the 

following two metrics: 

1. Difference between the number of inferred and true branches.  

 

2. Correlation between the true sampling time � and the inferred pseudotime B. For the pseudotime we use either 

the proposed ranking or the actual distance from the starting point as provided by each method. We used 3 
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different measure of correlation: Pearson correlation G, Spearman correlation L and Kendall’s tau correlation M, 

calculated as follow: 

 

G�� !"#$�% � ∑ �;� � ;N�&
��� �>� � >O�P∑ �;� � ;N��&

��� P∑ �>� � >O��&
���

 

G�'&� � ∑ �;� � ;N�&
��� �GQ(�

� GQ(OOOOO�
P∑ �;� � ;N��&

��� 6∑ �GQ(�
� GQ(OOOOO��&

���

 

L �  RSI�GQ) , GQ*�3�+�3�+�  

M � 14�4 � 1� � $Q4�;� � ;��$Q4�>� � >��
�,�

 

Where GQ) and GQ*  are the ranks of cells, RSI�GQ) , GQ*� is the covariance of rank variables, 3�+�and 3�+�  are the 

standard deviations of rank variables. Note that since both Spearman correlation L and Kendall’s tau correlation M are 

rank-based methods, the correlation between � and B and the correlation between � and GQ*  are the same, so we 

consider only the correlation between � and B. 

Real datasets: To evaluate the quality of reconstruction in real datasets in which we do not have the real developmental 

time and topological information, we used the following two metrics: 

1. Path-specific marker gene correlation analysis: In real datasets oftentimes, we don’t have the sampling time 

along a branch. In this case, instead, it is helpful to evaluate how the inferred pseudotime recapitulates the 

progressive activation or repression of an important gene along that branch. The main idea here is that ordering 

cells based on a marker gene, which is important in defining a developmental trajectory, as a reasonable 

surrogate for the correct pseudotime ordering. As in the simulation case we computed 4 correlation coefficients 

using marker gene expression � and the inferred pseudotime B. 

 

2. T� score analysis on diverging or mutually exclusive marker genes: Let us consider a pair of diverging or mutually 

exclusive marker genes, ��  and ��. These genes should be highly expressed on different committed branches 

and rarely co-expressed in the same cell. We define ,�  as the branch which contains the most cells express �� . 

Then we can define as true positive (TP) for ,�  the number of cells expressing �� . The number of cells expressing ��  on the other branches is defined as false negative (FN). The number of cells expressing �� on ,�  is defined as 

false positive (FP). Similarly, for ��, ,� is the branch which has the most cells expressing ��. TP is the number of 

cells expressing �� on ,�. FN is the number of cells expressing �� on the other branches. FP is the number of cells 

expressing ��  on ,�. Based on the following equations, recall, precision and F1 score are calculated respectively 

for ��  and �� as follow: 

 GURV:: � -.

-.�/�
    WGUR<$<S4 �   -.

-.�/.
     T� �  2 K �� 0���#&1� 0'��

�� 0���#&�� 0'��
 

Website and code availability: 

STREAM is available as a user-friendly open source software and can be used interactively as a web-application at 

http://stream.pinellolab.org or as a standalone command-line tool: https://github.com/pinellolab/STREAM. 

Data availability: 
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All the data used in this study have been deposited at https://github.com/pinellolab/STREAM or available as 

supplementary information. 
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Supplementary materials 
 

Supplementary Note 1: STREAM analysis on scRNA-seq from the mouse hematopoietic system 

We used STREAM to reanalyze scRNA-seq data from Nestorowa et al. 2016
1
, which sorted and profiled 1656 single cells 

including hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), lymphoid multipotent progenitors (LMPPs), 

common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs) and megakaryocyte-erythrocyte 

progenitors (MEPs), to study the mouse hematopoietic stem and progenitor cell differentiation processes.  

STREAM recovers two bifurcation events (Fig. 1b) and three trajectories leading to myeloid, erythroid and lymphoid 

precursors. First, to check the validity of the structure, we used the assigned labels in the original study, which were 

derived by FACS sorting the different populations (when multiple labels were assigned based on different gates, we gave 

priority to narrow gates to obtain a unique label for each cell). As expected, HSCs progress into MPPs and then bifurcate 

into LMPPs and CMPs. Then CMPs differentiate into MEPs and GMPs respectively, hence accurately recapitulating 

known bifurcation events. 

Second, using STREAM we rediscovered known marker genes, including diverging genes between two branches and 

transition genes along each branch. On the CMPs bifurcation which leads to GMPs (S3,S4) and MEPs (S3,S5)  

populations, STREAM detects diverging genes including GMPs-specific genes like Prtn3, Mpo, Epx, and MEPs-specific 

genes like Car2, Gata1, Mfsd2b
2
 
3, 4

 (Fig.1c, Supplementary Fig. 1a). Along the MEP-committed trajectory (S3, S4), 

STREAM also recovered genes whose expression significantly correlates (p<1E-4, Spearman correlation) with the 

pseudotime progression. We recovered genes previously described 
5-7

 
8
 that are progressively and precisely 

downregulated such as Tmsb4x, Coro1a or upregulated like Blvrb, Ces2g (Fig. 1c, Supplementary Fig. 1b). Along the 

lymphoid differentiation trajectory (S2,S1,S0), STREAM identified HSCs-specific genes like Mpl
9
,Tgm2

10
 (Supplementary 

Fig.2), whose expressions are repressed towards lymphoid differentiation, and LMPPs-specific genes like lghv1-81, Ccl3 

(Supplementary Fig.2), whose expressions are activated during the differentiation as discussed in the original study
1
.  

Taken together, these analyses validate the accuracy of trajectory reconstruction of STREAM in recapitulating key 

bifurcation events and regulators of early blood development differentiation at single-cell resolution. 

Supplementary Note 2: Studying genetic perturbations with STREAM’s mapping feature 

STREAM provides a useful mapping procedure. After the principal graph is learned, it is possible to map new cells to the 

inferred structure. This reference structure is important when studying genetic or epigenetic perturbation, or when 

comparing different conditions (for example normal and cancer, response to stimuli, etc.). Existing methods require to 

fit a new model since the fitting procedure is not deterministic or because they don’t implement and provide this 

feature to the users. The main problem with re-computing the structure lies in the fact that it is hard to interpret 

pseudotime and cell positioning since trajectories may change based on the density and/or composition of the new cells 

to map. Our mapping procedure is instead deterministic and allows the user to easily study and predict perturbation 

effects, and explore the origin of unknown cell populations on annotated branching structures or vice versa (see an 

example in Supplementary Note 3). 

To show the utility of the mapping feature, we applied STREAM on scRNA-seq data from Olsson et al. 2017
11

. Using FACS 

sorting, 382 cells were isolated and profiled from different subpopulations, including stem/multipotent progenitor (LSK; 

lin-, Sca1+, c-Kit+), CMP, GMP, and LKCD34+(lin−c-Kit+CD34+) cells (Supplementary Fig. 3a left). A key result of this 

study is the discovery of metastable mixed-lineage states and the presence of co-expressed genes at single-cell level 

from competing lineages. The authors suggest that these metastable states are important in cell-fate decisions and that 

transcription factors play a key role in this process. In fact, they uncovered and validated two key transcription factors, 

i.e. Gfi1 and Irf8, that are co-expressed in a sub-population and are shown to be important for the commitment to 
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neutrophils or macrophages. Importantly, this dataset contains, in addition to wild-type data, genetic perturbations of 

those two key regulators.  

Using the wild-type data, STREAM unbiasedly and correctly reconstructs the cell lineage hierarchy (Supplementary Fig. 

3a right) as shown by inspection of the labels proposed in the original study (either cell surface markers or predicted 

lineages): starting from haematopoietic stem cell/progenitor(HSCP), cells bifurcate into an erythrocytic branch (which 

contains megakaryocytic (Meg) and erythrocytic (Eryth) cells) and into a multi-lineage primed (Multi-Lin) branch. Multi-

Lin cells further separate into the granulocytic (Gran) branch and monocytic (Mono) branch. The hierarchical progression 

can be easily visualized by our proposed 2D visualizations: subway map and stream plots (Supplementary Fig.3b).  

Importantly, STREAM precisely recovers the bifurcation event from Muli-lineage to Mono and Gran as shown in the 

original study within the wild-type GMP cellular population (Supplementary Fig. 3b,c), whereas the proposed Monocle2 

analysis in the same dataset
12

 incorrectly assigns those cells to a very short erythroid branch. Furthermore, Monocle2 

branch lengths are overall very diverse and distorted in their hierarchical representation (FE branch in Fig 2, and 

Supplementary Fig. 18 of the original paper
12

). Using our gene expression analysis, the Gran-specific gene Gfi1, Mono-

specific gene Irf8, and Eryth-specific gene Gata1 are highly expressed on their respective inferred trajectories, 

confirming the validity of the reconstructed branching structure (Supplementary Fig. 3d). 

Next, using the STREAM mapping function, we analyzed the genetic perturbation data to study the consequences on cell 

fate determination of Gfi1 loss (Gfi1 -/-), Irf8 loss (Irf8 -/-) and both Gfi1 and Irf8 loss (Gfi1 -/- Irf8 -/-) within wild-type 

GMP cells (Supplementary Fig. 4a).  Gfi1 -/- GMP cells tend to differentiate into the Mono branch and Irf8 -/- GMP cells 

lean toward the Gran branch. Gfi1 -/- Irf8 -/- GMP cells have equal chance to go either way. The loss of Gfi1 and Irf8 

instead does not show any imbalance of cells differentiating into the diverging branches (Supplementary Fig. 4b-d). Our 

predictions are validated by the original study where the authors used GMP cells with inducible expression and GFP 

reporters for Gfi1 and Irf8. Irf8 loss led to cells that differentiated toward granulocyte. Conversely, Gfi1 loss led the cells 

to differentiate toward monocytes. Interestingly they showed that cells from the hematopoietic stem cell/progenitor 

and myeloid compartments are trapped with the double knockouts of Irf8 and Gfi1, and in fact, are rarely differentiating 

towards monocytes or granulocytes. These results are in perfect agreement with our unbiased analysis. In addition, 

compared to the proposed Monocle2 analysis, our reference structure can be fixed to recapitulate only the wild-type 

cells and is not influenced by the mapping of new cells (compare instead A,B with C,D in Supplementary Fig. 18 of the 

original paper
12

). 

Supplementary Note 3: STREAM analysis on single cell qPCR data of the zebrafish hematopoietic system 

Next, we tested STREAM with data from a different organism, analyzing recently published single-cell qPCR data from 

Moore et al
13

, that provided a first model of the zebrafish hematopoiesis system using a panel of 96 gene primers. 166 

cells were profiled from the wild-type(WT) whole-kidney marrow (WKM). STREAM analysis uncovered four cell lineages 

trajectories (Supplementary Fig. 5a left). Based on the automatic gene detection module of STREAM, we uncovered 

marker genes for each trajectory (Supplementary Fig. 5a), which includes T cell marker gene TCR-alpha, myeloid marker 

gene nccrp-1, B-cell marker gene CD79 and erythroid marker gene band3. Based on this analysis, we hypothesize that 

the inferred four branches corresponded to T cells, myeloid, B cell and erythroid lineages (Supplementary Fig. 5a right). 

To validate our branches, we used the STREAM mapping features to map fluorescent-labeled and FACS sorted cells from 

WKM: 20 erythroid cells from peripheral blood cells (per RBC), 24 erythroid cells Tg(gata1:dsRed), 48 myeloid cells 

Tg(mpx:GFP), 49 B cells Tg(rag2 :dsRed), 83 mature T cells Tg(lck:GFP)cells, 85 HSPCs Tg(CD41:GFP)low. Lck cells are 

mapped to T cell branch, mpx cells are mapped to myeloid cell branch, rag2 cells are mapped to B cell branch, both 

gata1 and per RBC are mapped to erythroid branch; also, the majority of HSPCs are mapped to the proposed starting 

state as expected (Supplementary Fig.5b). This analysis validates our unbiased reconstruction of the developmental 

trajectories from unlabeled cells and provides another example of the STREAM mapping feature utility.  
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Supplementary Note 4: STREAM analysis on inDrop data of the zebrafish hematopoietic system 

To test the scalability and robustness of STREAM on a larger and more challenging scRNA-seq dataset, we next analyzed 

~10000 unlabeled cells from the zebrafish whole-kidney marrow generated by Tang et al 
14

 using the inDrop protocol
15

 (a 

recently proposed droplet-based assay). The original study, based on dimensionality reduction and clustering, uncovered 

and annotated 10 different and imbalanced subpopulations (validated by the authors using sorting of fluorescent or 

transgenic cell sub-populations) (Supplementary Fig.6a). STREAM correctly recapitulated the hierarchy of the different 

lineages and unbiasedly recovered four different hematopoietic cellular trajectories: starting from HSCs, through blood 

progenitor cells, cells differentiate into erythroid, macrophage, neutrophil and lymphoid lineages (Supplementary 

Fig.6b). Importantly, we rediscover well-known marker genes: ba1 for the erythroid branch, mfap4 for the macrophage 

branch, mpx for the neutrophil branch, and lck for the lymphoid branch (Supplementary Fig.6c). This analysis highlights 

four important points of our approach: 1) we can recover trajectories using unsorted populations, 2) the trajectory 

inference is robust to sub-populations imbalance, 3) our gene analysis is a powerful tool to discover marker genes, and 

4) our method is scalable to currently available large-scale single-cell assays.  

Supplementary Note 5: Comparison of STREAM with existing methods 

Several methods have been proposed for pseudotime inference or trajectory reconstructions. In fact, more than 50 

methods have been proposed for this task making a systematic comparison unfeasible for the scope of this manuscript. 

For this reason, we compared STREAM with 10 state-of-the-art methods well recognized and commonly used by the 

single-cell community: Monocle2, scTDA, Wishbone, TSCAN, SLICER, DPT, GPFates, Mpath, SCUBA and PHATE
12, 16-24

.  

First, we reviewed the different methods to summarize their general features, required inputs, supported data and 

limitations (Supplementary Fig. 7). Next, we focus our comparison on three important aspects: topology correctness, 

pseudotime reliability, and branching model complexity. We also provide in our assessment the default visualizations 

provided by each method to showcase and easily compare their expressiveness in representing cellular development 

trajectories. For each method, the analyses were performed with standard parameters when possible, following the 

guidelines provided in the documentation or suggested by the respective authors. 

We started our analysis using a previously proposed gold-standard synthetic dataset by Rizvi et al. 
16

 with known 

topology and pseudotime: two bifurcation events and 3 different time points (Supplementary Fig. 8). We first assessed 

the qualitative output of each method using their proposed visualization. PHATE, a dimensionality reduction method, 

qualitatively preserves cellular trajectories but does not provide branch assignment information for cells. STREAM, 

scTDA, Monocle2, and Mpath can accurately reconstruct two bifurcation events. Wishbone and DPT instead can only 

detect one simple bifurcation even though the obtained 2D manifold clearly shows two bifurcations. SLICER detects too 

many branches and their positions are difficult to assess from the proposed visualization. GPFates requires to pre-

specify the number of trajectories (referred as trends in the original study and manually set for this dataset to 3). 

Although the generated curves initially follow the correct branches, they incorrectly converge at the end. SCUBA fails to 

detect bifurcation events in this dataset. We also noticed that scTDA, SCUBA, and MPATH do not provide single-cell-

resolution visualization. Wishbone and DPT do not provide trajectory visualization so they cannot visualize both time 

points and recovered branch assignment in the same plot. (Supplementary Fig.8).  

We next calculated for each method the correlation (Online methods) between true pseudotime and inferred 

pseudotime. Our method has the best performance for two out of four metrics (importantly when using the actual 

pseudotime defined as the distance of each cell from the origin in the proposed embedding) and comparable 

performance for the other two rank-based metrics (following scTDA in which this synthetic dataset was proposed) 

(Supplementary Fig. 9).  
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In summary, STREAM correctly recovers the correct topology, has the best pseudotime reconstruction performance 

when using distance-based pseudotime along a trajectory, and is the only tool that provides a visualization to study the 

density of different cell types in different branches. 

To compare the different methods on real datasets, we first used the most commonly used scRNA-seq dataset for this 

task, originally proposed by Trapnell et al
25

. This dataset contains human skeletal muscle myoblasts (HSMM) cells 

differentiating along a linear trajectory. In this analysis, we were able to evaluate only methods capable to detect the 

correct bifurcation event. Regardless, the visual output of all the methods is presented for completeness 

(Supplementary Fig. 10). The original study proposed a single bifurcation, which leads to myoblast cells or separate 

potentially contaminating cells (Supplementary Fig. 11a). To test the quality of pseudotime it has been proposed to use 

known marker genes along the myoblast differentiation trajectory, in particular to correlate their expression level (a 

surrogate for the correct ordering) with the rank or distance-based pseudotime (Online Methods). To this end, we used 

the previously proposed genes ENO3, MEF2C, and MYH2 
12, 18

. STREAM has the overall best performances on ENO3 and 

MYH2 (when considering the average score of the four metrics) and a comparable performance on MEF2C with both 

distance or rank based pseudotime (Supplementary Fig. 11b-c, Supplementary Fig. 12). When ordering cells based on 

the distance pseudotime, we expect, in the ideal scenario, a continuous and smooth distribution. For example, STREAM 

can generate a smooth and monotonically increasing distribution of ENO3 expression based on the inferred pseudotime. 

In contrast, we noticed that for the distance-based pseudotime in Monocle2, cells are mainly attracted to the end points 

of the trajectory, with few cells in between.  In Wishbone and SLICER, distance-based pseudotime shows a set of 

unexpected discrete segments. Neither Mpath nor TSCAN can generate distance-based pseudotime. In addition, Mpath 

doesn’t recover a monotonically increasing trend (Supplementary Fig. 11c, Supplementary Fig. 12).  

Finally, we analyzed a high-quality single cell qPCR dataset containing ~270 blood cells sorted from 6 different 

populations: HSC, MPP, CMP, GMP, MEP and common lymphoid progenitor cells (CLPs) profiled for ~170 key 

transcription factors important in mouse hematopoiesis
26

.  The output of each method is shown in Supplementary Fig. 

13. STREAM is the only method that clearly shows the reconstructed developmental trajectories and the lineage 

hierarchies using its default visualizations. We recovered a trajectory that starts from HSCs and then through MPPs 

bifurcates into CMPs. A subset of likely erythroid-poised CMPs shows an early progression into MEP, consistent with a 

recently refined model of hematopoiesis
27

. We also recovered a second bifurcation event that effectively captures cell 

commitment from MPPs into GMPs and CLPs. 

To assess the quality of the discovered trajectories, we reasoned that classic marker genes for different lineages should 

be expressed in cells belonging to different trajectories with minimal mixing (i.e. it should be rare to observe single cells 

that express simultaneously both markers). To this end, we selected Gata1, a classic erythroid marker, and Pax5, a 

classic lymphoid marker. For each method, we selected the two best single trajectories that contained Gata1 or Pax5 

expressing cells (we observed that for some models these two trajectories coincide).  Then, each trajectory is evaluated 

based on precision, recall and the F1 score (see Online Methods). The optimal model should balance precision and recall 

separating Gata1 and Pax5 in two distinct trajectories; whereas under-branching models will have a high recall but poor 

precision and over-branching models will have a high precision but poor recall (Supplementary Fig. 14a). 

STREAM has the highest F1-score for both Gata1 and Pax5 among all the methods tested and balance well precision and 

recall (Supplementary Fig. 14b-c). SCUBA works reasonably well for both genes but has a lower recall overall. Monocle2 

tends to generate over-branched structures with high precision but poor recall. Mpath works well in the case of Gata1 

but performs poorly for Pax5. Since both Wishbone and DPT can only detect a single bifurcation, they both fail to 

separate the lymphoid cells from erythroid cells, which leads to having a perfect recall but very poor precision.  
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In summary, although many of the proposed methods work reasonably well with simple linear trajectories, they may 

provide over- or under- branched models in more complex scenarios and may mask important trajectories or marker 

genes. 

 

Supplementary Note 6: STREAM analysis on scATAC-seq data of the human hematopoietic system 

Although some initial attempts have recently shown how to reconstruct trajectories from single-cell chromatin 

accessibility data
28, 29

,  STREAM is the only method to our knowledge that is capable of capturing trajectories from 

human single-cell  (sc) ATAC-seq data using a set of unbiased DNA sequence features. In addition, STREAM is the only 

end-to-end pipeline that provides specific functions to analyze scATAC-seq data. In fact, Monocle2, a method specifically 

designed for transcriptomic data and used in the aforementioned initial studies, doesn’t provide in the current 

implementation (last checked on Apr 13, 2018) any tool for trajectory reconstruction based on scATAC-seq data 

(http://cole-trapnell-lab.github.io/monocle-release/). 

To illustrate STREAM analysis on scATAC-seq data, a total of 3,072 cells were profiled from the human bone marrow and 

isolated by FACS into nine different cellular populations, including HSC, MPP, CMP, CLP, LMPP, GMP, MEP, mono and 

plasmacytoid dendritic cells (pDCs)
30

 . After filtering cells as previously described,
31

 single cell accessibility profiles for 

2,034 high-quality cells passed quality control. We emphasize that each cell was sorted using multiple surface markers as 

previously described 
32

, providing a phenotypic “true positive” for cell state that would enable us to determine the 

accuracy of STREAM.  

To consider general features related to chromatin accessibility, as many transcription factor motifs have been defined 

from the hematopoietic system, we sought to determine the efficacy of our approach using general DNA sequence 

features, i.e. unbiased k-mer scores, which are naive to any known transcription factor motifs and thus generalizable to 

other systems. To this end, starting from count data and using chromVAR
33

, we first constructed a matrix of cells x k-mer 

accessibility z-scores in our dataset (in our experiments k=7). The k-mer accessibility z-scores are then used by STREAM 

as features to reconstruct trajectories (Online Methods). 

STREAM accurately reconstructed cellular developmental trajectories of the human blood system: the HSCs branch 

segregates through MPP into the erythrocyte-committed, lymphocyte-committed and myelocyte-committed branches. 

STREAM also reconstructed the bifurcation from lymphoid multipotent progenitors (LMPP) to CLP and plasmacytoid 

dendritic cells (pDC). Interestingly, STREAM reveals a similar and consistent hematopoietic hierarchy described by 

orthogonal assays such as transcriptomic profiling (Fig. 2b). 

In addition, STREAM, using the inferred structure, automatically identifies significant k-mer DNA sequences for each 

branch. Importantly, those recovered k-mers can be mapped to known transcription factors motifs that may drive cell-

fate decision and commitment. In addition to GATA1 and CEPBA, recovered for erythroid lineage and myeloid lineages, 

respectively (Fig. 2c), along the erythroid cell differentiation trajectory, we uncovered several additional potential 

regulators for HSCs (ATF3
34

, HOXB8
35

) and MEPs (LMO2
36

,TAL1
30

) (Supplementary Fig.15 ). 

In summary, compared to previous studies, STREAM provides the unbiased reconstruction of human hematopoiesis 

using chromatin accessibility data at single-cell resolution. Moreover, it uncovers annotated (i.e. mappable to 

transcription factors) or unannotated DNA sequences that may be important in defining the different developmental 

paths. 

 

Supplementary Note 7: STREAM interactive website 
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In order to make STREAM user-friendly and accessible to non-bioinformatician, we have created an interactive website: 

http://stream.pinellolab.org. The website implements all the features of the command line version and provides 

interactive and exploratory panels to zoom and visualize single-cells on any given branch. 

The website offers two functions: 1) to run STREAM on single-cell transcriptomic or epigenomic data provided by the 

users and 2) the first interactive database of precomputed trajectories with results for seven published datasets. The 

users can visualize and explore cells’ developmental trajectories, subpopulations and their gene expression patterns at 

single-cell level. (Supplementary Fig. 16).  

The website can also run on a local machine using the provided Docker image we have created. To run the website in a 

local machine it is just necessary to install Docker and then from the command line execute the following command: 

docker run -p 10001:10001 pinellolab/stream STREAM_webapp 

 

After the execution of the command the user will have a local instance of the website accessible at the URL:  

http://localhost:10001 

 

Supplementary Note 8: STREAM command line interface 

STREAM can be easily used thanks to a simple command line interface. It is possible to install and use STREAM with 

Docker. 

Installation with Docker 

With Docker no installation is required, the only dependence is Docker itself. Docker can be downloaded freely from 

here: https://store.docker.com/search?offering=community&type=edition  

To get a local copy of STREAM execute the following command: 

docker pull pinellolab/stream 
 
STREAM usage and example dataset 

The main and required input file is a tab-separated gene expression matrix (raw counts or scaled) in tsv file format. Each 

row represents a unique gene and each column is one cell. 

The following table shows the first 5 rows (genes) and 5 columns (cells) of the provided example dataset 

 
HSC1 HSC1.1 HSC1.2 HSC1.3 HSC1.4 

CD52 6.479620 0.000000 0.000000 5.550051 0.000000 

Ifitm1 11.688533 11.390682 10.561844 11.874295 8.976571 

Cdkn3 0.000000 0.000000 0.000000 0.000000 8.293616 

Ly6a 10.417026 11.452145 0.000000 8.158840 8.945882 
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HSC1 HSC1.1 HSC1.2 HSC1.3 HSC1.4 

Bax 6.911608 10.201157 0.000000 9.396073 0.000000 

 

In addition, it is possible to provide these optional files in .tsv format:  

1. Cell labels: Each item can be a putative cell type or sampling time point obtained from experiments. Cell labels 

are helpful for visually validating the inferred trajectory.  This file must be in .tsv format. The order of labels 

should be consistent with cell order in the gene expression matrix file. No header is necessary: 

 
HSC 
HSC 
GMP 
MEP 
MEP 
MPP 
GMP 
GMP 
. . . 
 

2. Cell label color: Customized colors to use for the different cell labels. The first column specifies cell labels and 

the second column specifies the color in the format of hex. No header is necessary: 
 

HSC #7DD2D9 
MPP #FFA500 
CMP #e55b54 
GMP #5dab5a 
MEP #166FD5 
CLP #989797 
. . . 
 

3. Gene list:  It contains genes that users may be interested in visualizing in subway map and stream plot in 

addition to the genes detected by STREAM. Genes are listed in one column. No header is necessary: 

 
Ifitm1 
Cdkn3 
Ly6a 
CD52 
Foxo1 
. . . 
 

4. Feature genes: It contains genes that the user can specify and that are used as features to infer trajectories. 

instead of using the automatic feature selection of STREAM. No header is necessary: 

 
Gata1 
Pax5 
CD63 
Klf1 
Lmo2 
. . . 
 

To run STREAM, after the installation at the command-line interface execute: 

docker run pinellolab/stream [options]  

Users can specify the following options: 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/302554doi: bioRxiv preprint 

https://doi.org/10.1101/302554
http://creativecommons.org/licenses/by/4.0/


-m, --matrix   
input file name. Matrix is in .tsv or tsv.gz format in which each row represents a unique gene and 
each column is one cell. (default: None) 
-l, --cell_labels   
file name of cell labels (default: None) 
-c, --cell_labels_colors   
file name of cell label colors (default: None) 
-s, --select_features   
LOESS, PCA, all: Select variable genes using LOESS or top principal components using PCA or keep 
all the gene (default: LOESS) 
-f, --feature_genes   
specified feature genes (default: None) 
-t, --detect_TG_genes   
detect transition genes automatically 
-d, --detect_DE_genes   
detect DE genes automatically 
-g, --gene_list   
genes to visualize, it can either be filename which contains all the genes in one column or a set 
of gene names separated by comma (default: None) 
-p, --use_precomputed   
use precomputed data files without re-computing structure learning part 
--log2   
perform log2 transformation 
--norm   
normalize data based on library size 
--atac 
indicate scATAC-seq data 
--atac_counts 
scATAC-seq counts file name in .tsv or .tsv.gz format. Counts file is a compressed sparse matrix 
that contains three columns including region indices, sample indices and the number of 
reads(default: None) 
--atac_regions 
scATAC-seq regions file name in .tsv or .tsv.gz format. Regions file contains three columns 
including chromosome names, start and end positions of regions (default: None) 
--atac_samples 
scATAC-seq samples file name in .tsv or tsv.gz. Samples file contains one column of cell names  
(default: None) 
--atac_k 
specify k-mers length for scATAC-seq analysis (default: 7) 
--n_processes   
Specify the number of processes to use. (default, all the available cores). 
--loess_frac   
The fraction of the data used in LOESS regression (default: 0.1) 
--pca_max_PC   
Maximal principal components in PCA (default: 100) 
--pca_first_PC   
keep first PC 
--pca_n_PC   
The number of selected PCs (default: 15) 
--n_processes   
Specify the number of processes to use. The default uses all the cores available 
--lle_neighbours   
LLE neighbour percent (default: 0.1) 
--lle_components   
number of components for LLE space (default: 3) 
--AP_damping_factor   
Affinity Propagation: damping factor (default: 0.75) 
--EPG_n_nodes 
Number of nodes for elastic principal graph (default: 50) 
--EPG_lambda 
lambda parameter used to compute the elastic energy (default: 0.02) 
--EPG_mu 
mu parameter used to compute the elastic energy (default: 0.1) 
--EPG_trimmingradius 
maximal distance of point from a node to affect its embedment (default: Inf) 
--EPG_finalenergy 
indicating the final elastic energy associated with the configuration. It can be 'Base' or 
'Penalized' (default: 'Penalized') 
--EPG_alpha 
positive numeric, alpha parameter of the penalized elastic energy (default: 0.02) 
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--disable_EPG_collapse 
disable collapsing small branches 
--EPG_collapse_mode 
the mode used to collapse branches. It can be 'PointNumber','PointNumber_Extrema', 
'PointNumber_Leaves','EdgesNumber' or 'EdgesLength' (default:'PointNumber') 
--EPG_collapse_par 
the control parameter used for collapsing small branches 
--EPG_shift 
shift branching point  
--EPG_shift_mode 
the mode to use to shift the branching points 'NodePoints' or 'NodeDensity' (default: NodeDensity) 
--EPG_shift_DR 
positive numeric, the radius used when computing point density if EPG_shift_mode is 'NodeDensity' 
(default:0.05) 
--EPG_shift_maxshift 
positive integer, the maximum distance (number of edges) to consider when exploring the branching 
point neighborhood (default:5) 
--disable_EPG_ext 
disable extending leaves with additional nodes 
--EPG_ext_mode 
the mode used to extend the graph. It can be 'QuantDists', 'QuantCentroid' or 'WeigthedCentroid'. 
(default: QuantDists) 
--EPG_ext_par 
the control parameter used for contribution of the different data points when extending leaves with 
nodes (default: 0.5) 
--DE_z_score_cutoff   
Differentially Expressed Genes Z-score cutoff (default: 2) 
--DE_diff_cutoff   
Differentially Expressed Genes difference cutoff (default: 0.2) 
--TG_spearman_cutoff   
Transition Genes Spearman correlation cutoff (default: 0.4) 
--TG_diff_cutoff   
Transition Genes difference cutoff (default: 0.2) 
--stream_log_view 
use log2 scale for y axis of stream_plot  
--for_web 
Output files for website 
-o, --output_folder   
Output folder (default: None) 
--new   
file name of data to be mapped (default: None) 
--new_l   
filename of new cell labels (default: None) 
--new_c   
filename of new cell label colors (default: None) 

 

Example with transcriptomic data: Using the example data provided: data_guoji.tsv, cell_label.tsv and 

cell_label_color.tsv, and assuming that they are in the current folder, to perform trajectories analysis, users 

can simply run a single command (By default, LOESS is used to select most variable gene. For qPCR data, the number of 

genes is relatively small and often preselected, it this case it may be necessary to keep all the genes as features by 

setting the flag -s all): 

docker run pinellolab/stream -v $PWD:/data -w /data -m data_guoji.tsv -l 
cell_label.tsv -c cell_label_color.tsv -s all 

To visualize genes of interest, user can provide a gene list file, for example: gene_list.tsv and add the flag  -p to 

use the precomputed file obtained from the first running (in this way, the analysis can will not restart from the beginning 

and other existing figures will not be re-generated): 

docker run pinellolab/stream -v $PWD:/data -w /data -m data_guoji.tsv -l 
cell_label.tsv -c cell_label_color.tsv -s all -g gene_list.tsv -p 
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To explore potential marker genes, it is possible to add the flags -d or -t to detect DE (differentially expressed) genes 

and transition gens respectively. The best 10 DE (any pair of branches) and transition genes (any branch) are 

automatically plotted: 

docker run pinellolab/stream -v $PWD:/data -w /data -m data_guoji.tsv -l 
cell_label.tsv -c cell_label_color.tsv -s all -d -t 

 

Example of the mapping feature: To use the mapping feature, users need to provide two datasets: one used to inferring 

trajectories and the other containing cells to be mapped to the inferred trajectories. Here to  illustrate this feature we 

use data from Moore et al.2016 and in particular those two files: Moore.tsv (cells used to infer trajectories), 

data_mapping.tsv (cells to map). 

We first infer trajetories using the following command: 

docker run pinellolab/stream -v $PWD:/data -w /data -m data_Moore.tsv -s all --
EPG_shift --EPG_trimmingradius 0.1 -o /users_path/STREAM_result 

 
Then to map the cells to the inferred trajectories we use the following command (note the flags --new, --new_l and --

new_c and the same folder for the output flag -o): 

docker run pinellolab/stream -v $PWD:/data -w /data -o /users_path/STREAM_result 
--new data_mapping.tsv --new_l cell_labels_mapping.tsv --new_c 
cell_labels_mapping_color.tsv  

After running this command, a folder named Mapping_Result will be created under 

/users_path/STREAM_result along with all the mapping analysis results. 

 

Example with scATAC-seq data: To perform scATAC-seq trajectory inference analysis, three files are necessary, a .tsv file 

of counts in compressed sparse format, a sample file in .tsv format and a region file in .bed format: 

1. Count file: a tab-delimited compressed matrix in sparse format (column-oriented). It contains three columns. 

The first column specifies the rows indices (the regions) for non-zero entry. The second column specifies the 

columns indices (the sample) for non-zero entry. The last column contains the number of reads in a given region 

for a particular cell. No header is necessary: 

3735 96 1 

432739 171 2 

133126 292 1 

219297 359 1 

284936 1222 1 
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442588 1580 2 

 

2. Sample file: It has one column. Each row is a cell name.  The order of the cells should be consistent with the 

sample indices in count file. No header is necessary: 

 
singles-BM0828-HSC-fresh-151027-1 
singles-BM0828-HSC-fresh-151027-2 
singles-BM0828-HSC-fresh-151027-3 
singles-BM0828-HSC-fresh-151027-4 
singles-BM0828-HSC-fresh-151027-5 
. . . 
 

3. Region file: a tab-delimited .bed file with three columns. The first column specifies chromosome names. 

The second column specifies the start position of the region. The third column specifies the end 

position of the region. The order of regions should be consistent with the regions indices in the count 

file. No header is necessary: 
 
chr1 10279 10779  
chr1 13252 13752  
chr1 16019 16519  
chr1 29026 29526  
chr1 96364 96864  
. . .  

 

Using these three files, users can run STREAM with the following command (note the flag --atac ): 

docker run pinellolab/stream -v $PWD:/data -w /data --atac -s PCA --atac_counts 
count_file.tsv --atac_sample_file.tsv --atac_regions region_file.bed -l 
cell_label.tsv -c cell_label_color.tsv 

This command will generate a file named df_zscores_scaled.tsv. It’s a tab-delimited z-score matrix with k-mers 

in row and cells in column. Each entry is a scaled z-score of the accessibility of each k-mer across cells. This operation is 

time-consuming and it may take a couple of hours with a modest machine. STREAM also provides the option to take as 

input a precomputed z-score file from the previous step, for example, to recover trajectories when increasing the 

dimensionality of the manifold. Using a precomputed z-score file, users can run STREAM with the following command: 

docker run pinellolab/stream -v $PWD:/data -w /data -m df_zscores_scaled.tsv -l 
cell_label.tsv -c cell_label_color.tsv --atac -s PCA 

 

Output description 

STREAM write all the results by default in the folder STREAM_result, unless a different directory is specified by the 

user with the flag -o. This folder contains the following files and directories: 

• LLE.pdf: projected cells in the MLLE 3D space. 

• EPG.pdf: elastic principal graph fitted by ElPiGraph in 3D space 

• flat_tree.pdf: 2D single-cell level flat tree plot  

• nodes.tsv: positions of nodes (or states) in the flat_tree plot 

• edges.tsv: edges information in the flat_tree plot 

• cell_info.tsv: Cell information file. Column 'CELL_ID', the cell names in the input file. Column 'Branch', the branch id 

a cell is assigned to. The branch id is encoded by the two cell states. Column 'lam',  the location on a branch, which is 
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the arc length from the first cell state of branch id to the projection of the cell on that branch. Column 'dist', the 

euclidian distance between the cell and its projection on the branch. 

• sub-folder 'Transition_Genes' contains several files, one for each branch id, for example for (S1,S2): 

o Transition_Genes_S1_S2.png: Detected transition genes plot for branch S1_S2. Orange bars are genes 

whose expression values increase from state S1 to S2 and green bars are genes whose expression values 

decrease from S1 to S2 

o Transition_Genes_S1_S2.tsv: Table that stores information of detected transition genes for branch S1_S2. 

• sub-folder 'DE_Genes' Genes' contains several files, one for each pair of branches, for example for (S1,S2) and 

(S3,S2): 

o DE_genes_S1_S2 and S3_S2.png: Detected differentially expressed top 15 genes plot. Red bars are genes 

that have higher gene expression in branch S1_S2, blue bars are genes that have higher gene expression in 

branch S3_S2 

o DE_up_genes_S1_S2 and S3_S2.tsv: Table that stores information of DE genes that have higher expression 

in branch S1_S2. 

o DE_down_genes_S1_S2 and S3_S2.tsv: Table that stores information of DE genes that have higher 

expression in branch S3_S2. 

• sub-folder 'S0': Set of linearized plots (subway and stream plots) for each of the cell states, for example, choosing S0 

state as root state: 

o subway_map.png: single-cell level cellular branches plot 

o stream_plot.png: density level cellular branches plot 

o subway_map_gene.png: gene expression pattern on subway map plot 

o stream_plot_gene.png: gene expression pattern on stream plot 

• sub-folder 'Precomputed': 

o It contains files that store computed variables used when the flag -p is enabled. 

Supplementary Figures Legends 

Supplementary Figure 1 STREAM automatically discovers differentially expressed genes and transition genes around 

the S1 bifurcation in mouse hematopoietic system. (a)Top left, subway map schematic to highlight the branches 

(S1,S3)(red), (S1,S0)(blue) used to calculate DE genes. Bottom left, genes highly expressed on branch (S1,S3) (red part) 

and genes highly expressed on branch (S1,S0) (blue part), sorted by significance. Top right, top detected marker genes 

for (S1,S3) are visualized on both subway map plots and stream plots. Bottom right, top detected marker genes for 

(S1,S0) are visualized on both subway map plots and stream plots. (b)Top left, subway map schematic used to highlights 

the branch (S1,S0) (green to orange gradient) used to calculate transition genes. Bottom left, genes monotonically 

increasing (orange part) or decreasing (green part) when progressing along branch (S1,S0), sorted by significance. Top 

Right, top detected upregulated and downregulated transition genes along branch (S1,S0) are visualized on both subway 

map and stream plots.  

 

Supplementary Figure 2 STREAM automatically discovers marker genes along lymphoid cells differentiation trajectory 

(S2,S1,S0) in mouse hematopoietic system. (a)Top left, subway map schematic to highlight the lymphoid cells 

differentiation trajectory (S2,S1,S0) consisting of two branches (S2,S1)(cyan), (S1,S0)(yellowgreen), whose related 

marker genes are calculated. Bottom left, heatmap showing the detected marker genes expression. Each row indicates 

one marker gene. Each column indicates one cell on the trajectory (S2,S1,S0). Cells are ordered by the inferred 

pseudotime from STREAM. The two colors represent cells’ branch ID assignment, either branch (S2,S1) or branch (S1,S0).  

(b) Twelve marker genes selected from left heatmap are visualized on stream plots. 

 

Supplementary Figure 3 Unbiased reconstruction of wild-type mouse hematopoietic cell lineage hierarchy. (a) Left, 

cell subpopulations were isolated from the mouse wild-type hematopoietic system including stem/multipotent 

progenitor (LSK), common myeloid progenitor (CMP), granulocyte monocyte progenitor (GMP) and LKCD34+ and 

profiled by scRNA sequencing. Right, wild-type cells are shown in low dimensional space together with trajectories 
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inferred by STREAM. Cells are colored by the cluster labels proposed by Olsson at al. (b) Left, subway map plot; right, 

stream plot. Both are colored by cluster labels inferred by Olsson at al. (c) The same subway map and stream plot as (b) 

but colored by FACS gating labels from the original study. (d) Stream plots of three key marker genes: Gfi1 for 

granulocyte, Irf8 for monocyte and Gata1 for Meg and Eryth.  

 

Supplementary Figure 4 Mapping of genetic perturbation data to the inferred trajectories from wild-type mouse 

hematopoietic cells. (a) Left, scRNA sequencing is performed on genetically perturbed cells within the GMP populations: 

Gfi1-/-, Irf8-/- and Gfi1-/-Irf8-/- . Right, genetically perturbed cells are mapped using STREAM to the low dimensional 

space in which cellular trajectories were built based on wild-type cells. (b) At density level, stream plots easily 

summarize the effects of the 3 genetic perturbations: Gfi1-/- cells are diverted to monocyte-committed branch while 

Irf8-/- cells are instead diverted to granulocyte-committed branch. Gfi1-/-Irf8-/- cells have equal chances to differentiate 

into either branch. (c) Single-cell level visualization of perturbed cells on the reference flat tree plot constructed from 

wild-type cells (top). Genetically perturbed cells are mapped to the flat tree and shown in red. Pie charts show the 

proportion of genetically perturbed cells on different branches. Consistently with the stream plot in (b), Gfi1-/- cells 

mainly appear on monocyte-committed branch (S1,S0), while the majority of Irf8-/- cells appear on granulocyte-

committed branch (S1,S2). Gfi1-/-Irf8-/- cells are approximately equally located on the intermediate state branch 

(S3,S1), monocyte-committed branch (S1,S0) and granulocyte-committed branch (S1,S2). 

 

Supplementary Figure 5 STREAM recovers developmental trajectories of hematopoietic cells in zebrafish from qPCR 

data. (a) STREAM output for single-cell qPCR on cells from zebrafish wild-type whole-kidney marrow (WKM). The stream 

plot shows only one color (gray) since no labels to annotate cell-types are available in this case. Four trajectories are 

recovered and visualized in the 3D space, flat tree plot and stream plot respectively. Four of the top marker genes 

automatically detected by STREAM are visualized as stream plots: TCR-alpha (T cells), cd79 (B cell), nccrp-1(myeloid) and 

band3(erythroid). (b) Validation of the putative cellular differentiation branches. Hematopoietic cells from adult 

transgenic zebrafish and peripheral blood are mapped to the trajectories inferred in (a). These cells comprise peripheral 

red blood cells (RBC) and FACS-sorted cells, which include CD41 (hematopoietic stem and precursor cells), lck (T cells), 

Mpx (myeloid cells), rag2(B cells) and Gata1 (erythroid cells). 

 

Supplementary Figure 6 STREAM reconstructs cellular heterogeneity within the zebrafish kidney marrow from inDrop 

data. (a) STREAM output for inDrop single-cell RNA-seq data from the zebrafish wild-type whole-kidney marrow. Cell 

labels are based on the Tang et al. classification and are highly unbalanced as shown by the pie chart. (b) Principal graph 

plot, subway map plot and stream plot show the trajectories recovered in the hematopoiesis of zebrafish. HSCs through 

blood progenitor cells differentiate into erythroid, myeloid (including macrophage and neutrophil) and lymphoid cells (c) 

Marker genes from original study are visualized in stream plot to confirm and validate the recovered structure.  

 

Supplementary Figure 7 Overview of trajectories inference methods included in the comparison 

Summary table to compare features available in different methods. 

 

Supplementary Figure 8 Output of different trajectories inference methods on synthetic data 

Top left: Topology structure of a synthetic benchmark dataset proposed by Rizvi et al. Cells are sampled from three 

different time points (T1, T2 and T3). It has two bifurcation events: the first happens between T1 and T2, the second 

happens between T2 and T3. STREAM, stream plot and subway map plot allow to study cellular trajectories and time 

points at both density level and single cell level. Wishbone, left, cells are colored by time points, right, cells are colored 

by its identified differentiation branch ID. (inferred trajectories cannot be explicitly visualized). scTDA, proposed 

topological representation colored by pseudo-time indicates cellular differentiation trajectories, in which nodes 

correspond to a set of cells and node size is proportional to the number of cells (visualization of single-cells is not 
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available). Monocle2, cells are colored by time points and the skeleton depicts differentiation trajectories (density 

information is not available). DPT, on the left cells are colored by time points and on the right cells are colored by its 

identified differentiation branch ID (inferred trajectories cannot be explicitly visualized). GPFates, cells are colored by 

time points. Three curves represent three trajectories(trends). (density information is not available). PHATE, cells are 

colored by time points. It doesn’t provide trajectories information and pseudotime. SLICER, on the left cells are colored 

by time points and on the right cells are colored by its identified differentiation branch ID (inferred trajectories cannot 

be explicitly visualized). Mpath, each node represents one landmark cell and the tree structure shows differentiation 

trajectories (visualization of single-cells is not available with this method). TSCAN, cells are colored by states detected 

from TSCAN. The skeleton depicts a linear trajectory. (density information is not available). SCUBA, each node is one 

cluster and the node size represents the variance within each cluster. (neither visualization of single-cells or density 

information is available with this method).  

 

Supplementary Figure 9 Analysis results of different methods on synthetic data 

Correlation (Pearson, Spearman and Kendall’s tau) between real and inferred pseudotime (either rank or distance 

based) for the 11 methods tested. 

 

Supplementary Figure 10 Output of different trajectories inference methods on HSMM scRNA-seq data.  

Output provided by different methods on HSMM scRNA-seq data, as described in Supplementary Figure 8.  

 

Supplementary Figure 11 Analysis results of different methods on HSMM scRNA-seq data. (a) ENO3, a marker gene for 

late-stage differentiation, is used to evaluate the myoblast commitment trajectory (highly expressed in fully 

differentiated cells) (b) Correlation analysis along myoblast differentiation. The bar plot shows for each method the 

Pearson correlation between inferred rank-based pseudotime and ENO3 expression, Pearson correlation between 

inferred distance-based pseudotime and ENO3 expression, Spearman correlation between inferred pseudotime and 

ENO3 expression and Kendall’s tau correlation between inferred pseudotime and ENO3 expression (c) Along the 

myoblast differentiation trajectory, the scatter plots show the relationship between ENO3 expression and rank-based 

pseudotime or distance-based pseudotime inferred by different methods. The dashed lines are fitted curve by 

generalized additive model (GAM). (Only methods that successfully detect the correct bifurcation are included). 

 

Supplementary Figure 12 Analysis results of different methods on HSMM scRNA-seq data. Same analysis presented in 

Supplementary Figure 10 for two additional marker genes of myoblast differentiation: MYH2 and MEF2C 

 

Supplementary Figure 13 Output of different trajectories inference methods on mouse hematopoietic sc-qPCR data. 

Output provided by different methods on mouse hematopoietic sc-qPCR data, as described in Supplementary Figure 8.  

 

Supplementary Figure 14 Analysis results of different methods on mouse hematopoietic sc-qPCR data 

(a) Using as an example the two marker genes Gata1 and Pax5, which are highly expressed on MEP-committed branch 

and CLP-committed branch respectively, and rarely co-expresses in the same single cell, the illustration shows three 

different reconstruction scenarios: optimal model (high precision and high recall), over-branching (high precision but low 

recall) and under-branching (low precision but high recall). (b) The scatter plots show the relationship between precision 

and recall for each marker gene across methods. Each circle represents one method and its F1 score is reported below. 

(c) Gata1 and Pax5 expression are visualized in both stream plots and subway map plots for the two best branches 

automatically detected by STREAM.  

 

Supplementary Figure 15 STREAM automatically discovers important k-mers along the erythroid cells differentiation 

trajectory (S5,S2,S1,S0) for the human hematopoietic system 
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Top left, subway map schematic to highlight the erythroid cells differentiation trajectory (S5,S2,S1,S0) consisting of three 

branches (S5,S2)(cyan), (S2,S1)(brown) and (S1,S0)(blue), whose related marker k-mers are calculated. Bottom left, 

heatmap showing the standardized Z-scores of detected important k-mers. Each row indicates one k-mer. Each column 

indicates one cell on the trajectory (S5,S2,S1,S0) and cells are ordered by the inferred pseudotime from STREAM. The 

three colors represent different cell branch ID assignments including branch (S5,S2), branch(S2,S1), and branch(S1,S0).  

Right, ten detected k-mers selected from left heatmap and their target transcription factor motifs along with output 

information reported by the motif comparison tool Tomtom. These k-mers are further visualized on stream plots. 
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Features SCUBA TSCAN Monocle2 Wishbone Mpath scTDA SLICER DPT GPFates PHATE STREAM

Structure Multiple 
branches Linear Multiple

branches
Simple 

bifurcation
Multiple 
branches

Multiple
branches

Multiple 
branches

Simple
bifurcation

Multiple 
branches

Multiple 
branches

Multiple 
branches

Deterministic û ü ü ü ü û ü ü û ü ü

User-friendly ++ +++ +++ +++ ++ + + +++ + ++ +++

Extra-input Time points None None Starting cell
Starting Cell

and time 
points

Time points Starting cell None
Times points 

and number of 
trends

None None

Trajectory-
visualization ü ü ü û ü ü ü û ü û ü

Single-cell level 
gene visualization û û û ü û û ü ü ü û ü

Cluster or density 
level visualization û ü û û ü ü û û û û ü

Automatic marker 
gene detection û ü ü û ü û û û û û ü

The mapping 
feature û û û û û û û û û û ü

Tested on 
epigenomic data û û ü û û û û û û û ü
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Method Pearson(rank) Pearson(distance) Spearman Kendall’s tau #Branching

STREAM 0.950065 0.937391 0.943971 0.811876 2

scTDA 0.948441 NA 0.959412 0.823502 2

Wishbone 0.941388 0.863387 0.933951 0.797147 1

SLICER 0.902736 0.913719 0.890663 0.740552 2

DPT 0.894521 0.917585 0.880598 0.740634 1

Monocle2 0.888202 0.914076 0.873133 0.727129 2

TSCAN 0.781034 NA 0.767569 0.618827 0

SCUBA 0.24301 0.150043 0.240983 0.158902 0

Mpath NA NA NA NA 2

GPfates NA NA NA NA 2

PHATE NA NA NA NA 2
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