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Abstract

Transcriptome profiles of individual cells reflect true and often unex-
plored biological diversity, but are also affected by noise of biological and
technical nature. This raises the need to explicitly model the resulting
uncertainty and take it into account in any downstream analysis, such as
dimensionality reduction, clustering, and differential expression. Here, we
introduce Single-cell Variational Inference (scVI), a scalable framework
for probabilistic representation and analysis of gene expression in single
cells. Our model uses variational inference and stochastic optimization of
deep neural networks to approximate the parameters that govern the dis-
tribution of expression values of each gene in every cell, using a non-linear
mapping between the observations and a low-dimensional latent space.

By doing so, scVI pools information between similar cells or genes
while taking nuisance factors of variation such as batch effects and limited
sensitivity into account. To evaluate scVI, we conducted a comprehensive
comparative analysis to existing methods for distributional modeling and
dimensionality reduction, all of which rely on generalized linear models.
We first show that scVI scales to over one million cells, whereas compet-
ing algorithms can process at most tens of thousands of cells. Next, we
show that scVI fits unseen data more closely and can impute missing data
more accurately, both indicative of a better generalization capacity. We
then utilize scVI to conduct a set of fundamental analysis tasks — includ-
ing batch correction, visualization, clustering and differential expression —
and demonstrate its accuracy in comparison to the state-of-the-art tools
in each task. scVI is publicly available, and can be readily used as a
principled and inclusive solution for multiple tasks of single-cell RNA se-
quencing data analysis.
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) is an increasingly popular tool that
opens the way for studying cellular heterogeneity at a high resolution [I], thus
shedding new light on fundamental questions in areas such as development [2],
autoimmunity [3], and cancer [4]. Interpreting scRNA-seq remains challenging,
however, as the data is confounded by nuisance factors such as variation in
capture efficiency and sequencing depth [5], amplification bias, batch effects [6]
and transcriptional noise [7]. To avoid mistaking nuisance variation for rele-
vant biological diversity, one must therefore account for measurement bias and
uncertainty, especially due to the highly abundant false negatives or “dropout”
events [g].

The challenge of modeling bias and uncertainty in single-cell data has been
explored by several recent studies. A common theme in these studies is treating
each data point (cell x gene) as a random variable and fitting a parametric sta-
tistical model to this variable. Most existing models are built on a mixture of an
“expression” component, which is usually modeled as a negative binomial (e.g.,
ZINB-WaVE [9]) or log normal (e.g., BISCUIT [I0] and ZIFA [11]), and a zero
(or low expression) component. The parameters of the model are determined
by a combination of cell- and gene-level coefficients , and in some cases addi-
tional covariates provided as metadata (e.g., biological condition, batch, and
cell quality [9]). All of these methods can therefore be interpreted as finding a
low-dimensional representation of the data which can be used to approximate
the parameters of the cell x gene random variables. Once these models have
been fit to the data, they can then in principle be used for various downstream
tasks such as normalization (e.g., scaling, correcting batch effects), imputation
of missing data, visualization and clustering.

A complementary line of studies focuses on only one of these tasks, often
without explicit probabilistic modeling. For instance, SIMLR [12] fits a cell-cell
similarity matrix, under the assumption that this matrix has a block structure
with a fixed number of clusters. The resulting model can be used for cluster-
ing and for visualization [I3]. MAGIC [14] performs imputation of unobserved
(dropout) counts by propagation in a cell-cell similarity graph. Census [I5] and
SCNorm [I6] look for proper scaling factors by explicitly modeling the depen-
dence of gene expression on sequencing depth or spike-in RNA. For differential
expression analysis, the most common methods consist of both methods devel-
oped for bulk count data (e.g., DESeq2 [I7] and edgeR [I8]) as well as methods
developed for scRNA-seq data, explicitly accounting for the high dropout rates
(e.g., MAST [19]).

While these methods yield insights into biological variation in single-cell
data, several significant limitations remain. First, all of the existing distri-
butional modeling methods assume that a low-dimensional manifold underlies
the data, and that the mapping from this manifold to the parameters of the
model can be captured by a generalized linear model. While the notion of a
restricted dimensionality is plausible (reflecting, e.g., common regulatory mech-
anisms among genes or common states among cells), it is difficult to justify
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the assumption of linearity. Second, different existing methods use their fit-
ted models for different subsets of tasks (e.g., imputation and clustering, but
not differential expression [10]). Ideally, one would have a single distributional
model that would be used for a range of downstream tasks, thus help ensuring
consistency and interpretability of the results. Finally, computational scalabil-
ity is increasingly important. While most existing methods can be applied to
no more than tens of thousands of cells, the next generation of tools must scale
to the size of recent data sets (commercial [20], or envisioned by consortia such
as the Human Cell Atlas [21]) that consist of hundreds of thousands of cells or
more.

To address these limitations, we developed a fully probabilistic approach to
normalization and downstream analysis of scRNA-seq data, which we refer to as
Single-cell Variational Inference (scVI). scVI is based on a hierarchical Bayesian
model [22] with conditional distributions specified by deep neural networks. The
transcriptome of each cell is encoded through a non-linear transformation into
a low-dimensional latent vector of normal random variables. This latent repre-
sentation is then decoded by another non-linear transformation to generate a
posterior estimate of the distributional parameters of each gene in each cell, as-
suming a zero-inflated negative binomial distribution - a commonly accepted dis-
tributional model for gene expression count data that accounts for the observed
over-dispersion and limited sensitivity [23], [I7, ©]. Notably, recent work [24]
shows how neural networks can be used as useful function approximators for
single-cell RN A sequencing data; however this work does not use distributional
modeling, and thus limited in its scope and applicability to downstream tasks.

In the remainder of this paper, we demonstrate the extent to which scVI
addresses the current methodological limitations. First, we demonstrate the
scalability of scVI to data sets of up to a million cells. Second, we show that, by
using non-linear transformations, scVI better fits unseen data (imputation and
held-out log-likelihood). Finally, we demonstrate that the model of scVI can be
used for a number of tasks, including batch removal and normalization, cluster-
ing, dimensionality reduction and visualization, and differential expression. For
each of these tasks, we show that scVI compares favorably to the current state-
of-the-art methods. The implementation of scVI is based on the TensorFlow
library [25], and is publicly available at https://github.com/YosefLab /scVI.

2 Results

2.1 Model definition

The primary output of a scRNA-seq experiment is an N x G-matrix = that
records the number of transcripts measured for each of G genes in each of N
cells. We may also have a batch annotation s,, observed for each cell n as well.

We model the expression level x,, measured for each cell n and gene g as
a sample drawn from a conditional distribution that has a zero-inflated nega-
tive binomial (ZINB) form [23 17, @]. The distribution is conditioned on the
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observed batch annotation, as well as two additional, unobserved random vari-
ables. The latent random variable ¢,, represents nuisance variation due to vari-
ation in capture efficiency and sequencing depth. It is drawn from a log-normal
distribution and serves as a cell-specific scaling factor.

The latent random variable z,, represents the remaining variability, which
should better reflect biological differences between cells. It is drawn from a stan-
dard multivariate normal of low dimensionality d, and provides a latent-space
representation that can be used for visualization and clustering. The reason for
drawing z, from a multivariate normal is essentially for computational conve-
nience (see Methods [4.1)). The matrix p is an intermediate value that relates
the observations x,4 to the latent variables. It provides a batch-corrected, nor-
malized estimate of the percentage of transcripts in each cell n that originate
from each gene g. We use p for differential expression analysis, and its scaled
version (multiplying by the estimated library size) for imputation.

Altogether, each expression value x,, is drawn independently through the
following process:

2n ~ Normal(0, I) (1)
En ~ LogNormal(ZW Zi) (2)
Pn = fw(zna Sn) (3)
Wy ~ Gamma(pf, ) W
Yng ~ Poisson(l,wy,g) (5)
hpg ~ Bernoulli( f{(zy, sn)) (6)
" _
Tng = {yng 1 hng . 07 (7)
0 otherwise.

Here B denotes the number of batches and ¢,,4, € Rf parameterize the prior
for the scaling factor (on a log scale). The specification of these parameters
is discussed in Methods The parameter 6 € Rf denotes a gene-specific
inverse dispersion, estimated via variational Bayesian inference (Methods .
fw and fj are neural networks that map the latent space and batch annotation
back to the full dimension of all genes: R? x {0,1}% — RY (Figure 1b, NN5-
6). We use superscript annotation (e.g., f9(zn, $n)) to refer to a single entry
that corresponds to a specific gene g. We enforce f9(z,,s,) to take values in
the probability simplex (namely for each cell n the sum of fg(z,,s,) values
over all genes g is one), thus providing interpretation as expected frequencies.
Importantly, neural networks allows us to go beyond the generalized linear model
framework and provide a more flexible model of gene expression. Figure
specifies the complete graphical model and its implementation using neural-
network conditionals. Methods [.1] provides further details on the specification
of this probabilistic model.
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The distribution p(2,,4|2n, $n, n) is zero-inflated negative binomial (ZINB) [23]
with mean £, p? , gene-specific dispersion 69 and zero-inflation probability f (2, sn)
(see Appendix . Because the marginal distribution p(x,4|2n, Sn,¥€n) is not
amenable to exact Bayesian computation, we use variational inference [26] to ap-
proximate the posterior distribution. Our variational distribution, ¢(z,,, log¢,|z., sn),
is Gaussian with a diagonal covariance matrix. The mean and covariance of the
variational distribution are given by an encoder network applied to xz,, and
sn [27] (Figure 1b, NN1-4). With this formulation, the approximate infer-
ence problem can be efficiently solved using a stochastic optimization procedure
where we optimize the variational lower bound (Methods 4.2)).

2.2 Datasets

We apply scVI to seven publicly available datasets (see Methods for pre-
processing information). We focus on datasets with unique molecular identifiers
(UMIs), which prevents overcounting due to amplification. Due to scalability
issues, not all the benchmark methods included in this paper are applicable to
all datasets. We therefore provide the list of methods applicable to each dataset,
along with additional information such as the hyperparameters for scVI, in the
Methods section and Supplementary Table

The first dataset (BRAIN-LARGE) consists of 1.3 million mouse brain cells,
spanning the cortex, hippocampus and subventricular zone, and profiled with
10x chromium [20]. We use this dataset to demonstrate the scalability of scVI.

The second dataset (CORTEX) consists of 3,005 mouse cortex cells profiled
with the Smart-seq2 protocol, with the addition of UMI [28]. To facilitate com-
parison with other methods, we use a filtered set of 558 highly variable genes as
in [I0]. The CORTEX dataset exhibits a clear high-level subpopulation struc-
ture, which has been inferred by the authors of the original publication using
computational tools and annotated by inspection of specific genes or transcrip-
tional programs. Similar levels of annotation are provided with the third and
fourth datasets.

The third dataset (PBMC) consists of 12,039 human peripheral blood mononu-
clear cells profiled with 10x [29].

The fourth dataset (RETINA) includes 27,499 mouse retinal bipolar neu-
rons, profiled in two batches using the Drop-Seq technology [30]. The original
annotations of these datasets were used to benchmark scRNA-seq algorithms in
several subsequent studies (e.g., [12] 10]).

The fifth dataset (HEMATO) includes 4,016 cells from two batches that
were profiled using in-drop. This data provides a snapshot of hematopoietic
progenitor cells differentiating into various lineages. We use this dataset as an
example for cases where gene expression varies in a continuous fashion (along
pseudo- temporal axes) rather than forming discrete subpopulations [31].

The sixth dataset (CBMC) includes 8,617 cord blood mononuclear cells pro-
filed using 10x along with, for each cell, 13 well-characterized mononuclear an-
tibodies [32]. We used this dataset to analyze how the latent spaces inferred by
dimensionality-reduction algorithms summarize protein marker abundance.
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The seventh dataset (BRAIN-SMALL) consists of 9,128 mouse brain cells
profiled using 10x [20]. This dataset is used as a complement to PBMC for
our study of zero abundance and quality control metrics correlation with our
generative posterior parameters.

2.3 Scalability to large datasets

We start by comparing the scalability of scVI to that of state-of-the-art algo-
rithms for imputation and dimensionality reduction (Figure ) We evaluate
scalability in terms of runtime and memory requirements for increasing num-
bers of cells, sampled from the complete BRAIN-LARGE dataset. To facilitate
comparison to less scalable methods, we limited the analysis to the 720 genes
with largest standard deviation across all cells. All the algorithms were tested
on a machine with one eight-core Intel i7-6820HQ CPU addressing 32 GB RAM,
and one NVIDIA Tesla K80 (GK210GL) GPU addressing 24 GB RAM.
Available memory (RAM) limits scalability of many existing algorithms. Un-
der the hardware and input settings above, we find that BISCUIT runs out of
memory when provided with more than 15K cells. MAGIC, ZIFA, SIMLR and
ZINB-WaVE can process up to 50K cells before running out of memory. One
explanation for this is the explicit storage in memory of the full-data matrix
or its derivative (e.g., the cell-cell distance matrix or a proxy whose memory
complexity is linear in the number of data points, as in SIMLR and MAGIC).
Focusing on the memory-feasible dataset sizes, we also observe a range of
runtimes. For instance, ZIFA, ZINB-WaVE and BISCUIT have a relatively high
runtime requirements possibly because their optimization algorithms need to go
through all the training data at each each step: the runtime of each iteration
scales linearly in the number of samples and linearly in the number of genes.
scVI relies instead on stochastic optimization, sampling a fixed number of
cells at each iteration (Methods. Its time and space complexity per iteration
therefore depend only on the number of genes, ensuring scalability both in terms
of memory use and processing time. In practice, the algorithm always converged
after 250 epochs. In five hours, scVI processed one million cells for a benchmark
set of 720 genes. In ten hours, scVI processed one million cells for 10,000 genes.

2.4 Goodness of fit and generalization to held-out data

To evaluate the extent to which the different models fit the data, we use a
goodness-of-fit score on unseen data, defined by the marginal log-likelihood of a
held-out dataset (Methods . We first partition our data into “training” and
“testing” sets and apply the various methods to learn a ten-dimensional latent
space and a mapping from this space to the original dimension of the data. We
then measure the marginal likelihood p(x) of the held-out data for the trained
model. Exploring a range of training dataset sizes from a few thousand cells to
a hundred thousand cells, sampled from the BRAIN-LARGE dataset (Table
with 720 genes, we observe that scVI provides the most likely model for the held-
out data (consisting of 10K randomly sampled cells that are not in the training
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cells 4K 10K 15K 50K 100K
FA -1175.36  -1177.35  -1177.27  -1171.93  -1169.86
ZIFA -1250.44  -1250.77  -1250.59 NA NA
ZINB-WaVE -1166.39  -1163.91 -1163.39 NA NA
scVI -1150.96 -1146.59 -1144.88 -1136.57 -1133.94

Table 1: Marginal log likelihood for a held-out subset of the brain-cell dataset.
NA means we could not run the given algorithm for this sample size. FA denotes
Factor Analysis.

set) and that its added accuracy grows as the training dataset size grows. Using
the smaller CORTEX dataset for the same analysis—where we partitioned the
data as 60% training and 30% testing—yields similar results (Supplementary
Figure @a) For both datasets, scVI and ZINB-WAVE are more accurate than
ZIFA or a standard Factor Analysis (FA), thus corroborating that scRNA-seq
data is better approximated by a ZINB than a log-normal or a zero-inflated-log-
normal.

The held-out marginal likelihood becomes a less informative metric when the
data is dominated by zero entries (which was not the case for the two datasets
reported above because of gene filtering). When zero entries dominate, this test
reduces to comparing which algorithm generates a predominance of values close
to zero. We therefore turn to imputation benchmarking as a proxy to evaluate
the model’s fit on the remaining datasets.

The ability to impute missing values is useful in practical applications in
addition to providing an assay for generalization performance [I4]. In the fol-
lowing analysis, we benchmark scVI against BISCUIT, ZINB-WaVE and ZIFA,
as well as MAGIC, which provides imputation without explicit statistical mod-
eling. To evaluate these methods on a given dataset, we generated a corrupted
training set by setting 9% uniformly chosen non-zero entries to zero. We then fit
the perturbed dataset with each of the benchmark methods and evaluate them
by comparing the imputed values to the original ones (Methods . Over-
all, we observe that the imputation accuracy of scVI is higher or comparable
(less than one transcript for median error) across all datasets (Figure —f and
Supplementary Figure @-d).

One important exception is the full HEMATO dataset, in which the number
of cells (4,016) is smaller than the number of genes (7,397). In such cases,
scVI is expected to underfit the data, potentially leading to worse imputation
performance. However, additional gene filtering (to the top 700 variable genes)
helps to recover an accurate imputation (Supplementary Figure @d)

To provide an example when the perturbed values depend on the amount
of mRNA observed, we also generated a corrupted training set by downsam-
pling 10% uniformly chosen non-zero entries with a binomial law of rate 20%.
These values guarantee that most of the dataset is not changed and require the
model enough flexibility to impute correctly the changed values. With respect
to these corruption scheme, scVI also performs well (Supplementary Figure
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Figure 2: Imputation of scVI on the CORTEX dataset. The heatmaps denote
density plots of imputed values (by scVI, ZIFA, MAGIC and ZINB-WaVE re-
spectively) on a down-sampled version versus the original (non- zero) values
prior to down-sampling. The reported score d is the median imputation error
across all the hidden entries (Lower is better; see Methods).
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Supplementary Figure .
scVI, like ZIFA and FA, can also be used to generate unseen data by sam-

pling from the latent space. As evidence for the validity of this procedure, we
sampled from the posterior of the training data and observed that the resulting
“simulated” data is largely consistent with the observed values (Supplementary
Figure [7).

2.5 Capturing biological structure in a latent space

To further assess the performance of scVI, we evaluated how well its latent space
summarizes biological information and recovers biologically coherent subpopu-
lations. For these experiments, we used three datasets where pre-annotated
clusters or subpopulations are available: CORTEX, PBMC and RETINA. We
then examined whether the annotated subpopulations are distinguishable in the
latent space, as in [I12]. We report two different metrics for this analysis. First,
silhouette width [33], which evaluates whether cells from the same subpopula-
tion have a similar latent representation and cells from different subpopulations
have a different representation. Second, we use the latent representation as an
input to the K-means algorithm, and measure the overlap between the resulting
clustering annotations and the pre-specified subpopulations using the Adjusted
Rand Index (ARI) and Normalized Mutual Information (NMI) scores (Meth-
ods . For ease of comparison across methods, we set K to the number of
annotated subpopulations.

While these annotated subpopulations were subject to manual inspection
and interpretation, a remaining caveat is that they are computationally derived.
To address this we make use of the CBMC dataset that includes measurements of
thirteen key marker proteins in addition to mRNA. For evaluation, we quantify
how much the similarity between cells in the mRNA latent space resembles
their similarity at the protein level. To this end, we compute the overlap fold
enrichment between the protein and mRNA-based cell 100-nearest neighbor
graph and the Spearman correlation of the adjacency matrices (Methods .

Based on these benchmarks, we compared scVI to other methods that aim
to infer a biologically meaningful latent space (ZIFA, ZINB-WaVE, and FA),
using the same clustering scheme. We find that scVI compares favorably to these
methods for all the datasets (Supplementary Figure b). Next, we benchmark
scVI with SIMLR [12], a method that couples clustering with learning of a cell-
cell similarity matrix. For the first set of tests, we set the number of clusters
in SIMLR to be the true number of annotated subpopulations. For the CBMC
case, we let SIMLR automatically determine that number. When looking at the
evaluations that were based on the computationally derived annotations, we find
that SIMLR outperforms scVI (Supplementary Figure b). However, while
the latent space inferred by SIMLR provides a tight representation for these
subpopulations, it may disregard other forms of critical information. Indeed, in
the CBMC-based test where the clustering is based on “external” but biologically
meaningful data, scVI is the best performing method, albeit by a small margin
(Supplemental Figure )
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Another example for important information that may be missed is that of a
hierarchical structure between clusters, such as the one reported for the COR-
TEX dataset [28]. We take several cuts at different depths of the hierarchical
clustering (Table [3) and report clustering scores based on these agglomerated
labels (Supplemental Figure fg). These results suggest that scVI and ZINB-
WaVE find low-dimensional representations that better preserve this important
biological structure.

A second important case is when the variation between cells has a continu-
ous, rather than discrete form. An example for that is the HEMATO dataset,
which consists of hematopoietic cells annotated along seven different stages of
differentiation. As a first step, we focus on differentiation towards either granu-
locytic neutrophil or erythoid fate [31I]. SIMLR applied to this dataset predicts
the presence of five clusters, and the resulting five-nearest-neighbors graph (visu-
alized using a Fruchterman-Reingold force-directed algorithm, see Methods 4.6)
does not reflect the continuous nature of this system. Conversely, standard
PCA analysis and scVI are able to capture this property of the data (Figure|3)),
albeit with less precision than a manually tuned process used in the original
publication (Supplemental Figure [16)).

Finally, there may be the case of lack of structure, where the data is al-
most entirely dominated by noise. To explore this setting, we generated a noise
dataset, sampled at random from a vector of zero-inflated negative binomial
distributions. SIMLR erroneously reports eleven distinct clusters in this data,
which are not perceived by any other method (Figure Supplemental Fig-
ure [I5pbe).

Altogether, these results suggest that the latent space of scVI is flexible and
describes the data well either as discrete clusters, as a continuum between cell
state, or as structureless noise. scVI is therefore better suited than SIMLR
in scenarios where the data does not necessarily fit with a simple structure of
discrete subpopulations.

2.6 Controlling for batch effects

scVI explicitly accounts for the contribution of discrete nuisance factors of vari-
ation such as batch annotations in its graphical model. It does so by enforcing
conditional independence between them and the inferred parameters.
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Our model therefore learns gene expression bias that come from the batch
effects and provides a parametric distribution that is disentangled from these
technical effects, thus ideally reflecting the relevant biological variation. We eval-
uate the performance of scVI in correcting for batch effects using the RETINA
dataset, which consists of two batches. We measured the entropy of batch
mixing across the K-nearest neighbors graph (Methods with the ideal ex-
pectation of a uniform representation of batches (i.e., maximum entropy) in
any local neighborhood. We also measure the average silhouette width; with
no batch bias, batches should overlap perfectly and exhibit a null silhouette
width. Our results (Figure [4| and Supplementary Figure ) demonstrate that
in this dataset scVI aligns the batches well, while maintaining a tight represen-
tation of pre-annotated subpopulations. Its performance in this regard is better
than that of SIMLR as well as a more standard pipeline of batch correction:
ComBat [34] followed by Principal Component Analysis (Methods [4.6). No-
tably, we performed a similar analysis with the PBMC dataset, which consists
of cells from two donors. However, this data seemed to have very little batch
effect to begin with (our metrics are averaged across all cell-types) and thus less
informative for the purpose of this evaluation (Supplementary Figure )

2.7 Differential expression

Identifying genes that are differentially expressed between two subpopulations
of cells is an important application of our generative model. The Bayesian
model in scVI makes hypothesis testing straightforward. For clarity, through-
out this section we assume that the cells are sequenced in the same batch s.
(Methods describes the general case.) For each gene g and a pair of cells
(2a, 2p) With observed gene expression (x4, ), we consider two mutually ex-
clusive hypotheses: H{ := f9(z4,5) > f2(zp,5) or HJ := [I(24,8) < f9 (2, ).
Evaluating which hypothesis is more probable amounts to evaluating a Bayes
factor [35]:
K tog Pl m0)

p(Hg |$a, xb)
A Bayes factor is a Bayesian generalization of the p-value. Its sign indicates
which of HY and HJ is more likely. Its magnitude is a significance level and
throughout the paper, we consider a Bayes Factor as strong evidence in favor
of a hypothesis if |K| > 3 [36] (equivalent to an odds ratio of exp(3) = 20).

The posterior probability for each hypothesis can be approximated by inte-
grating against the variational distribution:

P(H |y 00) / / DU (zar ) > 1920 8)]da (2l a)dg(zblzs).

Sampling z, and z;, from our variational distribution lets us approximate the
integral with arbitrary precision. Since we model the cells as i.i.d., we can
average the Bayes factors across randomly sampled cell pairs, one from each
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Figure 5: Benchmark of differential expression analysis using the PBMC
dataset, based on consistency with published bulk data. (a, b) Evaluation of
consistency with the irreproducible discovery rate (IDR) [37] framework (blue)
and using AUROC (green) is shown for comparisons of B cells vs Dendritic cells
(a) and CD4 vs CD8 T cells (b). Error bars are obtained by multiple sub-
sampling of the data to show robustness. (c) through (f): correlation of signif-
icance levels of differential expression of B cells vs Dendritic cells, comparing
bulk data and single cell. Points are individual genes. Bayes factors or p-values
on scRNA-seq data are presented on the x-axis; Microarray- based p-values are
depicted on the y-axis. Horizontal bars denotes significance threshold of 0.05
for corrected p-values. Vertical bars denotes significance threshold for the Bayes
factor of scVI (c) or 0.05 for corrected p-values for DESeq2 (d), edgeR (e), and
MAST (f). We also report the median mixture weight for reproducibility p.
(Higher the better.)
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subpopulation. The average Bayes factor is a low-variance estimate of whether
cells from one subpopulation tend to express g at a higher frequency.

We demonstrate the robustness of our method by repeating the entire eval-
uation process and comparing the results (Figure b). We also ensure that our
Bayes factor are well calibrated by running the differential expression analysis
across cells from the same cluster and making sure no genes reach the signifi-
cance threshold (Supplementary Figure [12p).

To evaluate scVI as a tool for differential expression, we used the PBMC
dataset along with its classification of cells into well studied subtypes of hema-
topoietic cells, for which reference bulk expression data is available.

We compare scVI to three widely used methods: DESeq2 [17], MAST [19]
and edgeR [18]. To facilitate the evaluation, we defined a reference set of dif-
ferentially expressed genes using publicly available bulk expression datasets.
Specifically, we assembled a set of genes (Methods that are differentially
expressed between human B cells and dendritic cells (microarrays, n=10 in each
group [38]) and between CD4+ and CD8+ T cells (microarrays, n—=12 in each
group [39]). We apply all four methods in these two differential expression tasks
(using the respective clusters of cells) and evaluate the consistency with the ref-
erence data using two scores. For the first score, we assign each gene with a label
of DE or non-DE based on their p-values from the reference data (genes with
a corrected p-values under 0.05 to be positive and the rest negatives) and then
these labels to compute AUROC for scVI and each of the benchmark methods.

Since defining the labels requires a somewhat arbitrary threshold, we use a
second score that evaluates the reproducibility of gene ranking (bulk reference
vs. single cell), considering all genes, using the irreproducible discovery rate
(IDR) [37]. Considering the AUROC metric, scVI is the best performing method
in the T cell comparison, while edgeR outperforms scVI by a smaller margin
in the B vs. Dendritic cell comparison. Focusing on the proportion of genes
with reproducible rank as fitted by IDR, scVI is the best performing method

(Figure [5] Supplementary Figure [12h-d).

2.8 Capturing technical variability

To further interpret the fitted models, we study the extent to which they cap-
ture technical variability. We focus on datasets that were generated by 10x, as
they share the same set of cell quality metrics (generated by cell ranger; see
Methods and can thus provide reproducible insights about the relation-
ship between our parameters and library quality. Additionally, we required our
test datasets to have pre-annotated subpopulations, with the assumption that
each subpopulation consists primarily of cells of the same type, thus decreasing
the extent of biological heterogeneity (e.g., in total mRNA content). The two
datasets that fit these requirements, which we report next are the PBMC and
BRAIN-SMALL.

In each case, we trained the model on the entire dataset and then investigated
each pre-annotated subpopulation separately. As a general rule, we find that
variation in library size correlates strongly with the cell-specific scaling factor,
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Figure 6: Capturing technical variability with the parameters of scVI. Data for
panels a-b is based on the CD14+ cell subpopulation in the PBMC dataset (a)
Scatter plot for each cell of inferred scaling factor by scVI against library size.
(b) The frequency of observed zero values versus the expected expression level,
as produced by scVI. Each point represents a gene g, where the x-axis is p9 -
the average expected frequency per cell (for gene g, average over pd for all cells
¢ in the subpopulation), and the y-axis the is observed percentage of cells that
detect the fee (UMI>0). The cyan curve depicts the probability for selecting
zero transcripts from every gene as a function of its frequency, assuming a
simple model of sampling U molecules from a cell with N molecules at random
without replacement, where U = 1398 is the average number of UMIs in the
subpopulation. The hypergeometric distribution (inset) requires the average
number of transcripts per cell (N). Notably the curve converges for values
larger than 20k (here, we set N = 10k). Indeed, when N — oo the process
converges to a binomial selection procedure, which is depicted by the red line.
(¢, d) Signed log p-values for testing correlations between the zero probabilities
from the two distributions (negative binomial, Bernoulli) and quality control
metrics across five random initializations of scVI and all subpopulations of the
PBMC and the BRAIN-SMALL datasets.
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which is to be expected by the definition of the model. Figure [6p depicts these
results for the CD14+ monocytes subpopulation in the PBMC data (notably,
the negative curvature on the plot can be explained by shrinking the values
towards the mean due to the use of prior). Another important nuisance factor
to be considered is the limitation in sensitivity, which results in exacerbated
amount of zero entries. In principle, zero entries can be captured by two different
components of our model: the negative binomial and the “inflation” of zeros
added to it with a Bernoulli distribution. Evidently, the expected number of
zeros generated by the negative binomial for each cell correlates strongly with
the library size and its proxies (e.g., the number of detected genes or the number
of reads per UMI; Figure |§kd7 Supplementary Figure ) This result can be
explained by our definition of the negative binomial mean, which is the predicted
frequency of expression p¢ scaled by the respective library size ¢,,.

The remaining question is therefore: what is the relationship between the
expected frequency of expression p¢ and the observed zeros? A simple model
would be a random process of sampling genes from each cell in manner propor-
tional to their frequency, and with no added bias (e.g., in capture efficiency).
To explore this, we plot for every gene the mean expected frequency against
the percent of detecting cells in a subpopulation of interest (Figure @o) The
resulting trend supports this simple model as it closely fits with the zero proba-
bility of a hypergeometric distribution—mnamely random sampling of molecules
without replacement.

Interestingly, the number of additional zeros induced by the Bernoulli ran-
dom variable in each cell is less correlated with library size, and instead corre-
lates with metrics of alignment rate (Figure [6kd, Supplementary Figure [13d).
These metrics are not necessarily coupled to size, but may reflect other technical
factors such as contamination or the presence of degraded mRNA. However, we
observed that most zero values in the data can be explained by the negative
binomial component alone (Supplementary Figure ) Taken together, these
results therefore corroborates the idea that most zeros, at least in the datasets
explored here, can be explained by low (or zero) “biological” abundance of the
respective transcript, exacerbated by limited sampling.

3 Discussion

Our study focuses on an important need in the field of single cell RNA-seq -
namely accounting for confounding factors and measurement uncertainty in ter-
tiary analysis tasks (e.g., clustering, differential expression, annotation) through
a common, scalable statistical model. To achieve this, we developed scVI - a
hierarchical Bayesian model, which makes use of neural networks to provide a
complete probabilistic representation of single cell transcriptomes. We demon-
strated that scVI provides a computationally efficient and “all inclusive” ap-
proach to denoising and analyzing gene expression data, and showcase its per-
formance in downstream tasks including dimensionality reduction, imputation,
visualization, batch-effect removal, clustering and differential expression.
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The scVI procedure takes as input a matrix of counts and therefore does
not need a preliminary step of normalization. Instead, it learns a cell-specific
scaling factor as a hidden variable of the model, with the objective of maximiz-
ing the likelihood of the data (as in [I0, O, [40]), which is more justifiable than
correcting a posteriori the observed counts [5]. Furthermore, scVI explicitly
accounts for the contribution of discrete nuisance factors, such as batch anno-
tations, by enforcing conditional independence between them and the (inferred)
parameters that govern gene expression distributions. Since this correction step
is performed via the mild modeling assumption of conditional independence,
scVI can reasonably integrate and harmonize multiple datasets. Further mod-
eling would be needed for more intensive usage of batch removal (number of
batches/ datasets > 20) and is left as future research direction.

An important distinguishing feature of scVI is its scalability. Unlike the
benchmark methods, scVI is capable of efficiently processing very large datasets,
with up to a million cells explored in this study|2I], 20]. To achieve this high
level of scalability while ensuring good fit to the data, we designed an efficient
procedure to learn the parameters of our graphical model. Importantly, exact
Bayesian inference is in most cases not tractable for these kinds of models.
Furthermore, until recently, even variational inference was rarely applied to
such models without restrictive “conditional conjugacy” properties. To address
this, we use a stochastic optimization procedure that samples our approximation
of the posterior distribution (as well as “minibatches” of our dataset), allowing
us to efficiently perform inference with arbitrary models, including those with
conditional distributions specified by neural networks [27].

Notably, since our procedure has a random component and since it optimizes
a nonconvex objective function, it may give alternative results from different ini-
tializations. To address this concern, we demonstrate the stability of scVI in
terms of its objective function, as well as imputation and clustering (Supple-
mental Figure . Another related issue is that if there are few observations
(cells) for each gene, the prior (and the inductive bias of the neural network)
may keep us from fitting the data closely. Indeed, in the case of datasets such as
HEMATO [31] where the number of cells is smaller than the number of genes,
some procedure to pre-filter the genes may be warranted. Another approach
that can help make scVI applicable to smaller data sets (hundreds of cells) and
which we intend to explore, is to utilize techniques such as Bayesian shrink-
age [I7] or regularization and second order optimization with larger mini-batch
size / full dataset [9]. We do however show that for a range of datasets of
varying sizes, scVI is able to fit the data well and capture relevant biological
diversity between cells.

From a system perspective, single-cell RNA-seq analyses paradoxically ben-
efit from the abundance of zero values, as it allows one to store the data in
sparse (rather than full matrix) format. A sparse matrix with one million cells
and ten thousand genes would represent around 7.5 GB assuming one percent
sparsity. On the other hand, the output of batch- corrected data is not sparse
and therefore potentially very large (for 1M cells, approximately 75 GB). While
it performs batch correction, scVI still provides a compact representation of the
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complete data, as it requires only the latent space and the specification of the
model (overall less than 1G memory footprint, assuming 10 latent variables).
One obvious drawback of such compressed representation (apart from the po-
tential loss of information) is that gene expression values need to be computed
on the fly; however this can be done very efficiently in a single-pass through the
generative networks (approximately 10 seconds for generating the p matrix for
a test dataset of 500k cells and 8k genes, with the same hardware specification
used throughout this paper). This property makes scVI a good baseline to be
used by interactive visualization tools [41], [42] [43].

Looking forward, it is important to note that the model of scVI is very
general and therefore provides a proper statistical framework for other forms of
scRNA-seq analysis, not explored in this manuscript, such as lineage inference [2]
or cell state annotation [IL [7]. Furthermore, as the scale and diversity of single-
cell RNA-seq increase, we expect tools such as scVI to be in great demand,
especially in cases where there is interest in harmonizing datasets in a manner
that is scalable and conducive to various forms of downstream analysis [21].
Indeed, one subsequent research direction would be to merge multiple datasets
from a given tissue to build a generative model with biological annotations of
cell-types or phenotypical conditions in a semi-supervised fashion. That would
allow researchers to “query” the generative model with a new dataset in an online
fashion in order to “retrieve” previous biological information, which would allow
verification of reproducibility across experiments, as well as transfer of cell state
annotations between studies.
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4 Online Methods
4.1 The scVI probabilistic model

First, we present in more detail the generative process for scVI:

Require: constant prior for cell-specific scaling ¢, £,
Require: fitted gene-specific inverse dispersion parameter 6
Require: fitted neural networks f,,, fn
Require: observed batch ID s,
1: for cell n do
2:  Choose a low-dimensional vector z, ~ N (0, I) describing the cell
3:  Choose a batch s,, € {1..B} from which the cell is sampled
4:  Choose a cell-scaling factor £,, ~ LogN (¢, (2)
5.  for gene g in gene set G do
6: Choose a normalized expression mean w,, ~ Gammal( f,(25),6).
7 Choose an expression level y,, ~ Poisson({,wyg).
8 Choose a dropout event with h,y ~ Bernoulli( f4(2y))
9 Apply dropout to expression level y,, and output z,g4
10:  end for
11: end for

A standard multivariate normal prior for z is commonly used in variational
autoencoders since it can be reparametrized in a differentiable way into any
arbitrary multivariate Gaussian random variable [27], which turns out to be
extremely convenient in the inference process (see Methods . 0,05 are set
to be the empirical mean and variance of the log-library size per each batch.
Let us note that the random variable ¢,, is not the log-library size (scaling the
sampled observation) itself but a scaling factor who is expected to correlate
strongly with log-library size (hence the choice for the parameters). Neural
network f,, is constrained during the inference to encode the mean proportion
of transcripts expressed across all genes by using a softmax activation at the last
layer. Neural network f;, encodes whether a particular entry has been dropped
out due to technical effects [111 [9].

All neural networks use dropout regularization and batch normalization.
Each network has 1, 2, or 3 fully connected-layers, with 128 or 256 nodes
each. The activation functions between two hidden layers are all ReLU. We
use standard link function to parametrize the distributions parameters (expo-
nential, logarithmic or softmax). Weights for some layers are shared between
fw and f. Throughout the paper, we use Adam as first order stochastic op-
timizer with ¢ = 0.01 fixed. A complete list of datasets, their properties,
the applicable methods and a thorough list of hyperparameters is provided
in Table We optimize the objective function until convergence (usually
between 120 and 250 epochs, where each epoch is a complete pass through
the dataset. Let us note that bigger datasets require less epochs). The im-
plementation for all of the analysis performed in this paper is available at
https://github.com/romain-lopez/scVI-reproducibility. The reference
implementation is available at https://github.com/YosefLab/scVI.
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4.2 Fast inference via stochastic optimization

The posterior distribution combines the prior knowledge with information ac-
quired from the data X. We cannot directly apply Bayes rule to determine
the posterior because the denominator (the marginal distribution) p(z,|s,) is
intractable. Making inference over the whole graphical model is not needed.
We can integrate out the latent variables wyg, hng and y,4 by making sure the
conditional p(xyg|2n, £n, sn) has a closed-form density and is Zero-Inflated Nega-
tive Binomial (see Appendix[Al). Having simplified our model, we use variational
inference [26] to approximate the posterior p(zy, €y |y, $,). Our variational dis-
tribution q(zy, €n|Tn, $n) is mean-field:

q(zna €n|xn; Sn) = Q(Zn|$m Sn)q(£n|xnm5n)

The variational distribution g¢(zp|zn,ss) is chosen to be Gaussian with a
diagonal covariance matrix, mean and covariance are given by an encoder net-
work applied to (z,, s, ), as in [27]. The variational distribution q(¢, |2y, s,) is
chosen to be log-Normal with scalar mean and variance also given by an encoder
network applied to (z,, $,,). The variational lower bound is

log p(x|s) 2 Bq(z jz.s) log p(2]2, 1, 5) — KL(q(z|z, 5)||p(2)) — K L(q(l], S)Ilp(l()g)

In this objective function, the dispersion parameters ¢, for each gene are
treated as global variables to optimize in a Variational Bayesian inference fash-
ion. To optimize the lower bound, we use the analytic expression for p(z|z,1, s)
and use analytic expressions for the Kullback-Leibler divergences. We use the
reparametrization trick to compute low-variance Monte-Carlo estimates of the
expectations’ gradients. Analytic closed-form for the Kullback-Leibler diver-
gence and the reparametrization trick are only possible on certain distributions
which multivariate Gaussians are a part of [27]. Now, our objective function
is continuous and end-to-end differentiable, which allows us to use automatic
differentiation operators. As indicated in [44], we use deterministic warmup and
batch normalization during learning to learn an expressive model.

Our objective function is nonconvex and thus could give alternative results
from different initializations. We show stability of our algorithm and its results
in Supplemental Figure

Since our model assumes cells are identically independently distributed, we
can also benefit from stochastic optimization from sampling the training set. We
then have an online optimization procedure that can handle massive datasets.
At each iteration, we only focus on a small subset of the data randomly sampled
(M = 128 data points) and need not go through the entire dataset. There is
then no need to store the entire dataset in memory. Because the number of gene
is limited in practice to a few tens of thousands, these mini-batches of cells fit
easily into a GPU.

Since the encoder network ¢(z|z,s) might still produce output correlated
with the bath s, we use a Maximum Mean Discrepancy (MMD) based penalty
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as in [45] to correct the variational distribution. For this paper, we however
did not explicitly enforce the MMD penalty and just retained the conditional
independence property that has shown to be efficient enough. It might be useful
on other datasets.

4.3 Bayesian Differential Expression

For each gene g and a pair of cells (z,, 2;,) with observed gene expression (x4, xp)
and batch ID (sg, sp), we can formulate two models of the world under which
one of the following hypotheses is true

M? :=Esf9(za,8) > EsfI(2,8)  vs. MY :=FEsf9(z4,5) < EsfI(zp,5)

where the expectation Eg is taken with the empirical frequencies. Notably,
we propose a hypothesis testing that do not to calibrate the data to one batch
but will find genes that are consistently differentially expressed. Again, eval-
uating the likelihood ratio test for whether our datapoints (x,, ) are more
probable under the first hypothesis is equivalent to writing a Bayes factor:

p(Mi]|xaaxb)

K =log,
p(M3za, a3)

where the posterior of these models can be approximated via the variational
distribution:

pMloam) S [ [ p(2ear9) < F2Ge 96 a(ealea)da(rf)

where p(s) designated the relative abundance of cells in batch s and all the
measures are low-dimensional so we can use naive monte-carlo to compute these
integrals. We can then use a Bayes factor for the test.

Since we assume that the cells are i.i.d., we can average the Bayes factors
across a large set of randomly sampled cell pairs, one from each subpopula-
tion. The average factor will provide an estimate to whether cells from one
subpopulation tend to express g at a higher frequency.

4.4 Software implementation

We discuss numerical stability and parametrization of the ZINB distribution in
Appendix [B] Our model is implemented in Python and TensorFlow. A func-
tional code can be found at https://github.com/YosefLab/scVI

4.5 Datasets and preprocessing

Below we describe all the datasets and the preprocessing steps used in the paper.
A star after the dataset name means we used it as an auxiliary dataset and do
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not use it for general benchmarking but in order to make a specific point in the
paper. The only case where we subsample the data multiple times is for the
BRAIN-LARGE dataset. However, we just use one instance of it to report all
possible scores (further details in Table .

CORTEX The Mouse Cortex Cells dataset from [28] contains 3005 mouse
cortex cells and gold-standard labels for seven distinct cell types. Each cell type
corresponds to a cluster to recover. We retain top 558 genes ordered by variance
as in [10].

PBMC We considered scRNA-seq data from two batches of peripheral blood
mononuclear cells (PBMCs) from a healthy donor (4K PBMCs and 8K PBMCs)
[29]. We derived quality control metrics using the cellrangerRkit R package (v.
1.1.0). Quality metrics were extracted from CellRanger throughout the molecule
specific information file. After filtering as in [46], we extract 12,039 cells with
10,310 sampled genes and get biologically meaningful clusters with the software
Seurat [47]. We then filter genes that we could not match with the bulk data
used for differential expression to be left with g = 3346.

BRAIN LARGE This dataset contains 1.3 million brain cells from 10X GE-
NOMICS [20]. We randomly shuffle the data to get a 1M subset of cells and
order genes by variance to retain first 10,000 and then 720 sampled variable
genes. This dataset is then sampled multiple times in cells for the runtime and
goodness-of-fit analysis. We report imputation scores on the 10k cells and 720
genes samples only.

RETINA The dataset of bipolar cells from [30] contains after their original
pipeline for filtering 27,499 cells and 13,166 genes coming from two batches. We
use the cluster annotation from 15 cell-types from the author. We also extract
their normalized data with Combat and use it for benchmarking.

HEMATO This dataset with continuous gene expression variations from hematopoeitic
progenitor cells [3I] contains 4,016 cells and 7,397 genes. We removed the li-

brary basal-bm1 which was of poor quality based on authors recommendation.

We use their population balance analysis [48] result as a potential function for
differentiation.

CBMC* This dataset that includes 8,617 cord blood mononuclear cells [32]
profiled using 10x along with for each cell 13 well-characterized mononuclear
antibodies. We kept the top 600 genes by variance.

BRAIN SMALL* This dataset consists in 9,128 mouse brain cells profiled
using 10x [20] is used as a complement of PBMC for our study of zero abundance
and quality control metrics correlation with our generative posterior parame-
ters. We derived quality control metrics using the cellrangerRkit R package (v.
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1.1.0). Quality metrics were extracted from CellRanger throughout the molecule
specific information file. We kept the top 3000 genes by variance. We used the
clusters provided by cellRanger for the correlation analysis of zero probabilities.

4.6 Algorithms used for benchmarking

Factor analysis We used the factor analysis (FA) method from the scikit-
learn python package. FA is always applied to log-data.

ZIFA We used the zero-inflated factor analysis method (ZIFA) from https://
github.com/epierson9/ZIFA with default parameters. We always apply ZIFA
to log-data.

SIMLR We used the large scale version of the Single-cell Interpretation via
Multi-kernel LeaRning (SIMLR) algorithm from Bioconductor with parameters
recommended by authors (k=30, kk=200). We always apply SIMLR to log-data
as advocated in the original paper. We used the number of cluster as the number
of cell-types. Except for the HEMATO data and the random ZINB dataset
where we used the procedure SIMLR ESTIMATE NUMBER OF CLUSTERS.

BISCUIT We applied the BISCUIT algorithm from https://github.com/
sandhya212/BISCUIT_SingleCell IMM_ICML_2016 with default parameters. As
the code to recover the exact results from [I0] was not available, we did not
consider BISCUIT in the clustering benchmarking. Also, we checked different
parameters for the number of iterations and the spin parameter without being
able to get a configuration that would provide a better score for imputation.

ZINB-WaVE We applied the ZINB-WaVE procedure from the R package
zinbwave with the gene-level covariate to be a column of one and the cell-level
covariate to be a column of ones. We always apply ZINB-WaVE to count-data.

PCA We used the Principal Component Analysis method from the scikit-learn
python package. We always apply PCA to log-data.

MAGIC We used the Python3 code of the Markov Affinity-based Graph
Imputation of Cells algorithm from https://github.com/KrishnaswamyLab/
magic. We used the parameters from their iPython notebook on the github
repo.

MAST We used the R package MAST on log-counts to provide our differential
expression analysis.

DESeq2 We used the R package DESeq2 on raw counts to provide our differ-
ential expression analysis.
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edgeR We used the R package edgeR on raw counts to provide our differential
expression analysis.

ComBat We used the R package sva on the bipolar dataset following the
original preprocessing steps of the bipolar paper [30].

tSNE We used the TSNE class from scikit-learn with default perplexity pa-
rameter of 30.

Force-directed Layout We used the spring layout module from the net-
workx package by working with the raw 5-nearest neighbors adjacency matrix.

4.7 Evaluation

Log-likelihood on held-out data We provide a multi-variate metric of
goodness of fit on the data. The common method of evaluation for genera-
tive models is to evaluates the model on data it has never seen. Let us start
with a complete dataset X. From this dataset, we randomly selected a training
set Xi¢rqin and a held-out testing set Xies;. Each model gives and underly-
ing probability measure p that we will specify. We define the log-likelihood on
held-out data by integrating in the following way:

/ p(Xtest|@) : dp(@|Xtrain)
©

where dp(©|Xtrqin) designates the posterior parameters of the model after hav-
ing fitted the training data and where p(Xy.s¢|©) is assessing the goodness-of-fit
of the held-out data under the chosen parameter O.

In the case of a fully generative model like BISCUIT, the posterior parameter
dp(©|Xirain) is designated by a probability measure we have to sample from.
For technical reasons, we did not include BISCUIT in this analysis. Specifically,
the original code does not provide a straightforward way to evaluate posterior
likelihood, on unseen data. In most generative models, we take a point estimate
over these parameters (parameters of a neural network in scVI, factor loading
matrix or decay rate in ZIFA) and the former measure is a Dirac centered on
the parameters fixed at testing time.

Now, we focus on the value p(Xis:|0) itself. First, because some algorithms
are run on log transformed data and some on raw data, we take into account
the distortion into account for the log-likelihood scores (Appendix . Second,
this quantity can often be intractable because of latent variables we have to
marginalize out. In that case, we can take lower bounds from the Expectation
Maximization algorithm for ZIFA (Appendix [E|), exact value for FA and the
variational lower bound for scVI (Appendix In the case of an algorithm
where the latent variable are actual parameters to optimize as in ZINB-WaVE,
we need to re-run this partial optimization at testing-time (Appendix @
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Corrupting the datasets for imputation benchmarking We use in the
paper two different approaches to measure the robustness of algorithms to noise
in the data:

e Uniform zero introduction: We take randomly ten percent of the non-zero
entries and multiply the entry n with a Ber(0.9) random variable.

e Binomial data corruption: We randomly select 10% of the matrix and
replace an entry n by a Bin(n,0.2) random variable.

Accuracy of imputing missing data As imputation tantamount to replace
missing data by its mean conditioned on being observed, we use the median
IL; distance between the original dataset and the imputed values for corrupted
entries only.

We now define what the imputed values are. For MAGIC, we use the output
of their algorithm. For BISCUIT, we used the imputed counts. For ZIFA, we
use the mean of the generative distribution conditioned on the non-zero event
(mean of the factor analysis part) that we project back into count space. For
scVI and ZINB-WaVE, we use the mean of the Negative Binomial distribution.

Silhouette width The silhouette width requires either a similarity matrix or
a latent space. We can define a silhouette score for each sample 7 with:
b(i) —a(Z
iy — ) —al)
max{a(i), b(i)}
where a(i) is the average distance of i to all data points in the same cluster ¢;.
b(i) is the lowest average distance of i to all data points in the same cluster ¢

among all clusters c. Clusters can be replaced by batches if we are estimating
the silhouette width for assessing batch effects [46].

Clustering metrics The following metrics requires a clustering and not sim-
ply a similarity matrix. For these ones, we will use a K-means clustering on the
given latent space with 7" = 200 random initializations to have a stable score.

Adjusted Rand Index This index requires a clustering. Most
2y () — 15 (5) E; (9 ()
300 (5) + 555 (91 - 12 (5) 25 (3)1/()

where n;;, a;,b; are values from the contingency table.

ARI =

Normalized Mutual Information
Numr— B
H(P)H(T)

where P, T designates empirical categorical distributions for the predicted and
real clustering. I is the mutual entropy and H is the Shannon entropy.
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Entropy of batch mixing Fix a similarity matrix for the cells and take U to
be a uniform random variable on the population of cells. Take By the empirical
frequencies for the 50 nearest neighbors of cell U being a in batch b. Report the
entropy of this categorical variable and average over 1" = 100 values of U.

Protein abundance / mRNA expression Take the similarity matrix for
the normalized protein abundance (centered log-ratio transformation, see [32],
Methods). Compute a 100 nearest neighbors graph. Fix a similarity matrix for
the cells and compute a 100 nearest neighbors graph. Report the Spearman
correlation of the flattened matrices and the fold enrichment.

Let A be the set of edges in the protein NN graph, B the set of edges in the
cell NN graph and C the entire set of possible edges. The fold enrichment is
defined as:

|ANB| x |C]
| Al B|

Baseline p-values from microarray data For B cells against D cells, we
used GSE29618) and between CD4+ and CD8+ T cells, we used GSE8835.
We then used these reference gene sets to test the association of each gene’s
expression with biological class, defining a two-sided t-test p-value per gene.

Differential Expression metrics We used for each point of 100 cells from
each cluster. In scVI, we draw 200 samples from the variational posterior. This
subsampling ensures that our results are stable.

Area Under the Curve We report the AUROC at detecting the most signif-
icantly expressed genes in the micro-array data (in all cases corrected p-values
< 0.05).

Irreproducible Discovery Rate The IDR is computed using the corre-
sponding R package. We adjust the prior for the mixture weight to be the
fraction of genes detected in the micro-array data.
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Figure 7: Posterior analysis of generative models on the CORTEX dataset.
Panels (a-c) depict the observed counts of randomly selected entries of the data
matrix (X axis) and their posterior uncertainty (Y axis) by sampling from the
variational posterior (scVI) or the exact posterior (FA, ZIFA). Panels (d-f) rep-
resents the observed counts of a representative gene, Thyl, in the CORTEX
dataset. Data is presented across all cells (X axis) against the posterior expected
counts produced by scVI, ZIFA and FA respectively (Y axis). The values in each
axis have been divided into 20 bins and the color scale reflects the proportion
of cells in each pair of bins. By definition, the uncertainty of FA is independent
of the input value and tight around the observed count. ZIFA can generate zero
and puts realistically more weight in this area. scVI’s posterior is more complex,
able to generate zero for low UMI values but also able to generate high UMI
values when the original count observed was only of intermediate intensity.
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Figure 9: (a) Log-likelihood results on the CORTEX dataset. (b) through (d):
we investigate how scVI latent space can be used to impute the data (with
the uniform perturbation scheme) and report benchmarking across datasets for
state-of-the-art methods.
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Figure 10: Imputation of scVI on the CORTEX dataset. Models are trained
on a binomial-down- sampling corrupted dataset (see Methods). The heatmaps
denotes density plots of imputed values scVI, ZIFA, MAGIC and ZINB-WaVE
on a down-sampled version vs original values prior to down-sampling. The
reported score d is the median imputation error across all the hidden entries

(Lower is better; see Methods).
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Figure 11: (a) through (c): we investigate how scVI latent space can be used
to impute the data (with the binomial perturbation scheme) and report bench-
marking across datasets for state-of-the-art methods.
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Figure 13: The generative distributions of scVI. This study focuses on a par-
ticular subpopulation of the BRAIN-SMALL dataset (a) To sustain that most
of the zeros in the data comes from the Negative Binomial, we plot for each
entry of the count matrix (percentage in Y axis) the probability that a given
zero comes from the NB conditioned on having a zero (X axis). (b) Number of
gene detected vs negative binomial zero probability averaged across all genes.
(¢) Genome not_gene vs Bernoulli zero probability averaged across all genes.
(d) Mapped _reads vs Bernoulli zero probability averaged across all genes.

38


https://doi.org/10.1101/292037
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/292037; this version posted March 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

® - Training
Validation

-
-
o

-
N
1)

g
=)
@

%

@ 1250 &
c

g

o

&
=
Q9
o o
S o©

Imputation score for 120 epochs
gative log-likelihood on a minibatch

a) 2 5 7 10 12 15 20 30 b) [ 25 50 75 100 125 150 175 200
Dimension of latent variables epochs
1.7
0.7
16
0.6
5 15 H g
14 gos —— Asw
2 4 o — ARI
s iy £ 04 —— NMI
al3 n 2
E 4 2
£ " 003
12 1
p!
% 0.2
11 Pt &
. "4 & ™
i B SRR R g o1
Bl [ 25 50 75 100 125 150 175 200 d 2 5 7 10 15 20
epochs Dimension of latent variables

Figure 14: Robustness analysis for scVI. (a) Imputation score on the BRAIN-
LARGE dataset across multiple random initialization, training and dimension
of the latent space. (b) Visualization of scVI numerical objective function dur-
ing training on the BRAIN-LARGE dataset. This shows our model do not over
fit and has a stable training procedure. (c) Imputation score as a function of
the number of epochs on the BRAIN-LARGE dataset. This figure also show
stability across posterior sampling since there is not much change in the param-
eters between two subsequent epochs. (d) Clustering metrics on the CORTEX
dataset across multiple initializations and dimensions for the latent space.
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Figure 15: Details for the clustering panel. For the random data, we obtain
the labels that order the cell-cell similarity matrices by a k means clustering
on SIMLR latent space. (a) scVI latent space with SIMLR labels. There is no
structure. (b) SIMLR latent space with SIMLR labels. (c) PCA latent space
with SIMLR labels. (d) SIMLR tSNE on the HEMATO dataset. We prefer to
visualize the SIMLR embedding on a kNN graph since even tSNE would loose
the continuum structure of the dataset.
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Figure 16: Additional comparison of scVI and PCA on the HEMATO dataset.
All scatter plots picture the embedding of a 5-nearest neighbors graph of a latent
space. Cells positions are computed using a force-directed layout (a) denotes a
reduction to 60 pcs as in the original paper. (b) denotes the output of a scVI in
dimension 60. As the dimension is sensibly different from other experiments, the
warm-up schedule (which governs how the prior on z is enforced) was adjusted.
(c) denotes the figure from the main paper. To recover all the differentiation
paths, the authors performed several operations on the K-nearest neighbors
graph that we did not reproduce in this analysis. We instead visualize the
graph before the smoothing procedure.

41


https://doi.org/10.1101/292037
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/292037; this version posted March 30, 2018. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

(9 om31,) s10jemrered Ajrenb pue sonIiqeqold 019z JADS JO UOIIR[DIIOD dY[) APNYS 0} Pasn AUO
sem TTVINS -NIVH{ ‘@oue)isul 10 "Apnjs sIY} I0J POIOPISUOD JOU dIom JRT) 19SRIRP PUR WJLIOS[R JO SUOI)RUIqUIOD SUTUTRUI
oY) sojedIpul N, SULIDISN[D JO YIRWPUS(q pue YTNIS Yim uorjeoridde I0J [njosn Sso[ WOY) Soyew [PIYM ‘D[qe[leAe jou
arom suorjeindodqns pejejoutr-oid oIoYM S)OSBIRP SPJRIIPUT (YN, "(S10130) ATowour jo jno el Iajnduwod o1y Jey) 10 (VAIZ)

UNI 0} SINOY INOJ UeY} SIOW 00} WIIoS[e oY) Yey} sojedIpur
‘smutjtiodre jo Lyqiqestidde pue SurIe)[y aues Iy} ‘sjosejep JULISHIP oY) JO UOIJeIUasald g 9[qe],

SUOIYeUIqUIOD S9)edIpul ,,

k2

X,, "ApNIS SIY} Ul POPIOUI 2I9M JRY[} j9se)ep pue WILIOSTe Jo

W

. . ‘ TIVINS
ON ON ON ON DN 8T 1 100°0 000°¢ AN NIVHS
B ON B B - 8Z1 1 ¢000°0 009 L19°8 DINGD
N X X X N 8TT I G000°0 99T‘¢T 667°.¢ | VNILAY
- . ‘ AOUV'T
X X X
VN 9¢g ¢ 10070 000°0T INT NIV
- . AOUV'T
X X X
VN 96T ¢ 10070 02. NT NIV
— . “ AOUV'T
X X
VN ON 96T ¢ 100°0 0Z. 000°0¢ NIVHY
— — - . “ AOUV'T
VN ON 8Z1T z 10070 02. 000°GT NIV
— — — — . h ADOUV'T
VN 8Z1T 1 10070 02. 000°0T NIVHY
ON B X X N 8TT I 70000 002 9107 | «OLVINAH
ON B X X N 8T1 1 #0000 L6€°L 9107 | OLVINAH
B B X X N 8z1 I #0000 9¥e'e 6£0°CT ondad
B - B B B 8Z1 1 700070 8G¢ 600‘¢ | XAIHOD
HACM ?jea
HTINIS DIDVIA ANIZ VAIZ VA | suoanau saoAe] Surues| souo3 S[[92

swyjr103e Joyjo0 03 AJ[Iqeess

siorourerediodAy A0S

so1jaadoad jesejep

42


https://doi.org/10.1101/292037
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/292037; this version posted March 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A Marginalizing out the latent variables of scVI

First, take r to be the gene-specific shape parameter of a Gamma variable w,

ﬁ to be its scale parameter, and use a scalar A € RT then the count variable

ylw ~ Poisson(Aw) has a Negative Binomial marginal distribution with mean
rATE
1-p

p(y) = /p(y\w)p(w)dw

B / wrfle_w(%_l)(l —p)" e A \YY
pI(r) I'(y+1)

N F(Z(Jyj);)(ﬂ (1 —lppr)r (1 —§A+ Ap>y

Second, multiplication by zero to y,, can be formally encoded as a mixture
between a point-mass at zero and the original distribution of y,,.

Consequently, our conditional p(2ng|2n,%n,sn) is a zero-inflated Negative
Binomial with probability mass function:

dw (9)

‘ 0
p(z; =0|z,1,8) = frn(2); + (1 — fu(2);) (94‘1?{0(2)]>

_ _ I(y+6;) 0 \'(_ful2s Y .
play =l == el e et (i) (i) ™

where f5,(2) is encoding the zero probability of h and f,,(z) the mean of w.

B Negative binomial parametrization

Negative binomial PMF parametrization A choice of parametrization is
crucial for optimization consideration. We could follow [9] by using a mean pu
and an inverse-dispersion # parameter:

pNB(n;p,0) = F(E(Z Y)g)(g) (9 i u>6 <9 l: u)n

We also keep in mind a more gentle parametrization with nicer form even
though still non-convex:

T'(n+r)
L(n+ 1)I(r)

with (p,7) = (54, 0) or (n,0) = (25, 7)
Because the first parametrization has a better behavior when scaling the
Poisson mean as we do with library size normalization, this is the one we retain.

pne(n;p,r) = p"(1—p)"
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Cell Type 2 colls Cluster ID  Cluster ID  Cluster ID  Cluster ID
(original)  (4) (#3) (#2)
astrocytes ependymal 224 0 1 0 0
endothelial-mural 235 1 2 1 0
interneurons 290 2 3 2 1
microglia 98 3 2 1 0
oligodendrocytes 820 4 0 0 0
pyramidal CA1 939 5 3 2 1
pyramidal SS 399 6 3 2 1

Table 3: Cell-types present in the CORTEX dataset and their labels in some
slices of the original hierarchical clustering.

Cell Types # cells
B cells 1625
CD14+ Monocytes 2237
CD4 T cells 5024
CDS8 T cells 1452
Dendritic Cells 339
FCGR3A+ Monocytes 351
Megakaryocytes 88
NK cells 459
Other 464

Table 4: Cell-types present in the PBMC dataset
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Equivalence of parametrization Assume now one wants to simulate what
would have been the rate of the latent corresponding Poisson variable, one has

to sample from a Gamma of shape r and scale ﬁ or rate lp%p

Numerical considerations We transformed the expression to incorporate
logits and use Tensorflow numerically stable functions. Instead of writing ex-
plicitly a sigmoid non-linearity, the probability of zero in the mixture is given
by:

1
0= 1w

where F?Z is the output of the neural network without non-linearity. We then
write the log-likelihood as a function of FZ.

r that can either be parametrized by a neural net or constant for each gene
will be kept noted r for simplicity. S denotes the softplus function z — log(1 +
ev).

o8 D(412) = Lo |S(-FE + flog 1=222) = S(-F)
0
" 0
+ 1,50 [—Fj —S(—=F2)+ f§ log + ylog 7 ]—”’_ I + log (9)%(;;_31)

f§
I+ 1

C Comparing log-likelihood for log and non-log
data

Let X be a positive random variable and let us note Y = log(1+ X) and suppose
we have a model for Y written Py. The likelihood score on the raw data is given
by evaluating the density Px which is:

d
Va = (1,...,74) € RY, dPx (z) = dPy (log(1+ z)) [ |

i=1

1
14+

so this yield for the likelihood scores:

logPx (X = z) = logPy (Y = log(1 + z)) Zlog 14 ;)

D Log-likelihood for ZINB-WaVE

The function to be optimized for ZINB-WAVE is essentially penalized likelihood.
One can thus run once the full optimization function on a training set as follow:

max Emm(ﬂ v, W, a, ¢) — Pen(3,v, W, a, ()
By, W,
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This optimization is performed by alternating minimization. By fixing the
variables 3, a, ( learned from the training set, we can compute a likelihood on
a validation set by performing inference over the latent variables v, W which is
a simple Ridge that can be solved in parallel by a simple modification of their
code.

m%(ﬁval(ﬂ*,77ma*7<*) - Pen(6*7’77Waa*7<*)

s

E Log-likelihood for ZIFA

The EM algorithm naively provide a lower bound on the log-likelihood for ZIFA:
logp(Y|©) > Epz x Hv,0) logp(Z, X, H,Y|O)

The complete log-likelihood has a simple expression:

1
LL =logp(zi, zi, hi, yi|©) = — iziTZi - Zlog(aj)
J

i — (Azi); — py)?
+ Z _(I,J (sz)J 1) —)\jx2
J

i — (Azi)j — py)*
v 3y LRl oy e
Jlyi,3>0 e

and the prior distribution is close to Gaussian so we can modify ZIFA code
and use a E step to compute the desired value. E-step gives us the following
values:

o [
o [

Then we have:

log(2m03) = pf N (AEZZTAT); ; L AEZOw;
2

3 3 ]
2 20]. 20j o;

1 oo d
LL =~ ;Tr(EZZ") - ; log(2m) - Z[
J

1
+ D 5ol EXF +2AEXZAT);; +2EX © p);) - AEX]

Jlyi=0 7
Z : a2
" 57 (Y0 204 © ABZ) 5 + 2(y; © )] + log(1 — e W)
jlyi ;>0 7
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F Log-likelihood for scVI

Our variational inference procedure provides us with a lower bound on the log-
likelihood of held-out data:

log p(x) > Eq(.1j2) log p(x|2,1) — K L(q(2]x)||p(2)) — KL(q(l|z)|Ip(1))  (10)

The lower-bound is tight whenever ¢(z|z) = p(z|z). Keeping the generative
model as fitted on training data, we can optimize our inference network at test-
time to have a better lower-bound of the held-out log-likelihood and report the
best value. That is essentially equivalent to assess the marginal likelihood of
held-out data, conditioned on a latent representation learned for the held-out
data.
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