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Abstract 20 

MicroRNAs play important roles in many biological processes. Their aberrant 21 

expression can have oncogenic or tumor suppressor function directly participating to 22 

carcinogenesis, malignant transformation, invasiveness and metastasis. Indeed, 23 

miRNA profiles can distinguish not only between normal and cancerous tissue but 24 

they can also successfully classify different subtypes of a particular cancer. 25 

Here, we focus on a particular class of transcripts encoding polycistronic miRNA 26 

genes that yields multiple miRNA components. We describe clustered MiRNA 27 

Master Regulator Analysis (ClustMMRA), a fully redesigned release of the MMRA 28 

computational pipeline (MiRNA Master Regulator Analysis), developed to search for 29 

clustered miRNAs potentially driving cancer molecular subtyping. Genomically 30 

clustered miRNAs are frequently co-expressed to target different components of pro-31 

tumorigenic signalling pathways. By applying ClustMMRA to breast cancer patient 32 

data, we identified key miRNA clusters driving the phenotype of different tumor 33 

subgroups. The pipeline was applied to two independent breast cancer datasets, 34 

providing statistically concordant results between the two analysis. We validated in 35 

cell lines the miR-199/miR-214 as a novel cluster of miRNAs promoting the triple 36 

negative subtype phenotype through its control of proliferation and EMT. 37 

 38 
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1. Introduction 39 

MicroRNAs (miRNAs) are small RNA molecules emerged as important regulators of 40 

gene expression at the post-transcriptional level. They have been shown to be 41 

involved in the regulation of all essential functions of the cells from differentiation and 42 

proliferation to apoptosis1. Each miRNA possesses hundreds of target genes, and a 43 

single gene can be targeted by several miRNAs2, giving rise to complex interaction 44 

networks, currrently very partially characterized. 45 

Multiple studies demonstrated the importance of miRNAs in all the cancer hallmarks 46 

defined by Hanahan and Weinberg3 and indicated that they might function as 47 

oncogenes or tumor suppressors4–7. Further experimental evidences suggested that 48 

specific miRNAs may also have a role beyond the cancer onset and directly 49 

participate in cancer invasiveness and metastasis6,8. Indeed, miRNA profiles can 50 

distinguish not only between normal and cancerous tissue but they can also 51 

successfully classify different subtypes of a particular cancer9,10, notably of breast 52 

cancer11–13.  53 

In this work, we focused our attention on a particular class of transcripts 54 

encoding polycistronic miRNA genes that yields multiple miRNA components. A 55 

famous example of this class of transcripts is the mir-17/92 polycistronic oncogene 56 

that plays a role in the development of various cancer types, especially in their most 57 

aggressive form14. Genomically clustered miRNAs of mir-17/92 are simultaneously 58 

expressed and target different components of the signaling cascade as well as the 59 

downstream effectors of pro-tumorigenic signalling pathways15–17. Deep sequencing 60 

of triple negative breast cancer (TNBC) samples revealed a threefold increase of 61 

miR-17/92 levels12. Other studies in breast cancer have shown that mir-106b/25 62 

cluster activates TGF-β signaling and epithelial-mesenchymal transition (EMT)18 and 63 

miR-221/222 cluster is a key regulator of luminal breast cancer tumor progression19. 64 

  65 

 Since more than 30% of annotated human miRNAs are organized in genomic 66 

clusters, we can expect to find other oncogenic / tumour suppressor polycistronic 67 

miRNAs that are co-expressed to jointly regulate molecular pathways involved in 68 

cancer malignancy. Existing computational approaches for the identification of 69 

master miRNA regulators involved in cancer onset and subtyping are typically 70 

designed to detect the effect of a single miRNA (see review in20). However, miRNAs 71 

have been shown to frequently act in a combined manner, jointly regulating proteins 72 
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in close proximity of the protein-protein interaction network21 and functionally related 73 

genes22–25. The underlying assumption of this work is that this mode of action might 74 

be true also for genomically clustered miRNAs. Indeed, it has already been shown 75 

that clustered miRNAs carry out pervasive cotargeting26. 76 

Here we present Clustered MiRNA Master Regulator Analysis (ClustMMRA), a fully 77 

redesigned release of the MiRNA Master Regulator Analysis (MMRA)25,26 pipeline, 78 

developed to search for clustered miRNAs potentially driving cancer subtyping. 79 

MMRA was designed for miRNA underlying tumor subtypes, a comparison 80 

characterized by much lower variation than cancer versus normal conditions. The 81 

results of the MMRA pipeline were experimentally validated, proposing a set of four 82 

miRNAs predicted to drive the stem-like aggressive colorectal cancer subtype27. 83 

ClustMMRA extends MMRA to a model in which multiple miRNAs belonging to the 84 

same genomic cluster coordinately target functionally related genes driving the 85 

phenotype of a particular cancer subtype. As the MMRA pipeline, ClustMMRA is a 86 

multi-step workflow that requires in input miRNA/mRNA expression profiles from 87 

matched tumor samples classified in different subtypes according to subtype-specific 88 

gene signatures. The final output of ClustMMRA provides key miRNA clusters 89 

contributing to the regulation of particular subtypes of the disease. 90 

We tested this novel pipeline to search for oncogenic / tumour suppressor 91 

polycistronic miRNAs driving breast cancer subtypes. ClustMMRA was applied to 92 

two independent breast cancer datasets whose samples were previously classified 93 

into four subtypes (luminal A, luminal B, HER2+ and triple negative). We obtained 94 

statistically concordant results between the two analysis, identifying five clusters of 95 

miRNAs with aberrant expression in a specific subtype of both datasets. Among 96 

them, miR-199a/214 on chromosome 1 was found to be down-regulated in the triple 97 

negative subtype and associated to EMT regulation. Functional validation in cell lines 98 

confirms the regulatory effect of this cluster in shaping the triple negative subtype 99 

phenotype through its control of proliferation and EMT. Overall, our computational 100 

pipeline and experimental validations characterize a new genomic cluster of miRNAs 101 

implicated in the TNBC phenotype that might be further explored in diagnosis and 102 

therapeutic strategies. In addition, we evinced a cooperative mechanism for the 103 

regulatory activity of genomically clustered miRNAs. 104 

 105 

2. Results 106 
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 107 

2.1 From single miRNA to clusters of miRNAs: ClustMMRA 108 

The MMRA pipeline is here extended to search for genomically co-clustered miRNAs 109 

potentially driving cancer subtyping. Similar to  MMRA, the workflow of ClustMMRA 110 

(see Figure 1) consists of subsequent filtering steps: (i) differential expression 111 

analysis of clustered miRNAs; (ii) target enrichment analysis and (iii) network 112 

analysis. While a miRNA cluster is usually transcribed as a single unit28–32, the 113 

expression of mature miRNAs in the same cluster might not be highly correlated due 114 

to regulatory events in the maturation processes28,31.  115 

Clusters of miRNAs are identified based on their genomic organization as reported in 116 

Methods. In step (i), the subtype-specific expression of each miRNA is assessed by 117 

Kolmogorov-Smirnov (KS) statistical test and fold change cutoff. Clusters having at 118 

least two miRNAs with subtype-specific expression change in the same direction 119 

(both up-regulated or down-regulated) are selected for step (ii).  120 

In step (ii), we extract miRNA clusters having their predicted targets enriched for the 121 

gene signature of the corresponding subtype. Only miRNAs of the cluster classified 122 

as differentially expressed in step (i) are considered in step (ii). The targets of 123 

individual miRNAs have been predicted using four different databases (miRTarBase 124 

2.5, doRiNA-PicTar 2012, microRNA.org 2010, PITA 2007 and TargetScan 7.1), 125 

requiring the prediction by at least two of them. The set of targets of a cluster has 126 

been defined as the union of the targets of individual miRNAs. The objective of step 127 

(i) and (ii) is to identify co-clustered and co-expressed miRNAs potentially regulating 128 

a gene expression signature in a joint manner, without necessarily having a high 129 

overlap in terms of target genes23. Finally, in step (iii) a miRNA-mRNA interaction 130 

network is constructed for each selected cluster using the ARACNE algorithm33,34. In 131 

this step, we identify modules of co-clustered miRNAs and interacting genes, 132 

including indirect interactions, that are believed to participate in the phenotype of a 133 

given cancer subtype (we call these modules regulons). Unlike the results of the 134 

MMRA pipeline, in which regulons can include only one miRNA, the ones identified 135 

by the ClustMMRA pipeline contain multiple miRNAs of the genomic cluster. 136 

Interference of indirect interactions may introduce links between miRNAs and 137 

spurious genes in the regulon. A Fisher’s exact test has been performed to evaluate 138 

the statistical significance of the overlap between the genes included in each regulon 139 

and the gene signature of the associated subtype. 140 
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 141 

2.2 Identification of regulatory miRNA clusters underlying breast cancer 142 

subtypes 143 

We applied ClustMMRA to identify polycistronic miRNAs underlying breast cancer 144 

molecular subtypes. For this study, two independent datasets were used, a first 145 

paired miRNA/mRNA expression dataset from a in-house cohort of 129 breast 146 

carcinoma tumour samples (which we refer to as Curie dataset35,36 and a second 147 

dataset from The Cancer Genome Atlas project composed of 397 samples37. In both 148 

datasets, individual samples were assigned to four subtypes (luminal A, luminal B, 149 

HER2+ and triple negative) based on the immunohistochemical staining of estrogen 150 

(ER), progesterone (PR) and HER-2 (ERBB2) receptors. 151 

 152 

2.2.1 ClustMMRA application to Curie and TCGA datasets 153 

Expression data required for running ClustMMRA were pre-processed as described 154 

in Methods and the signatures for breast cancer subtypes were defined using the 155 

approach proposed in38 (see Methods). We applied the ClustMMRA pipeline on 156 

Curie and TCGA datasets separately. In the first step, genomically co-clustered 157 

miRNAs having a subtype-specific expression were identified. In this step, 28 and 47 158 

out of 131 analyzed clustered miRNAs were selected for Curie and TCGA datasets, 159 

respectively (see Supplementary Table S1). Of these, 18 clusters were in common 160 

between the two datasets (p-value<7e-04), revealing a significantly concordant 161 

expression pattern of co-clustered miRNAs. Among these co-clustered and co-162 

expressed miRNAs, some are differentially expressed in multiple subtypes (18 and  163 

37 clusters for  Curie and TCGA respectively), with 15 out of 18 and 21 out of 37 164 

differentially expressed in basal-like and luminal A with opposite sign.  165 

In step (ii), 10 out of 28 (Curie) and 16 out of 47 (TCGA) subtype-specific miRNA 166 

clusters were found to have their predicted targets enriched in genes belonging to 167 

the corresponding gene signature. The output of step (ii) (see Supplementary Table 168 

S2) has an intersection of 7 elements between the two datasets (p-value <1e-05). In 169 

the step (iii) of ClustMMRA, a regulon for each miRNA cluster selected in step (ii) 170 

was constructed. The regulons were tested for enrichment in gene signature. 7 out of 171 

10 and 9 out of 16 clusters passed this last selection step in Curie and TCGA 172 

datasets, respectively. These clusters constitute the final output of ClustMMRA and 173 

are reported in Table 1. After this last step, the output in common between the two 174 
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datasets contains 5 clusters (p-value <8e-06). The significant overlap between 175 

results obtained from the analysis of two independent datasets with ClustMMRA 176 

supports the reliability of this approach. Notably, the results have an intersection with 177 

increasing statistical significance at each step of the pipeline. This trend confirms the 178 

accuracy of the proposed pipeline in selecting candidate clusters underlying cancer 179 

subtypes.  180 

Some results obtained with ClustMMRA in the breast cancer study have already 181 

been validated in the literature. MiR-493/136 and miR-379/656 clusters in the 182 

chromosomal region 14q32 have been reported as tumor suppressors in different 183 

types of human cancer39–41, including breast cancer42. Silencing of multiple miRNAs 184 

encoded in these clusters was shown to increase the proliferation and invasion of 185 

ovarian 43, melanoma44 or oral squamous carcinoma39 cells. The X-chromosome-186 

located miR-532/502 cluster has been previously associated to cancer. In particular, 187 

this was found up-regulated in triple-negative breast cancer cells45 and the regulatory 188 

circuit miR-502/H4K20 methyltransferase SET8 was described as a key regulator of 189 

breast cancer pathobiology46.  190 

 191 

Table 1. Clusters of miRNAs identified by ClustMMRA in breast cancer TCGA 192 

and/or Curie datasets. 193 

Cluster of 
miRNAs 

Chromosome 
position 

Number of
deregulated 

miRNAs in the 
cluster

Cluster 
expression in 

subtypes 

Gene signature  
expression  
in subtypes 

Dataset results 

miR-199a/214 Chr1 3 Down in 
Basal-like 

Up in Basal-like Curie and TCGA 

miR-493/136 Chr14 8 Down in 
Basal-like 

Up in Basal-like Curie and TCGA

miR-379/656 Chr14 42 Down in 
Basal-like 

Up in Basal-like Curie and TCGA 

miR-512/373 Chr19 46 Up in Basal-like Up in Basal-like Curie and TCGA 

miR-532/502 ChrX 8 Up in Basal-like Down in Basal-like Curie and TCGA 

miR-449a/449c Chr5 3 Down in 
Basal-like 

Down in Basal-like TCGA 

miR-653/489 Chr7 2 Down in 
Basal-like 

Down in Basal-like TCGA 

miR-548aa/548d Chr8 2 Up in Basal-like Down in Basal-like TCGA 

miR-421/374c ChrX 3 Up in Basal-like Up Basal-like TCGA 

miR-99a/let-7c Chr21 2 Down in 
Basal-like 

Up Basal-like Curie 

miR-450b/424 ChrX 6 Down in 
Basal-like 

Up Basal-like Curie 

 194 
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2.2.2 Comparison of ClustMMRA with the pipeline for the identification of 195 

single master miRNA regulators (MMRA) 196 

We compared the results of ClustMMRA in the breast cancer study with those 197 

obtained by applying to the same dataset the MMRA pipeline for the identification of 198 

single master miRNA regulators. The goal is to investigate if the regulatory effect of a 199 

cluster can be detected by studying the effect of individual miRNAs belonging to the 200 

same cluster.   201 

We applied MMRA to the Curie dataset, using in each step the same thresholds 202 

employed for ClustMMRA. If at least two miRNAs of a given cluster are included in 203 

the output of MMRA, we consider this cluster as detected in the single-miRNA 204 

pipeline. Interestingly, 4 out of 7 clusters detected by ClustMMRA (miR-199a/214, 205 

miR-493/136, miR-512/373 and miR-450b/424) were not detected by MMRA.  206 

This difference between the output of the two pipelines is given by the target 207 

enrichment analysis in step (ii) and the network analysis in step (iii). In fact, the 4 208 

clusters missing in the final output of MMRA are included in the output of step (i), 209 

since they have at least 2 differentially expressed miRNA genes. They are filtered 210 

out in step (ii) since no miRNA gene in these clusters, when analyzed individually, 211 

reaches a significant enrichment of signatures genes in its targets for a certain 212 

subtype. This observation supports the hypothesis that co-clustered miRNAs 213 

participate in regulating the gene expression signature of a given cancer subtype 214 

without necessarily having a high overlap in terms of common target genes. 215 

 216 

2.2.3 Prioritization of miRNA clusters for functional validation in cell lines 217 

Before experimental validation of the ClustMMRA output, prioritization of results was 218 

performed. We considered the 5 clusters identified both in TCGA and Curie datasets. 219 

For the regulons associated to each cluster, the nodes present in both TCGA and 220 

Curie datasets were kept, obtaining a network for each regulon with size of about 221 

100 nodes. Then, biological processes and pathways associated to these regulons 222 

were identified through Fisher’s exact enrichment test, using MSigDB 47as reference 223 

collection of signatures for pathways and biological functions. The  complete list of 224 

MSigDB pathways resulting from this analysis (FDR < 0.05) is reported in 225 

Supplementary Table S3.  226 

Overall, the network analysis shows a regulation of EMT, stemness and extracellular 227 

matrix by clusters miR-493/136, miR-379/656 and miR-199a/214. Cluster miR-228 
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532/502 is predicted to regulate proliferation and the cell cycle transition from G to M 229 

phases. All the regulons have been found associated to breast cancer specific 230 

signatures, with clusters miR-493/136, miR-379/656 and miR-199a/214 sharing 9 of 231 

them 232 

(“SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP”,“FARMER_BREAST_C233 

ANCER_CLUSTER_4”,“TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_LOB234 

ULAR_NORMAL_DN”,“CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHY235 

MAL_DN”,“LANDIS_BREAST_CANCER_PROGRESSION_DN”,“LANDIS_ERBB2_B236 

REAST_TUMORS_324_DN”,“LIEN_BREAST_CARCINOMA_METAPLASTIC”,“TUR237 

ASHVILI_BREAST_DUCTAL_CARCINOMA_VS_DUCTAL_NORMAL_UP”,“TURAS238 

HVILI_BREAST_LOBULAR_CARCINOMA_VS_DUCTAL_NORMAL_UP”,“TURASH239 

VILI_BREAST_LOBULAR_CARCINOMA_VS_LOBULAR_NORMAL_DN”). Invasive 240 

and mesenchymal state signatures confirm the association of these clusters to the 241 

basal-like subtype.  Other general processes were found enriched in the regulons of 242 

these clusters: EMT (including the 243 

“HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION” signature and multiple 244 

GO terms related to the extracellular matrix), stemness 245 

(“BOQUEST_STEM_CELL_UP”,“LIM_MAMMARY_STEM_CELL_UP”,“IZADPANAH246 

_STEM_CELL_ADIPOSE_VS_BONE_DN” signatures), cell cycle 247 

(“IGLESIAS_E2F_TARGETS_UP”) and angiogenesis 248 

(“GO_VASCULATURE_DEVELOPMENT”,“GO_CIRCULATORY_SYSTEM_DEVEL249 

OPMENT”). Finally, the regulon of cluster miR-532/502 was found enriched in some 250 

breast cancer specific signatures clearly linking it to the basal-like subtype 251 

(“SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP”,“FARMER_BREAST_CAN252 

CER_BASAL_VS_LULMINAL” and “POOLA_INVASIVE_BREAST_CANCER_UP”). 253 

Also, it was observed to be strongly associated to proliferation signatures (e.g. 254 

“ZHOU_CELL_CYCLE_GENES_IN_IR_RESPONSE_24HR”,“GO_MITOTIC_NUCL255 

EAR_DIVISION”,“GO_MITOTIC_CELL_CYCLE”,“GO_CHROMOSOME_SEGREGA256 

TION”,“GO_CELL_DIVISION”,“GO_CELL_CYCLE_PROCESS”,“CHANG_CYCLING257 

_GENES”).  258 

We focused on EMT regulation by miR-199a/214 as an interesting phenotype to 259 

validate in basal-like subtype. MiR-199a/214 is the smallest cluster that controls 260 

EMT, in terms of miRNA genes. Considering the technical difficulty in producing the 261 
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over-expression of multiple miRNAs in cell lines, this was chosen as the best 262 

candidate to study the combinatorial regulation by co-clustered miRNAs. 263 

2.2.4 MiR-199a/miR-214 cluster is underexpressed in TNBC cells 264 

Human miR-199a/miR-214 cluster is encoded by a large non-coding RNA on 265 

chromosome 1q24 which produces three mature miRNAs (hsa-miR-199a-5p, hsa-266 

miR-199a-3p and hsa-miR-214). First, we examined by quantitative RT-PCR the 267 

expression of the individual mature miRNAs belonging to this cluster in T47D and 268 

MDA-MB-231 cells, which are luminal A and TNBC cells respectively48. Results show 269 

that the three mature miRNAs encoded by the miR-199a/miR-214 cluster are 270 

significantly underexpressed in MDA-MB-231 compared to T47D cells (Fig.3).  271 

2.2.5 Upregulation of miR-199a/miR-214 cluster decreases TNBC cell 272 

proliferation  273 

To test whether the deregulation of miR-199a/miR-214 cluster was sufficient to 274 

impact TNBC cells phenotype, MDA-MB-231 cells were treated with sense (S) 275 

oligonucleotides encoding for all the three miRNAs of the cluster (miR-214, miR-276 

199a-5p, miR-199-3p) or scramble negative controls. We checked the 277 

overexpression of each miRNA of the cluster after transfection by RT-PCR analysis, 278 

shown in Fig.4A-C. After confirming the upregulation of single miRNA or all three 279 

miRNAs of the cluster in MDA-MB-231, we analyzed the effect of miRNA 280 

overexpression on proliferation: individual miRNAs, except miR-199a-3p, and entire 281 

miR-199a/miR-214 cluster overexpression reduce the MDA-MB-231 cell number 282 

compared to scramble or untreated control (Fig. 5). 283 

2.2.6 MiR-199a/miR-214 cluster silencing is associated with EMT-like and 284 

invasive phenotype 285 

According to bioinformatic analysis, miR-199a/miR-214 cluster is predicted to 286 

modulate EMT genes and cell invasion. To investigate if the expression of this 287 

cluster affects the molecular profile of the cells, we analyzed the expression levels of 288 

EMT-related genes upon upregulation of a single miRNA of the cluster or the whole 289 

cluster through S oligonucleotide treatment. We observed a reduction of EMT marker 290 

genes upon both individual miRNAs or entire miR-199a/miR-214 cluster 291 

overexpression (Fig.6), as demonstrated by the increase expression of epithelial 292 
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markers E-cadherin and Beta-catenin and a decrease of the expression level of the 293 

mesenchymal marker Slug. 294 

Finally, we used an in vitro culture system developed to assess mammary cell 295 

propagation in non-adherent, non-differentiated culture conditions and their ability to 296 

form discrete clusters of cells termed mammospheres49. The ability of the cells to 297 

form mammosphere could be considered also a marker of the stemness of the cell 298 

population49. The formation of such spheroids increases with EMT induction (PMID: 299 

18485877). Our experiments on MDA-MB-231 cells show that the expression of miR-300 

199a/miR-214 cluster is sufficient to compromise mammosphere formation efficiency 301 

(Fig.7). In fact, when we overexpressed either miR-214 or miR-199a-5p or miR-302 

199a-3p and the three miRNAs together, we observed a decrease efficacy in 303 

mammosphere formation in respect to untreated cells. 304 

 305 

3. Discussion 306 

Over the last two decades there has been an explosion of research focused on 307 

miRNAs involvement in cancer initiation and progression, pointing out the potential of 308 

these small RNAs as biomarkers for diagnosis, prognosis and response to treatment. 309 

However, the majority of computational and experimental approaches for the 310 

identification of master miRNA regulators involved in cancer onset and subtyping are 311 

typically designed to detect the regulatory effect of a single miRNA. This can be a 312 

limitation in identifying regulation by multiple miRNA species acting cooperatively on 313 

cellular pathways and pathological changes. 314 

The computational pipeline here described, ClustMMRA, was specifically designed 315 

to search for genomically clustered miRNAs potentially driving cancer subtyping. 316 

ClustMMRA provides a computational framework to systematically investigate 317 

polycistronic miRNA transcripts involved in cancer subtyping or possibly in other 318 

biological contexts. In practice, the use of ClustMMRA can be generalized in order to 319 

study other classes of cooperatively acting miRNAs than the case of genomic 320 

clusters, such as co-expressed miRNAs from different genomic locations. 321 

In our study, ClustMMRA was applied to search for oncogenic / tumour suppressor 322 

polycistronic miRNAs driving breast cancer subtypes, pointing out five novel miRNA 323 

clusters whose regulatory effect is potentially associated to the triple negative 324 

subtype phenotype. Among them, the miR-199/miR-214 is identified as acting on 325 

EMT in TNBC subtype. Our computational and experimental validation of the 326 
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regulatory effect of miR-199/miR-214 show that the down-regulation of this genomic 327 

cluster is associated to appearance of EMT-like phenotype in the TNBC cells. The 328 

upregulation of individual miRNAs belonging to the cluster or the entire cluster 329 

decreases the expression of a marker of mesenchymal phenotype (i.e., Slug) and 330 

increases the expression of epithelial markers (E-cadherin and Beta-catenin). These 331 

changes towards an epithelial phenotype, obtained by overexpression on miR-332 

199/miR-214 cluster, diminished the capability of the stem population of MDA-MB-333 

231 lineage of forming mammospheres in suspension. The presence of cancer stem 334 

cells has been linked to poor cancer patient survival, as those tumors with a high 335 

percentage of cancer stem cells are capable of migrating, invading and colonizing 336 

surrounding tissues, surviving in suspension, and creating a secondary tumor50. Our 337 

results suggest that this cluster of miRNAs is possibly involved in the maintenance of 338 

more aggressive phenotype of breast cancer, by controlling the stemness of the 339 

population, regulating EMT target genes, and cell proliferation. Finally, our study 340 

supports a the hypothesis of miRNA cooperativity from a polycistronic transcript as a 341 

possible mechanism of jointly targetting to act on molecular pathways involved in 342 

cancer malignancy and subtyping. More accurate measurements and quantitative 343 

study might improve the understanding of this cooperative effects. 344 

  345 

4. Methods 346 

4.1 MiRNA cluster annotation 347 

The genomic locations of miRNAs were retreived from miRBase v1851. Similar to 348 

previous studies52,53, co-clustered miRNAs are defined as miRNA genes located 349 

within 10 Kb of distance on the same chromosome and in the same strand.  350 

 351 

4.2 Datasets preprocessing 352 

Breast cancer (BRCA) RNA-seq and miRNA-seq Level 3 expression profiles were 353 

downloaded from The Cancer Genome Atlas (TCGA) in January 2016. Only those 354 

primary tumors profiled for both mRNA and miRNA expression were included in the 355 

analysis, obtaining a total of 397 samples. Two expression matrices (one for mRNAs 356 

and the second for miRNAs) were normalized obtaining the paired mRNA/miRNA 357 

expression dataset here referred to as TCGA. The Curie dataset was generated with 358 

microarray technologies (Agilent miRNA microarray kit V3 for miRNAs and Affymetrix 359 

U133plus2 for mRNA) and pre-processed following the procedure described in54. 360 
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4.2 Definition of a gene signature for each breast cancer subtype 361 

The ClustMMRA pipeline requires as input a gene signature for each disease 362 

subtype. Available signatures for breast cancer subtypes, such as the PAM5055, 363 

were not applicable here due to their limited size in terms of number of genes. We 364 

thus defined the signatures for our breast cancer study using the approach proposed 365 

in38. The Curie dataset was used for signature construction, while the TCGA dataset 366 

was employed for signature validation. Differential gene expression for each subtype 367 

vs. all the other samples was computed by Student’s t-test and log fold change cutoff 368 

(t-test adjusted p-value < 0.05 and absolute(log fold change) > 0.5). Moreover, to 369 

increase the predictive power of the constructed signatures, those genes associated 370 

to more than one class according to the previous criteria, or having a difference 371 

between the first and second highest  absolute(log fold changes) lower than 0.2 were 372 

discarded. The choice of thresholds was optimized to maximize the gene association 373 

to a unique subtype and the number of genes included in each signature (on 374 

average 117 genes per signature). For each subtype, two separated signatures were 375 

defined ("down" and "up"), based on the sign of the expression change of their 376 

genes. The signatures constructed in this way are available in Supplementary Table 377 

S4. The reliability of these signatures were tested in two ways. First, their 378 

classification performances were validated on TCGA data. We classified the TCGA 379 

samples using our signatures with the Nearest Template Prediction (NTP) method56, 380 

as done in57,58. Only 44 out of 397 (11%) samples resulted to be misclassified. Then, 381 

the significance of the intersection between our signatures and publicly available 382 

ones was evaluated by a Fisher’s exact test. The signatures used for this test were 383 

obtained from MSigDB47 plus a specific one derived from59. The proliferation 384 

signatures were added to test the basal-like subtype, known to be associated to a 385 

strong proliferative signal. Highly significant p-values were obtained for the 386 

intersection between our newly defined signatures and previously published ones for 387 

the same breast cancer subtypes. The above results confirm the classification 388 

performances and reliability of the breast cancer signatures here constructed. 389 

 390 

4.3 Cell culture and miRNA modulation  391 

For in vitro studies, we used two human BC epithelial cell lines: T47D and MDA-MB-392 

231 cells (ICLC-Biologic Bank and Cell Factory, Italy). These cell lines were chosen 393 

as they represent a model of luminal A and TNBC cell lines, respectively48. Following 394 
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the manufacturer’s recommendation, we maintained the cell lines within a humidified 395 

atmosphere containing 5% CO2 at 37 °C in DMEM (for T47D cell line) or advanced 396 

DMEM (for MDA-MB-231 cell line) cell culture medium (Gibco, Life Technologies), 397 

with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin, 2mM glutamine (all 398 

from Lonza, Euroclone). Dulbecco Phosphate-Buffered Saline (D-PBS), trypsin, and 399 

all the media additives were obtained by Lonza (Euroclone). 400 

The sense (S) oligonucleotide sequence of each miRNA of the cluster has been 401 

designed following the sequences indicated in miRbase database51. S 402 

oligonucleotides were purchased from Sigma. 403 

To obtain the upregulation of each miRNA, S oligonucleotides, resuspended in 404 

water, were added three times a day for 3 days directly to the culture medium of the 405 

cells (<50% confluency) at a final concentration of 100nM/day60. The cells were 406 

collected 24,48 or 72h of treatment and different assays were performed 407 

(proliferation, mammosphere formation and real time-PCR analysis of miRNAs and 408 

EMT genes). 409 

 410 

4.3 Proliferation assay 411 

Tumor cell proliferation was assessed by following the protocol described in61. 412 

Briefly, cells were seeded at a confluency of 80000 cells/w in 24 well plates. The 413 

cells were added daily with 100nM final concentration of S miR-214, -199a-3p, -414 

199a-5p. The cells were collected and counted at 24,48 or 72h of treatment. A 415 

graphic representation of the cell counts was obtained by plotting the number of the 416 

total cells at each time point. Experiments were performed three times in triplicate (n 417 

=  9).  418 

 419 

4.5 Mammospheres preparation 420 

After miRNA treatment cells were collected and seeded in non adherent plastic 421 

plates (100 cells/ml) in DMEM:F12 (1:1) added with 1% penicillin-streptomycin, 2mM 422 

glutamine, 1% Hepes, 10ng/ml bFGF, 20ng/ml B27, 20ng/ml EGF, as described in62. 423 

Pictures were taken after 10 days of culture in suspension. 424 

 425 

4.6 RNA isolation, reverse transcription and RT-PCR analysis 426 

Total RNA was isolated using TRIzol reagent (Life Technologies) following the 427 

manufacturer’s recommendations. To obtain cDNA from total RNA  for gene 428 
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expression analysis, two micrograms of total RNA were reverse transcribed using 429 

oligo dT primers in combination with High Capacity cDNA Reverse Transcription kit 430 

(Applied Biosystem), following the manufacturer’s protocol. 431 

For miRNA analysis, one microgram of total RNA was reverse transcribed using 432 

MystiCq microRNA cDNA synthesis kit (Sigma), following the manufacturer’s 433 

protocol, in order to reverse transcribe polyA-tailed miRNA into cDNA. 434 

RT-PCR analysis was performed using Power Up Sybr Green Master mix (Applied 435 

Biosystem, Life Technologies) in an Eco RT-PCR machine (Illumina). All the primers 436 

for human mRNA and miRNA amplification were home-made and are described 437 

below (Table xx). miRNA amplification was performed using primers designed on the 438 

mature miRNA sequence taken from miRbase v1851. HPRT and miR-103-3p were 439 

used as an internal control for gene expression and miRNA profile analysis, 440 

respectively. Primers used are reported in Supp FileXXX 441 

The relative expression of miRNAs and genes was calculated for both T47D and 442 

MDA-MB-231 cell lines with the 2(-∆∆C
T

) method63. Experiments were performed three 443 

times in triplicate (n = 9). A t test was calculated. 444 

 445 

5. Figures 446 

Figure 1. Schematic representation of the Clustered microRNA Master 447 

Regulator Analysis (ClustMMRA) workflow. The schema reports the data required 448 

as initial input, the four analytical steps with the respective outputs, and the final 449 

output of the pipeline. 450 

 451 

Figure 2. Pathways controlled by the deregulated miRNA clusters. A summary 452 

of the main biological functions controlled by the different miRNA clusters is here 453 

reported. Y-axis of the radarplot corresponds to the sum of the absolute log(p-value) 454 

of all the pathways associated to a given function. A,B,C,D correspond to  miR-455 

199a/214, miR-493/136, miR-379/656 and  miR-532/502, respectively. 456 

 457 

Fig.3 RT-PCR analysis of miRNA expression in T47D vs MDA-MB-231.  458 

T47D (in white) and MDA-MB-231 (in grey) were analyzed for the expression of miR-459 

214 (A, p-value<0.011), miR-199a-5p (B, p-value<0.003) and miR-199a-3p (C, p-460 

value<0.03). 2^-DDCt method was used for evaluating the expression level of each 461 
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miRNA. Average±sd of three independent experiments for each cell line are shown. 462 

T-test p-value<0.01(**), <0.05(*). 463 

 464 

Fig.4 Mirna modulation in MDA-MB-231 cells. 465 

MDA-MB-231 cells were treated for 48 hours with 100nM sense (S) oligonucleotide 466 

encoding for miR-214, miR-199a-5p, miR-199a-3p or miRNA cluster, respectively. 467 

The expression levels of miR-214 (A), miR-199a-5p (B) and miR-199a-3p (C) were 468 

evaluated by RT-PCR analysis comparing miRNA-treated cells vs untreated cells. 469 

Average±sd of three independent experiments for each cell line are shown. T-test p-470 

value<0.01(**), <0.05(*). 471 

 472 

Fig.5 In vitro analysis of miRNA modulation effect on MDA-MB-231 cells 473 

proliferation. 474 

MDA-MB-231 cells were treated for 24,48,72 hours (h) with sense (S) 475 

oligonucleotide encoding for miRNA cluster or single miRNA (miR-214, miR-199a-476 

5p, miR-199a-3p) or a scramble miRNA. The effect of miRNA modulation on cell 477 

proliferation is shown. Average±sd of three independent experiments for each cell 478 

line are shown. T-test p-value<0.001(***),<0.01(**), <0.05(*). 479 

 480 

Fig.6 Effect of miRNA modulation on EMT marker genes.  481 

MiRNA modulated MDA-MB-231 cells were used for RT-PCR analysis of EMT 482 

marker genes. RT-PCR analysis shows the effect of single miRNA or miRNA cluster 483 

modulation vs scramble oligonucleotide treated cells on E-cadherin (A), Beta-catenin 484 

(B) and Slug (C). Average±sd of three independent experiments for each cell line are 485 

shown. T-test p-value<0.01(**), <0.05(*). 486 

 487 

Fig.7 Effect of miRNA modulation on mammosphere (MM) formation ability.  488 

MiRNA-modulated MDA-MB-231 were used for MM assay. Pictures of miRNA 489 

cluster-treated vs scramble oligonucleotide-treated cells were taken after 10 days of 490 

MM formation. 491 

 492 

 493 

 494 

 495 
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