
Title 

A translaminar genetic logic for the circuit identity of 

intracortically-projecting neurons 

 

Authors 

Esther Klingler1, Andres De la Rossa1,3, Sabine Fièvre1, Denis Jabaudon1,2 

 

1Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.  

2Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland.  

3Present address: Department of Cell Biology, University of Geneva, Geneva, 

Switzerland.  

 

Correspondence should be addressed to D.J. (denis.jabaudon@unige.ch).  

 

 

Abstract 

Distinct subtypes of intracortically-projecting neurons (ICPN) are present in all 

layers, allowing propagation of information within and across cortical columns. How 

the molecular identities of ICPN relate to their defining anatomical and functional 

properties is unknown. Here we show that the transcriptional identities of ICPN 

primarily reflect their input-output connectivities rather than their birth dates or 

laminar positions. Thus, conserved circuit-related transcriptional programs are at play 

across cortical layers, which may preserve canonical circuit features across 

development and evolution.  
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Introduction 

Neurons of the neocortex are organized into six radial layers, which have appeared 

at different times during evolution, with the superficial layers representing a more 

recent acquisition. Input to the neocortex predominantly reaches superficial layers 

(SL, i.e. layers (L) 2-4), while output is generated in deep layers (DL, i.e. L5-6)1,2. 

Intracortical connections, which bridge input and output pathways, are key 

components of cortical circuits because they allow the propagation and processing of 

information within the neocortex, thereby transforming afferent signals into cortical 

output.  

Two main types of intracortically-projecting neurons (ICPN) can be 

distinguished by their axonal features (Fig. 1a): (1) excitatory interneurons with short 

axons projecting locally within cortical columns, which are located in L4 and called 

spiny stellate neurons (SSN)3-6, and (2) excitatory neurons with long axonal 

projections, including callosally projecting neurons (CPN), which are found in both SL 

and DL (CPNSL and CPNDL)6-8. In addition to their distinct axonal features, neurons in 

these two classes can be distinguished by their hierarchical position within cortical 

circuits: SSN are the main recipients of thalamic input and project to both CPN and 

other SSN, while CPN connect with one another, but not back to SSN (Fig. 1a)4,5,9.  

In this study, we investigate the molecular hallmarks that distinguish SSN, 

CPNSL and CPNDL and relate their transcriptional signatures with their input-output 

connectivity (i.e. their "circuit identity"). Specifically, taking advantage of the presence 

of CPN in both SL and DL, we sought to identify lamina-independent genetic 

hallmarks of a constant circuit motif (i.e. interhemispheric connectivity) across distinct 

layers. Using retrograde tracing from the primary somatosensory cortex to label 

contralateral CPN, we report that CPNSL and CPNDL are born at different times of 

corticogenesis and have distinct developmental histories. By performing three-way 

unbiased transcriptomic comparisons between CPNSL, CPNDL and SSN, we find that 

circuit identity supersedes laminar identity in defining ICPN transcriptional diversity. 

Supporting the functional relevance of a primarily circuit-based transcriptional 

organization, overexpression of the SSN-specific transcription factor RORB was 

sufficient to reprogram the circuit identity of CPN within their original layer.  

Together, these findings reveal a circuit-based organization of transcriptional 

programs across cortical layers, which we propose reflects an evolutionary 
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conserved strategy to protect canonical circuit structure (and hence function) across 

a diverse range of neuroanatomies. 

 

Results 

ICPN are developmentally and molecularly heterogeneous 

In order to characterize the laminar diversity of ICPN, we labeled CPN in the primary 

somatosensory cortex by injection of fluorescent retrobeads in the contralateral 

hemisphere (Fig. 1b). Retrogradely-labeled cells had a bimodal spatial distribution in 

SL and DL, and were largely absent from L4, where SSN are located (Fig. 1b). This 

mutually exclusive distribution of SSN and CPN suggests shared lineage 

relationships between ICPN in which single subtypes are generated at a given time 

point of corticogenesis. 

We next compared the developmental histories of CPNSL and CPNDL. Given their 

distinct laminar location, CPNDL could either be born together with CPNSL and arrest 

their migration within deep layers, or be born before CPNSL, together with other deep-

layer neurons. To distinguish between these two possibilities, we determined the 

birthdates of the distinct ICPN subtypes by performing daily BrdU pulse-injections 

between embryonic days (E) 12.5 and E16.5, and retrogradely labeled CPN as 

described above. This approach revealed that CPNDL are born at E12.5 and E13.5  

(as are other DL neurons), while CPNSL are mostly born between E15.5 and E16.5 

(Fig. 1c). Thus, despite similar contralateral projections, CPNSL and CPNDL have 

non-overlapping developmental (and potentially evolutionary) histories.  

We next examined how select markers of distinct types of cortical neurons 

were expressed across these cells. For example, while SATB2 and CUX1 are 

strongly expressed by CPNSL, but whether CPNDL and SSN also express these genes 

has not been systematically examined8,10,11. Using SATB2, CUX1, RORB (a L4 

marker) and CTIP2 (a L5B corticofugal neuron maker) as canonical genes, we report 

overlap and heterogeneity in gene expression across ICPN (Fig. 1d). Most strikingly, 

while all ICPN expressed SATB2, CPNDL neither expressed CUX1 nor CTIP2 (Fig. 

1d). Thus, based on this select set of markers, and confirming and extending 

previous results8,10, CPNDL, CPNSL, and SSN constitute molecularly diverse and 
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partially overlapping populations of cells, which may be linked to their circuit 

properties.  

 

Circuit identity supersedes laminar identity in defining ICPN transcriptional 

diversity 

Molecular distinctions between the different types of ICPN could either reflect their 

laminar identity or their circuit identity (Fig. 2a). In the layer-based scenario, CPNSL 

and CPNDL are only remotely related, reflecting their distinct laminar locations and 

developmental origins, while in the second scenario, the shared circuit properties of 

CPNSL and CPNDL are reflected in closely-related transcriptional programs, as has 

recently been reported in cortical interneurons12.   

To distinguish between these two possibilities, we examined the genetic 

signatures of CPNSL, CPNDL, and SSN using RNA sequencing (Fig. 2a). First, we 

isolated CPNSL and CPNDL by using retrograde-labeling, laminar microdissection, and 

fluorescence activated cell sorting (FACS) at P10, a time at which interhemispheric 

connectivity is largely achieved13. Second, we isolated CPNSL from SSN by 

performing retrograde labeling and FACS in transgenic mice in which SSN 

specifically express tdTomato (Scnn1aTg3CrexAi14tdT mice5). Two-way 

transcriptional analyses comparing CPNSL and CPNDL identified 136 differentially-

expressed genes, while comparison of CPNSL and SSN identified 204 differentially-

expressed genes (Fig. 2b left, and Supplementary Fig. 1 and 2 and 

Supplementary Table 1), whose specificities were confirmed with in situ 

hybridization data (Fig. 2b right, and Supplementary Fig. 3). Identified genes 

included previously known markers such as Mdga1 and Pcp4, which were enriched 

in CPNSL and CPNDL respectively, and Rorb, which was enriched in SSN 

(Supplementary Fig. 3). Interestingly, corticofugal neuron markers such as Fezf2 

and Bcl11b were weakly expressed in CPNDL, consistent with the presence of striatal 

projections in at least a subset of these neurons14,15. Supporting the functional 

relevance of these transcripts, comparison of gene ontologies identified greater 

enrichment in transcripts related to neuron projections and activity/physiology-related 

functions when comparing CPNSL with SSN, consistent with the distinctive circuit 

position and function of SSN within cortical circuits (Fig. 2c).  
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To assess the transcriptional relationship between CPNSL, CPNDL, and SSL, 

we performed unsupervised clustering of samples based on transcriptional 

signatures. Hierarchical clustering revealed that CPNSL and CPNDL are more closely 

related to one another than to SSN (Fig. 2d). This suggests a primarily circuit-based 

organization of transcriptional programs. To formally demonstrate this possibility, we 

compared the discriminative power of the layer-based taxonomy to a circuit-based 

taxonomy, as previously described16. This quantitative assessment of these two 

taxonomies revealed that the circuit-based classification was more discriminative 

than the layer-based classification at all levels of stringencies examined (Fig. 2e, 

top). Accordingly, cell-type specific genes were more differentially expressed 

between CPNSL and SSN than between CPNSL and CPNDL (Fig. 2e, bottom). 

Together, these data indicate that ICPN molecular identities more closely correspond 

to their circuit properties than laminar location.  

 

RORB-overexpressing CPNSL acquire SSN-like circuit properties 

Finally, we sought to identify a functional molecular counterpart to the circuit-based 

classification identified above, using Rorb as a proof-of-principle transcript. Indeed, 

this orphan receptor shows a 3-fold enrichment in SSN vs. CPNSL (Supplementary 

Table 1) and has been implicated in circuit assembly within and beyond the cortex17-

19. Here, we directly examined the function of RORB in intracortical circuit assembly 

by assessing whether targeted overexpression in ICPN induces acquisition of SSN-

type morphology, electrophysiology, and circuit connectivity. For this purpose, we 

electroporated a plasmid coding for RORB at E16.5, the time of birth of CPNSL. As 

previously reported, a fraction of RORB-overexpressing cells showed migratory 

defects and did not reach the cortex17 (Supplementary Fig. 4), yet some cells 

maintained their normal migration and reached superficial layers (ICPNRORB, Fig. 3a, 

left and Supplementary Fig. 4). We first compared the morphology of ICPNRORB with 

control cells born at E14.5 (SSN) or at E16.5 (ICPNL2/3). In contrast to ICPNL2/3, the 

SSN are characterized by the absence of an apical dendrite3,5,20. Strikingly, as it is 

the case for SSN, ICPNRORB actively retracted their apical dendrite between P3 and 

P7, which was not the case in control ICPNL2/3 (Fig. 3a, center and right and 

Supplementary Fig. 4). Thus, RORB expression controls acquisition of a key 

morphological feature of SSN. 
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We next examined whether ICPNRORB also acquired electrophysiological properties 

of SSN, including changes in Ih-type cationic conductances and membrane 

excitability5,21. Consistent with acquisition of SSN-type electrophysiological features, 

whole-cell patch-clamp recordings in acute cortical slices showed a lack of Ih currents 

in ICPNRORB, as well as increased membrane excitability (Fig. 3b,c). Interestingly, 

action potential duration was shorter in both SSN and ICPNRORB compared to 

ICPNL2/3, which could account for the higher firing rate in the former cells (Fig. 3c). 

Thus, RORB expression controls acquisition of key electrophysiological features of 

SSN. 

Finally, we examined whether ICPNRORB acquired an SSN-type circuit identity. 

Consistent with acquisition of SSN-type local axonal projections, long-range 

projections were lacking in ICPNRORB, as previously reported (Supplementary Fig. 

4)18. Focusing on local microcircuit properties, we next examined the local 

connectivity of ICPNRORB. ICPNL2/3 normally receive strong input from other ICPNL2/3, 

while SSNL4 do not receive ICPNL2/3 input4,5,9. We therefore examined whether 

ICPNRORB displayed SSN-type input properties, i.e. lacked ICPNL2/3 input (Fig. 3d). 

To this end, we targeted channelrhodopsin 2 (ChR2) expression into deep ICPNL2/3 

via in utero electroporation at E15.5 and recorded photo-induced post-synaptic 

responses in superficial E16.5-born ICPNL2/3. In contrast to ChR2- ICPNL2/3 neurons, 

which all displayed synaptic responses following optogenetic stimulation of 

homotypic neurons, only 6/14 ICPNRORB responded to ICPNL2/3 stimulation, with 

dramatically smaller amplitudes than in control cells (Fig. 3e). Together, these 

findings reveal acquisition of SSN-type morphological, electrophysiological and circuit 

properties by ICPNRORB. 

Our findings reveal a genetic organization of ICPN in which transcriptional 

programs more closely reflect circuit properties than laminar location or 

developmental origins. From a phylogenetic perspective, we find these results 

interesting considering that superficial cortical layers are a recent evolutionary 

acquisition of mammals1,2: this suggests either that a specialized progenitor class 

generates CPN throughout corticogenesis, or that a convergent evolution has 

occurred in deep and superficial layer neurons, in which similar molecular programs 

were selected for trans-callosal axon extension. Finally, using RORB as a proof-of-

principle transcript, we show that ectopic expression of a single gene is sufficient to 
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orchestrate the coordinated acquisition of the morphological, physiological and circuit 

properties of another intracortically-projecting neuron subtype. Along with similar 

recent findings in inhibitory interneurons12, this suggests that circuit properties are 

critical end-point determinants of neuronal identity and the result of convergent 

molecular programs during neuronal differentiation. 
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Materials and methods 

Mouse strains. 

C57Bl/6 male and female pups and adult mice were used. The Scnn1a-cre mouse 

line (Jackson Laboratories22; #009613) was crossed with CAG-tdTomato reporter 

mice (Jackson Laboratories; #007914). All experimental procedures were approved 

by the Geneva Cantonal Veterinary Authority and conducted according to the Swiss 

guidelines. 

Plasmids. 

We generated plasmids using a standard endotoxin-free Qiagen kit (#12362). The 

ChR2 T159C23 plasmid was subcloned into the pCAGIG_IRES_GFP vector. The 

pCBIG_Rorb_IRES_GFP plasmid was obtained from Addgene (#48709)17. 

In utero electroporation. 

Timed pregnant C57Bl6/J mice (Charles River Laboratory) were electroporated in 

utero at E14.5, E15.5 or E16.5 as previously described17. 

BrdU pulse labeling. 

A single dose of 50 mg/kg of animal weight of BrdU (16 mg/ml) was administered 

by an intraperitoneal injection in the mother during pregnancy, from embryonic day 

(E) 12.5 to E16.5. 

Retrograde labeling. 

Anesthetized pups were placed in a stereotaxic apparatus at postnatal day (P) 9 

and injected with red Retrobeads™ IX from Lumafluor (for CPNSL vs. CPNDL 

comparison) or with Alexa-488 conjugated cholera toxin subunit B (CTB, 

Invitrogen, #C-34775) (for CPNSL vs. SSN comparison) in S1 (200 nl; coordinates 

from the lambda: anteroposterior: 3 mm, mediolateral: 3mm). 

Immunohistochemistry. 

Postnatal mice were perfused with 4% paraformaldehyde (PFA) and brains were 

fixed overnight in 4% PFA at 4 °C. Eighty m vibrating microtome-cut coronal 

sections (Leica, VT1000S) were incubated 2h at room temperature in a 

blocking/permeabilizing solution containing 5% bovine serum albumin and 0.3% 

triton X-100 in PBS, and incubated for 2 days with primary antibodies at 4°C. 
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Sections were then rinsed three times in PBS and incubated with the 

corresponding Alexa-conjugated secondary antibodies (1:500; Invitrogen) for 2 h at 

room temperature. For immunohistochemistry against RORB, a pre-treatment in 10 

mM sodium citrate, 0.05% tween 20 buffer (pH6) at 85°C for 40 minutes was 

performed before running the same protocol mentioned above of the procedure. 

For immunohistochemistry against BrdU, a pre-treatment with 2N HCl at 37°C for 

40 minutes was performed. Primary antibodies and their dilutions were: mouse 

anti-human ROR (Perseus proteomics, # PP-H3925-00, 1:200), chicken anti-GFP 

(Invitrogen, # A10262, 1:2000), rat anti-BrdU (Abcam, # ab6326, 1:200), rat anti-

CTIP2 (Abcam, # ab18465, 1:500), rabbit anti-CUX1 (Santa Cruz, # sc13024, 

1:250), mouse anti-SATB2 (Abcam, # ab51502, 1:200). 

Image acquisition and quantifications. 

All images were acquired on a Nikon A1r spectral confocal microscope, equipped 

with 40x 0.6 CFI ELWD S Plan Fluor WD objective. Cells were selected for 

analysis only if there was no overlap with the primary dendrites of other labeled 

neurons. GFP/RORB overexpressing neurons were reconstructed for quantitative 

analysis of neuronal dendritic arborization using Imaris software. Quantifications of 

CUX1/SATB2/RORB/CTIP2 fluorescence intensity were done using Fiji software, 

by normalizing the row values to the background intensity (measured on a region 

of the section without positive cell) on each section and displayed them as the 

percent of max value on the section. For CTIP2 intensity quantification, the max 

value was measured in a positive L5 cell (since most ICPN express very low to not 

detectable levels of CTIP2).  

To quantify BrdU+ CPN after injection of BrdU at different embryonic stages, we 

calculated the percentage of Retrobead-labeled CPN in L2/3, L5a, and L5-6 that 

displayed a high intensity of BrdU. Only sections with at least 10 Retrobead-

labeled CPN per layer were kept for analyses (n=2 to 3 sections per pup, n=3 to 5 

pups per age). For L4 BrdU+ cells, we delineated L4 with CUX1 staining, from 

which the barrels were identifiable, and quantified the percentage of BrdU+ cells in 

this area. For the heatmap in Fig 1c, the total number of BrdU+ ICPN was 

normalized to 100% per layer, showing the peak of birth for each ICPN population 

per layer. Error bars represent s.e.m. 

Tissue microdissection, cell sorting and RNA sequencing. 
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Microdissection of primary somatosensory cortex (S1) from one litter (4 pups) 

corresponds to one biological replicate (n = 3 to 6 for each condition). Fresh 

coronal brain sections (600 μm) were cut on a vibrating microtome (Leica, 

VT1000S) and S1 was microdissected using a Leica Dissecting Microscope (Leica, 

M165FC) in ice-cold oxygenated artificial cerebrospinal fluid (ACSF) under RNase-

free conditions. For the comparison of SSN vs. CTB-labeled CPNSL, we used the 

same procedure as in ref. 10 for cell dissociation. For the comparison of 

Retrobead-labeled CPNSL vs. CPNDL, cells were dissociated by incubating micro-

dissected samples in 0.5 mg/mL pronase (Sigma, #P5147) at 37°C for 10 minutes, 

followed by incubation in 5% bovine serum albumin for 3 minutes and manual 

trituration in ACSF using pulled glass pipettes. Cells were then centrifuged for 10 

minutes at 600 rpm and resuspended before filtration using a 70 m cell strainer 

(ClearLine, # 141379C). Cells were then incubated for 10 minutes at 37°C with 

Hoechst (0.1 mg/mL) and isolated using a Beckman Coulter Moflo Astrios FAC-

sorter. Singlet Hoechst+ cells were sorted according to their Forward and Side 

scattering properties (FSC and SSC), and their negativity for Draq7TM (Viability 

dye, Far red DNA intercalating agent, Beckman Coulter, #B25595). RNA was 

extracted using an RNeasy kit (Qiagen, #74034). cDNA libraries were obtained 

using SMARTseq v4 kit (Clontech, # 634888) and sequenced using HiSeq 2500 

sequencer. 

Analyses. 

For bulk RNA sequencing data analyses, we kept only genes expressed more than 

20 rpm in at least one of sample. To perform three-way analyses on the layer vs. 

circuit datasets, we normalized the expression of genes by the means of CPNSL 

samples from both experiments. For Fig.2d, samples with similar expression of 

genes and therefore similar principal components loadings, are most likely to 

localize near each other in the embedding24,25. Hierarchical clustering was 

performed using euclidian distance metrics. To compare the discriminative power 

of the layer-based classification (that is, SL vs. DL) with the circuit-based 

classification (that is, local vs. callosal), we used the same approach as described 

in ref. 16 (the paragraph below is directly modified from the original description in 

this study): we trained 2 linear nu-support vector machine (nu-SVM) classification 

models. Nu corresponds to the degrees of freedom of the SVM model, and thus 
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inversely correlates with stringency. We determined the maximal margin of 

separation between the two populations (that is, SL vs. DL CPN, or SSN vs. 

CPNSL), which indicates how distinct these two populations are. Because the ‘nu’ 

parameter controls the stringency of the model, we confirmed the results using a 

range of nu values between 0.1 and 0.5. We looked for genes differentially 

expressed in the layer and the circuit models using SVM with nu=0.3. We 

considered as differentially expressed genes with a FDR < 0.1. 

Statistical analyses of morphological and electrophysiological parameters were 

performed using Graphpad Prism software. For statistical analyses of neuron 

morphology at P7, we used 2-way ANOVA and multiple comparisons with 

Bonferroni correction (n=17 ICPNL2/3; n=13 ICPNRORB; n=13 SSNL4). For analyses 

of electrophysiological parameters, we used Kruskal-Wallis non-parametric test 

with multiple comparisons when comparing the 3 ICPN populations and Mann-

Whitney test when comparing only ICPNL2/3 and ICPNRORB. The number of 

recorded cells is indicated on each figure. For statistical analyses of dendritic 

length at P21, we confirmed normality of the data using D’Agostino & Pearson 

normality test and performed unpaired t-test.  

Electrophysiology. 

300 µm thick coronal slices from P21 mice were cut in cooled ACSF containing 

125 mM NaCl, 2.5 mM KCl, 1 mM MgCl, 2.5 mM CaCl2, 1.25 mM Na2HPO4, 26 mM 

NaHCO3 and 11 mM glucose, oxygenated with 95% O2 and 5% CO2. Slices were 

kept at room temperature and allowed to recover for 1h before recording. Under 

low magnification, the barrels in L4 could be readily identified, and high-power 

magnification was used to guide the recording electrode onto visually identified 

neurons. Whole-cell voltage-clamp recordings were performed with 3–4 MΩ 

electrodes filled with a solution containing 140 mM KCH3SO3, 2 mM MgCl2, 4 mM 

NaCl, 5 mM P-creatine, 3 mM Na2ATP, 0.33 mM GTP, 0.2 mM EGTA and 10 mM 

HEPES adjust to 300 mOsm l-1 1 and pH 7.2 with KOH. Currents were amplified 

(Multiclamp 700B, Axon Instruments), filtered at 5 kHz and digitized at 20 kHz 

(National Instruments Board PCI-MIO-16E4, Igor, WaveMetrics). Ih was measured 

in voltage clamp using a -40mV step (500 ms) and was calculated by the 

difference of current between the beginning and the end of the voltage step. The 

firing pattern was studied by current clamp recording of the neurons during the 
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injection of 20 to 300 pA of current (50 pA stepped) for 500 ms. Optogenetic 

stimulations were performed using 0.5 ms blue LED light pulses at 0.05 Hz in L2/3 

ChR2-expressing sections, and photo-induced EPSCs were recorded from 

ICPNL2/3 and ICPNRORB in presence of 10 µM bicuculline. No series resistance 

compensation was used. Values are presented as mean ± s.e.m. 
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Figure legends 

Figure 1 Diversity of intracortically-projecting neurons (ICPN) across cortical 

laminae. a, Schematic representation of the 3 populations of ICPN: callosally-

projecting neurons from superficial (CPNSL) and deep layers (CPNDL) and spiny 

stellate neurons from layer (L) 4 (SSN). b, Distribution of CPN within cortical laminae 

at P11. CPN were labeled by injection of red Retrobeads (Rbeads) in the 

contralateral somatosensory cortex. CPN were absent from L4, where SSN are 

located. c, Birthdates of ICPN reflect the inside-out generation of cortical neurons. d, 

Expression of cortical markers by ICPN. Scale bars represent 150 m (b, c, d, left), 

20 m (d, middle). DL: deep layers, SL: superficial layers. 

 

Figure 2 Circuit properties are the primary determinant of transcriptional identity for 

CPNSL, SSN, and CPNDL. a, Schematic representation of the experimental strategy 

and working hypotheses. b, Three-way transcriptomic comparison between CPNSL, 

SSN, and CPNDL reveals type-specific and shared genes (left). Examples of selected 

gene in situ hybridizations (ISH, source: Allen Brain Atlas) and pseudo-intensities of 

stacked ISH of all significant genes that were referenced in the database (right). c, 

Ontologies of differentially-expressed genes. d, Unbiased clustering delineates 

CPNSL, SSN, and CPNDL. Circles represent individual samples. tSNE, t-distributed 

stochastic neighbour embedding. e, SSN vs. CPNSL (circuit-based hypothesis) 

classification is superior to CPNSL vs. CPNDL classification (layer-based hypothesis) 

at all levels of stringency (top). Circuit-specific genes are more differentially 

expressed than layer-specific genes (bottom). Genes with fold changes > 2 are 

highlighted in red. ***P<0.001; Welch’s two-sample t-test. Scale bar in b represents 

150 m. 

 

Figure 3 ICPNRORB acquire SSN-like morphology and electrophysiological/circuit 

properties. a, In contrast to ICPNL2/3, RORB-overexpressing ICPNL2/3 (ICPNRORB, 

filled arrowheads) and SSN do not have an apical dendrite at P7. b, In contrast to 

ICPNL2/3, ICPNRORB and SSN lack Ih currents. Sample traces show Ih current in 

response to a 500 ms, -40 mV square voltage step. c, ICPNRORB acquire SSN-like 

excitability. d, Schematic representation of L2/3-L4 canonical microcircuit. e, 
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ICPNRORB display SSN-like cortical circuit features. Left, experimental design and 

illustration. Right, sample traces, percentage of response and response amplitude 

following 0.5 ms light stimulation of ICPNL2/3 (blue arrowhead). Scale bars represent 

50 m (a, top, f), 30 m (a, bottom), 25 m (b). 
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Supplementary Fig. 2 ICPN differentially expressed genes. a, Expression heatmap and unbiased 
clustering of all differentially expressed genes in CPNSL vs. SSN and SL vs. DL CPN datasets. b, 
Expression of the markers used for primary characterization of the 3 ICPN populations (compare with 
values for corresponding protein expression in Fig. 1d).
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Supplementary Fig. 3 Expression of differentially expressed genes by ICPN. Data from Allen Brain 
Atlas database (http://developingmouse.brain-map.org/). Scale bar represents 100 μm. 
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Supplementary Fig. 4 ICPNRORB aquire SSN-like morphology and circuit properties. a, ICPNL2/3 labe-
led by GFP after in utero electroporation at E16.5. A fraction of RORB overexpressing cells are abnor-
mally positioned (arrows), though a significant proportion reaches L2/3 (ICPNRORB). b, At P3, ICPNRORB 
display an apical dendrite (arrows) as do ICPNL2/3. c,  In adults, ICPNRORB lack an apical dendrite and 
have a reduced number of dendrites as well as a reduced dendritic length compared to ICPNL2/3. 
Imaris reconstructions were performed on biocytin filled electroporated cells, followed by Sholl analy-
ses. d,  At P7, ICPNRORB do not extend an axon through the corpus callosum (CC, arrowhead) in con-
trast to control ICPNL2/3. Scale bars represent 150 μm (a, b, d, top), 40 μm (c), 20 μm (d, bottom). 
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