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ABSTRACT 
 
 Autism Spectrum Disorder (ASD) is associated with multiple complex abnormalities in 
functional brain connectivity measured with functional magnetic resonance imaging (fMRI). Despite 
much research in this area, to date, neuroimaging-based models are not able to characterize 
individuals with ASD with sufficient sensitivity and specificity; this is likely due to the heterogeneity and 
complexity of this disorder. Here we apply a data-driven subject-level approach, connectome-based 
predictive modeling, to resting-state fMRI data from a set of individuals from the Autism Brain Imaging 
Data Exchange. Using leave-one-subject-out and split-half analyses, we define two functional 
connectivity networks that predict continuous scores on the Social Responsiveness Scale (SRS) and 
Autism Diagnostic Observation Schedule (ADOS) and confirm that these networks generalize to novel 
subjects. Notably, these networks were found to share minimal anatomical overlap. Further, our 
results generalize to individuals for whom SRS/ADOS scores are unavailable, predicting worse scores 
for ASD than typically developing individuals. In addition, predicted SRS scores for individuals with 
attention-deficit/hyperactivity disorder (ADHD) from the ADHD-200 Consortium are linked to ADHD 
symptoms, supporting the hypothesis that the functional brain organization changes relevant to ASD 
severity share a component associated with attention. Finally, we explore the membership of 
predictive connections within conventional (atlas-based) functional networks. In summary, our results 
suggest that an individual's functional connectivity profile contains information that supports 
dimensional, non-binary classification in ASD, aligning with the goals of precision medicine and 
individual-level diagnosis. 
 
INTRODUCTION 
 
 The global prevalence of autism spectrum disorder (ASD) in 2010 was estimated to be 7.6 per 
1000, or approximately 52 million cases.1 The lifetime burden of ASD is greater than that of both 
attention deficit hyperactivity disorder (ADHD) and conduct disorders combined, totalling 6.2 million 
disability-adjusted life-years globally.1,2 Diagnosis of ASD continues to be challenging, particularly in 
young children, in part because ASD includes a wide range (or spectrum) of symptoms, skills, and 
levels of impairment.3 As such, specific diagnoses, assessments of symptom severity, and choice of 
treatment for each symptom domain often varies widely across individuals. Reflecting this clinical 
complexity, the associated neural correlates of ASD are also complex, have been difficult to 
characterize, and are not well understood.4  
 Magnetic resonance imaging (MRI) has been used to discover structural and functional 
differences between ASD and typically developing (TD) individuals.4-7 Functional MRI (fMRI) is a 
non-invasive imaging methodology that can measure a correlate of brain activity reflected by 
changes in local tissue oxygenation.8 The dynamic time-series fMRI data can be analyzed to 
identify patterns of coupling between distinct anatomical regions [9]: a measure referred to as 
functional connectivity. A map of all the connections in the brain is referred to as the functional 
connectome.10 Recent work has demonstrated that individual’s have unique functional connectivity 
patterns, that contain information about behavioral traits and/or clinical symptoms.11-13 Such 
connectome-based assessment of an individual’s brain organization may prove useful in guiding the 
clinical management of patients.11,14-16 

 Functional connectivity studies of ASD have shown alterations in multiple functional networks 
compared to typically developing (TD) individuals.4,5,7,17,-30 However, studies demonstrating a 
continuous relationship between behavioral measures (gold-standard clinical evaluation) and 
connectivity are limited, many studies are under-powered, and the results are rarely replicated.17,31 
Furthermore, very few studies predict out-of-sample — rather than explain within-sample — clinical 
scores.32,33 As recent reviews have summarized, findings in this area are generally complex and non-
converging, likely reflecting both the daunting heterogeneity of ASD and the disparate but relevant 
brain circuits investigated.34-36 

 Given the substantial individual differences in ASD symptomatology and the complex imaging 
correlates, a whole-brain data-driven dimensional approach focused on individual differences rather 
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than categorical/binary grouping may be more useful to capture the subtle features that involve the 
interplay of multiple brain regions. In this work we test the hypothesis that connectome-based 
predictive modeling (CPM) can be used to identify complex whole-brain networks that predict 
symptom severity based only on an individuals' functional connectome.11,16,37 We focus on two clinical 
scores relevant to autism, the Social Responsiveness Scale (SRS) and the Autism Diagnostic 
Observation Schedule (ADOS), available from the Autism Brain Imaging Data Exchange (ABIDE) 
consortium.38,39 Using both leave-one-subject-out (LOO) and split-half cross-validation (CV), we 
validate these models and identify two anatomically distinct functional networks related to SRS and 
ADOS scores. Finally, motivated by the overlap in symptomatology and genealogy between ASD and 
attention-deficit/hyperactivity disorder (ADHD), as well as the high co-occurrence of these disorders 
within individuals, we explore the generalizability of our SRS and ADOS models in an independent 
data set derived from the ADHD-200 Consortium.40  
 This dimensional rather than binary categorical approach captures degree of severity, which is 
of particular importance in ASD where a broad range of phenotypes are a salient feature of the 
disorder. Furthermore, CPM preserves the ability to track response to therapies and captures a range 
of clinical presentations, including (a)symptomatic siblings of ASD individuals. It is also in line with the 
National Institute of Mental Health’s conceptualization of mental health disorders.41 In summary, we 
demonstrate that behavioral measures and imaging data can be used to develop models relating 
connectivity to symptom severity in a dimensional approach at the individual subject level. 

 
METHODS 
 
2.0 Data sets 
 
 We analyzed data from ABIDE-I/II and the ADHD-200 consortium, two publicly available multi-
site data sets of resting state fMRI (rs-fMRI), demographic, and clinical assessment data.38-40 Detailed 
information is available for ABIDE-I/II at fcon_1000.projects.nitrc.org/indi/abide/ and ADHD-200 at 
fcon_1000.projects.nitrc.org/indi/adhd200/. Refer to supplementary material for an imaging parameter 
summary. 
 
2.1 Rs-fMRI data processing 
 
 Standard pre-processing procedures were used as previously described.12 Motion correction 
was performed using SPM8 (fil.ion.ucl.ac.uk/spm/). Images were iteratively smoothed to a full-width 
half maximum of 6mm to reduce motion related confounds.42 All further analyses were performed 
using BioImage Suite.43 Covariates of no interest were regressed from the data including: linear and 
quadratic drifts, and mean cerebral-spinal-fluid, white and gray matter signals. For additional control of 
motion related confounds, a 24-parameter motion model (including six rigid-body motion parameters, 
six temporal derivatives, and these terms squared) were also regressed from the data. Frame-to-
frame motion was estimated as the Euclidean distance between the center of gravity of neighboring 
frames from the transformation matrix, which incorporated three translation and three rotation 
estimates. We applied temporal smoothing with a Gaussian filter (cutoff frequency=0.12Hz). 
 Each individual’s functional connectome was calculated using a functionally defined atlas of 
268 cortical and subcortical nodes defined in a separate population.11,44 For each subject, the atlas 
was warped from MNI space into single-subject space via concatenation of a series of linear and 
nonlinear registrations as previously described.[12] All transformation pairs were calculated 
independently, combined into a single transform, and inverted, warping the functional atlas into single 
participant space. For each individual, a 268x268 connectivity matrix was calculated using Pearson 
correlation coefficients between time-courses of node pairs followed by normalization to z-scores 
using the Fisher transformation. Each entry in this matrix represents the strength of the functional 
connection between two nodes, also referred to as an “edge” and the matrix as a whole is the 
individual’s functional connectome. 
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2.2 Behavior metrics 
 
 ABIDE-I/II. SRS serves as a broad-spectrum estimate of autistic traits. It is commonly applied 
not only in individuals with ASD, but also in family members of ASD individuals and trans-
diagnostically. ADOS is more strictly applied to assess and diagnose individuals with ASD. Briefly, 
SRS is a 65 item questionnaire. Individuals are scored out of four: (1) ‘not true’, to (4) ‘almost always 
true’, by either themselves, or a parent/guardian.45-47 The following is an example question from SRS: 
“avoids starting social interactions with others”. ADOS is more intensive, and based on the 
observation/evaluation of elicited imaginative activities involving social role-playing and 
communication within a standardized context (e.g. telling a story) by a trained observer.48 For both 
scales, a greater score indicates a deficiency in reciprocal social behaviors and a likelihood that the 
individual will find everyday social interactions challenging. Six SRS and eight ADOS sub-scale scores 
(from two modules) were available. SRS and ADOS sub-scale scores are highly correlated within 
scales (i.e., SRS sub-scale scores with other SRS sub-scale scores, and ADOS sub-scale scores with 
other ADOS sub-scale scores) but generally less correlated between scales (i.e., SRS sub-scale 
scores with ADOS sub-scale scores) [Supplementary Figure 1.A.]. 
 ADHD-200. We include ADHD symptom measures from the ADHD Rating Scale-IV.49 These 
scores are calculated by summing responses to 18 questions on a 4-point scale: (0) 'rarely or never', 
to (3) 'always or very often'. Questions assess attention (e.g. “is easily distracted by extraneous 
stimuli”) or hyperactivity (e.g. “interrupts or intrudes on others”).   
 
2.3 Model building: behavior prediction 
  
 Models were built using LOO-CV CPM analysis as described previously.11,12,37 Briefly, an 
iterative three-step analysis was performed: (1) feature selection (N-1 training set), (2) building of a 
predictive model (N-1 training set), and (3) testing on the left-out subject. Each individual was left-out 
of the training set once in this iterative framework. In the first step, across individuals in the training 
set, a Pearson correlation is calculated between each functional connection, or edge, of the 268x268 
connectivity matrix and clinical score. The resulting set of correlations is thresholded (P<0.01) to 
create feature sets that correlate either positively (+ve) or negatively (-ve) with the clinical measure. In 
the second step, ‘network strength’ (a single number reflecting the sum of all edges in the feature set) 
is computed for each individual in the training set. Network strength is a subject-specific summary 
statistic akin to a weighted degree.50 Next, linear regression is used to build a model of the relationship 
between the clinical score and network strength across individuals. Finally, this linear model along with 
the network strength from the left-out subject is used to predict the clinical score for the left-out 
individual. The predictive power of the model is assessed by the Pearson correlation of predicted 
versus measured behavioral score across all individuals. We apply Bonferroni correction for multiple 
comparisons (6 SRS and 4 ADOS scores).  
 
2.4 Internal validation: (1) split-half CV, (2) permutation testing, and (3) extrapolation 
 
 To test model robustness, we use (1) split-half validation (n=200 iterations) and (2) permutation 
testing (n=1,000 iterations). For split-half validation, individuals are divided equally between train and 
test groups by random selection. Network/model building is conducted within the training group and 
the model applied to the test group. Permutation testing was conducted as described previously.[37] 
Briefly, subject labels and clinical scores were randomly shuffled to break the true brain-behavior 
relationship, then prediction (LOO-CV) performed on the shuffled data to generate a null result. We 
test if correlations from train/test and shuffled data come from different distributions (kruskalwallis, 
MATLAB). As a this validation step (3), for each split-half iteration, networks/models were applied to all 
individuals (less those used to generate the model) whether or not clinical scores were available from 
these individuals (N=ABIDE-I/II-training). Thus, for each individual in ABIDE-I/II, we generate clinical 
score predictions which we compare between ASD and TD groups and demonstrate across this larger 
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sample that the scores differ significantly (kruskalwallis, MATLAB). We apply Bonferroni correction for 
multiple comparisons (6 SRS and 4 ADOS scores). 
 
2.5 Network anatomy  
 
 The brain is complex and the networks identified by CPM reflect this complexity. In order to 
assess the extent to which the SRS and ADOS models share common features, we compute the 
probability that n shared edges exist between SRS/ADOS networks and edges within or between 10 a 
priori defined atlas networks.[44, 51] Significance was determined using the hypergeometric cumulative 
distribution function (hygecdf, MATLAB, Bonferroni correction for 55 comparisons). We report the 
likelihood (1.0-Pvalue) that each atlas network (and inter-network pair) contributes to SRS and ADOS 
networks. Furthermore, we analyze the distribution of edge lengths (defined as the Euclidean distance 
between the center of mass between each node) within networks. Note that this estimate of geometric 
distance is a rough proxy for synaptic distance. Using MATLAB, we test for outliers (kurtosis), 
normalcy (lillietest), a tendency towards long/short connections (skewness) and differences between 
+ve/-ve network distributions (ranksum). In addition, we evaluate the anatomy of shared features 
between networks by taking the products of +ve/+ve, +ve/-ve, -ve/+ve and -ve/-ve network pairs 
across scales and compute the likelihood that each of the resulting sets of shared features contain n 
edges from atlas-networks. 
 
RESULTS 
 
3.0 Participants 
 
 Due to the sensitivity of functional connectivity measures to motion, we select subjects with 
frame-to-frame motion <0.08mm.52 Furthermore, we exclude individuals without sex or age 
information, thereby reducing ABIDE-I/II to 632 individuals (N=290/342, ASD/TD). Individuals included 
in each of our analysis steps are illustrated in Supplementary Figure 1.B. Clinical scores were 
independent of sex and medication status [Supplementary Figure 1.C./D.]; therefore, individuals were 
not excluded according to either category. Where reported (ABIDE-II), individuals with eyes closed 
were excluded. Full intelligence quotient (FIQ), age, and motion were limited such that known and 
predicted clinical scores were independent of these nuisance variables. Thus, SRS and ADOS groups 
were reduced to N=260/352 and 58/79. The male/female, and TD/ASD ratios as well as mean ± SD 
and range (min.-max.) of motion (mm), FIQ and age (yrs.) are summarized in Supplementary Figure 2. 
Data from the ADHD-200 consortium, collected at Peking University were thresholded according to the 
same methodology (N=77/35, ADHD/TD).  
 
3.1 ASD behavior prediction (ABIDE-I/II) 
 
 For all SRS sub-scales, predicted behavior from LOO-CV analyses correlated with known 
scores (R=0.23-37, P<0.00002) [Figure 1.A.]. Similarly, for the majority of ADOS sub-scales, predicted 
clinical score correlated with known score (R=0.43-0.60, P<0.0002) [Figure 1.B.]. In all cases, age, 
FIQ and motion were included along with our model as covariates [Supplementary Table 1]. As a 
secondary analysis, we considered male individuals and obtained comparable results [Supplementary 
Table 1.C./D.]. Insufficient data was available for a female group. These results affirm our hypothesis 
that connectome based predictive modeling can be used to predict severity of ASD clinical symptoms. 
That is, the individual’s functional connectome contains information reflecting social behavioral scores 
as measured by SRS and ADOS. 
 
3.2 Internal validation of SRS/ADOS models 
 
  To test the robustness of LOO-CV SRS/ADOS models and generalizability within the ABIDE-
I/II, we used split-half CV and permutation testing. Correlations between known and predicted 
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behavior for split-half train/test groups are plotted alongside correlations obtained from shuffled data 
(null results) [Figure 2.A.]. For all SRS and ADOS sub-scales, correlations from train/test data were 
greater than shuffled data. When SRS/ADOS models were applied to all individuals (less those used 
to generate the model), predicted scores were greater for ASD relative to TD individuals (N=632) 
[Figure 2.B] with the exception of the ADOS severity sub-scale. As a control, whole-brain connectivity 
in place of SRS/ADOS networks showed no difference between diagnostic groups [Supplementary 
Figures 3&4.C.]. Note, networks/models generated within this section are not used in future sections. 
Networks from Section 3.1 (generated from all individuals) are applied in all following analyses.  
 
3.3 Anatomy of SRS/ADOS networks 
 
 Unsurprisingly, given that sub-scale scores were highly correlated [Supplementary Figure 
1.A.], the anatomy of sub-scale networks was found to be largely similar (e.g. across all SRS sub-
scales, +ve edges are very likely to overlap with edges within the cerebellum). On the other hand, 
there were notable exceptions where sub-scale network anatomy diverged (e.g. edges between 
medial-frontal and motor networks were very likely to occur within SRS total, communication, 
motivation and mannerism +ve sub-scale networks, but unlikely to occur within SRS cognition and 
awareness +ve sub-scale networks) [Figure 3. examples highlighted]. Although it is difficult to 
summarize the complex networks generated with CPM, here feature sets which contribute most to 
SRS and ADOS networks are described in a more familiar framework. 
  
3.4 Composite SRS/ADOS networks 
 
 As a data reduction strategy before investigating model generalizability, and to identify edges 
that contribute across sub-scales, 'low' to 'high' threshold, 'composite' networks were defined as 
follows: lowest - edges which appeared in any sub-scale network at least once, to highest - edges 
appear in all sub-scale networks. Note that this is not a threshold applied at the feature selection step, 
but at the level of comparing networks for cross sub-scale relevance. The anatomy of composite 
networks across thresholds is summarized in Supplementary Figure 5. Despite similar anatomy at the 
network-level between sub-scale networks, at the edge-level, there was an order of magnitude 
difference in the number of edges contained within composite networks at the lowest versus highest 
threshold [Supplementary Figure 6]. However, the anatomy and distribution of edge lengths (ref. below 
3.5) in composite networks was similar across thresholds. The feature that distinguished edges in the 
low- from those in the high-threshold composite networks was the magnitude of the slope in the linear 
model relating edge strength to clinical score. However, composite network predictive power changed 
very little with threshold, which is notable considering the difference in the number of edges between 
thresholds [Supplementary Figure 6.C.]. For all between scale comparisons (ref. below 3.6 and 3.7), 
composite networks were formed with edges that appeared in at least three sub-scale networks. 
 
3.5 Edge lengths 
  
 Motivated by controversy in the literature regarding long/short-range hyper/hypo-connectivity in 
ASD, we analyze the distribution of edge lengths in +/-ve sub-scale and composite networks 
[Supplementary Figure 6.A./B.]. None of our networks contain outliers. For networks that were not 
normally distributed, edges skewed towards longer lengths. For both sub-scale and composite SRS 
networks, there was no difference in median edge length between the +ve and -ve networks. On the 
other hand, although the difference was small (~0.5cm), -ve were longer than +ve edge lengths in 
most sub-scale and composite ADOS networks. In summary, we found weak evidence of longer 
edges contributing more to symptom severity in ASD. 
 
3.6 Model generalizability (ADOS vs SRS) 
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 Model generalizability was tested within the ABIDE-I/II data set, and across data sets and 
diagnosis (ref. below 3.7). Within ABIDE-I/II, SRS composite networks were applied to individuals from 
ABIDE-I/II for whom ADOS but not SRS scores were available. Likewise, ADOS composite networks 
were applied to individuals with SRS but without ADOS scores. Predicted SRS scores correlated with 
known ADOS social affect (R=0.36, P<0.01), and generic total (R=0.29, P<0.03) scores. Likewise, 
predicted ADOS scores correlated with known SRS mannerisms (R=0.16, P<0.01) and cognition 
scores (R=0.20, P<2E-03) [Figure 5.A.].  
 
3.7  Model generalizability (SRS and ADOS models in ADHD) 
 
 Motivated by the idea that the underlying biology of mental health disorders is not merely 
categorical, but rather trans-diagnostic, we tested the SRS and ADOS CPMs to assess their specificity 
to ASD by applying the models to another neurodevelopmental cohort: children with ADHD.53-56 To 
facilitate this comparison, we first implement the same procedures described above for ABIDE-I/II 
data, to predict ADHD symptoms within the ADHD-200 data set [Figure 4.A.]. Correlations between 
known and predicted scores were found to be significant using split-half CV and permutation testing 
[Figure 4.B.]. As above, we also examined the anatomy of ADHD sub-scale [Figure 4.C.D.] and 
composite [Supplementary Figure 7.] networks. 
 Across neurodevelopmental disorders, SRS and ADOS composite networks were applied to 
individuals from the ADHD-200 data set, and ADHD composite networks applied to ABIDE-I/II data. 
Predicted SRS scores correlated with known ADHD score (R=0.31/32, P<0.01) [Figure 5.B.]. This 
result indicates that the SRS model contains components related to attention that accounts for 
significant variance in predicting ADHD in a different population. However, in each cross-index model 
test (present and previous section), predictive power was worse than the model constructed with the 
score of interest. 
 
3.8 Shared anatomy of composite networks across scales 
 
 To investigate whether predictions across scales were a byproduct of common anatomy, 
shared features were quantified. The anatomy of shared edges was estimated by taking the products 
of composite network pairs (SRS/ADOS, and SRS/ADHD) and computing the likelihood that each of 
the resulting sets of shared features contained n edges from atlas-networks. These results are 
summarized in 2x2 matrices of layer plots for all thresholds [Figure 5.C./D.]. Shared network-level 
features were summarized and compared to shared edge-level features [Supplementary Figure 6]. For 
each composite network, the contributing atlas-networks and atlas-network pairs were listed. Common 
atlas-network features are indicated between composite networks, as are features implicated at the 
edge-level. Broadly, the cerebellum contributes to SRS and ADOS (+ve), the frontal-parietal to visual 
areas network pair contributes to SRS and ADOS (-ve), the subcortical network and the frontal-parietal 
to visual-I network pairs contribute to SRS and ADHD (+ve), and the default mode network contributes 
to SRS and ADHD (-ve). However, only SRS and ADHD (-ve) share edges that contribute significantly 
to both networks.  
 
DISCUSSION 
 
 Using a large sample of open-source data and a novel prediction framework, we find 
meaningful patterns of functional connectivity that can independently predict two clinical measures of 
ASD symptom severity: ADOS and SRS. In addition, we show that the SRS network predicts symptom 
severity for another developmental mental health disorder, ADHD. This observation is consistent with 
a growing body of literature suggesting that ASD and ADHD contain partially overlapping but 
independent comorbidities, sharing a continuous spectrum of impairment.53-56 To ensure that these 
relationships are not simply the byproduct of a high overlap between networks, we show that <2% of 
edges are shared across SRS/ADOS/ADHD networks. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290320doi: bioRxiv preprint 

https://doi.org/10.1101/290320
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 In line with previous CPM results, our predictive networks are complex and distributed across 
the whole brain. Thus, they are not easily described in terms of traditional functional networks. 
However, some of the same feature sets are implicated across networks and include many areas 
already identified in the ASD literature: default mode, limbic, visuo-spatial, motor, subcortical, and 
cerebellum regions.4,19-23,26,27 However, with our approach, we cannot conclude that one or a few 
networks ‘cause’ ASD symptoms but instead observe a convergence of functional connections related 
to a spectrum of behaviors. We assert that this is indeed a strength of the CPM approach, which 
affords the ability to resolve more nuanced information by requiring fewer statistical tests. 
Furthermore, our methodology is intentionally designed to model the underlying biology of mental 
health disorders as a continuous spectrum not merely a categorical definition. Such models can also 
be trans-diagnostic, and the results shown here support this hypothesis.57 

 Our study has several limitations. One of which is our strict inclusion criteria. On one hand, we 
include individuals on medication and both sexes in an attempt to reflect the true patient population, 
and because we determined clinical scores are independent of medication status and sex. On the 
other hand, because age, FIQ, and motion are significantly correlated with clinical scores, we are 
obligated to limit these attributes to eliminate nuisance effects and uncover the connectivity features 
that relate only to the clinical measures of interest. Another consideration is the inherent heterogeneity 
of the ABIDE-I/II data set (different sites, acquisition protocols, and behavioral questionnaires and 
clinical scoring), which we could not account for and likely made prediction more challenging. 
Nevertheless, that the CPM approach works despite these challenges should be considered a 
strength. In addition, this heterogeneity may also have strengthened the generalizability. Our models 
capture ~10-45% of the variance. In part, this is likely due to differences in sites, acquisition protocols, 
and behavioral questionnaires. It could also be due to the limited amount of resting-state data 
available for each subject and noise in the data due to many factors including motion, individual 
anatomical/functional differences, brain state, a range of physiological variables that can influence 
connectivity, and the inherent heterogeneity within the patient population. Recent studies have 
suggested that more data (longer resting-state acquisitions) are needed for high reliability in single 
subject connectivity assessments.51,58 Finally, it should be noted that the correlative relationships 
between the functional connectome and clinical scores revealed by CPM cannot be used to infer 
causality. 
 Future studies could be improved by implementing longer imaging times and harmonized 
scanners, to provide more reliable functional connectivity measurements.51,58 It has also been 
suggested that connectivity data obtained while the subject performs a specific task aimed at 
enhancing differences in connectivity can lead to better predictive models.15,59 The use of naturalistic 
conditions such as movie-watching can improve head motion, and tolerance of longer scan durations 
while enhancing individual differences.60,61 Such conditions may prove particularly advantageous in 
neurodevelopmental populations as in the current study.   
 In conclusion, the present work uses a data-driven approach to develop objective quantitative 
models that establish a link between the individual functional connectome and behavior in ASD. We 
observe widespread differences in functional organization in individuals with ASD, congruent with the 
complex behavioral and cognitive abnormalities that are a hallmark of the autism spectrum. We also 
demonstrate the generalizability and trans-diagnostic utility of this approach. In the future, 
understanding the changes in functional organization of the brain related to various dimensional 
aspects of ASD may provide the needed inferential leverage at the individual level to change 
treatment strategies for ASD individuals and their families.    
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FIGURE CAPTIONS 
 
Figure 1. (A.) LOO-CV CPM results for SRS sub-scale scores. For each SRS sub-scale (i.-vi.), the 
sum of the predicted SRS score from +ve and -ve models are plotted against known scores. (B.) As in 
(A.) for ADOS sub-scale scores. The linear regression and 95% confidence interval are shown in 
black/grey. 
 
Figure 2. (A.) Correlation (R-value) for split-half CV. (i.) For each SRS sub-scale, the bar in the left-
most column is reproduced for reference from the LOO-CV CPM results reported in Figure 1. 
N=352/260. The middle two columns are from split-half train/test CV CPMs (n=200 iterations). The 
final column shows the null results form permutation testing where subjects and scores are scrambled 
prior to LOO-CV (n=1,000). For all SRS sub-scales, train/test results are greater than null results 
(P<2E-144). (ii.) Same as (i.) for ADOS sub-scales (P<0.03). See Supplementary Figure 2.A.&3.A. for 
results from SRS&ADOS +ve/-ve feature sets. (B.) From each iteration of the split-half CV, the model 
was applied to all individuals from ABIDE-I/II less those in the training group (N=632-training) to 
predict clinical scores. Across iterations (n=200) mean predicted scores are compared between TD 
and ASD individuals. For all sub-scales, predicted SRS (P<1E-07) scores are greater for ASD than TD 
individuals (i.). Likewise, all but the severity ADOS sub-scale score was greater for ASD than TD 
individuals (P<0.02) (ii.). Between ASD and TD groups, motion (P>0.14), and age (P>0.96) were not 
different.  
 
Figure 3. For SRS (A.) and ADOS (B.), edge overlap within (i./iii.) and between (ii./iv.) ten a priori 
atlas networks and our CPM networks are plotted for +ve (i./ii.) and -ve (iii./iv.) feature sets. Each 
layered plot shows the cumulative (sum) likelihood (1.0-Pvalue) estimated from the probability of 
edges being shared between a priori networks and each SRS/ADOS sub-scale network. Likelihoods 
greater than chance are indicated with an asterisk. Notice that in all plots, networks, and inter-network 
pairs, are ordered from greatest to least cumulative likelihood (i.e. the x-axis is ordered differently in 
each plot). Inlays show the edges of example SRS/ADOS +ve/-ve sub-scale networks as circle-plots 
as well as edges/nodes overlaid on glass brains.  
 
Figure 4. As in Figure 1.A./B., (A.) LOO-CV CPM results for ADHD sub-scale scores. For each sub-
scale (i.-iii.) the sum of the predicted ADHD score from the +ve/-ve models are plotted against known 
score. As in Figure 2.A., (B.i.) Correlation (R-value) of split-half CV CPMs (n=200) for each ADHD 
sub-scale and null results from shuffled data (n=1,000). As in Supplementary Figure 1.A., (B.ii.) 
correlation matrix of ADHD behavior sub-scale scores. As with SRS and ADOS, ADHD sub-scale 
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scores are highly correlated. As in Supplementary Figure 6.A.i./B.i., (C.) shows layer plots of the 
cumulative number of edges versus edge length for ADHD sub-scale networks. Networks with edge 

lengths which are not normally distributed are denoted by a cross (☨). For all not normally distributed 

networks, edges are skewed towards longer lengths. None of the networks are prone to outliers. 
There is a difference between +ve and -ve feature set edge lengths for all sub-scale networks (P<4E-
03). As in Figure 3., (D.) ADHD edge overlap within (i./iii.) and between (ii./iv.) ten a priori atlas 
networks and ADHD networks are plotted for +ve (i./ii.) and -ve (iii./iv.) feature sets. Inlays show the 
edges of example sub-scale networks as circle-plots as well as edges/nodes overlaid on glass brains. 
 
Figure 5. Plotted in (A.) and (B.) are correlations of predicted versus known behavior using composite 
networks applied across scales. All composite networks were thresholded at three. In (A.), the SRS 
(i.) and ADOS (ii.) composite networks were used to predict scores for individuals from ABIDE-I/II for 
whom only the other score was available (i.e. the SRS network was used to predict scores for 
individuals for whom ADOS scores (not SRS scores) were available). Composite networks were also 
applied across the ABIDE-I/II and ADHD-200 data sets. (B.) Predicted SRS scores correlate with 
known ADHD scores in individuals from the ADHD-200 data set. Layer plots showing the shared 
anatomy of SRS and ADOS (C.) and SRS and ADHD (D.) composite networks across thresholds. 
Composite network overlap of +ve and -ve feature sets was computed by taking the products: +ve/+ve 
(upper left, red/grey), +ve/-ve (upper right, purple/grey), -ve/+ve (lower left, purple/grey), and -ve/-ve 
(lower right, blue/grey) of paired networks and computing the likelihood that each atlas network 
contribute the observed number of edges to each set of shared features. 
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Supplementary Material!!
Imaging summary!!
! ABIDE-I/II. Data was acquired on either a Phillips, GE, or Siemens 3.0T scanner (with 
the exception of Institut Pasteur, where data was acquired on a Phillips 1.5T scanner). Mean ± 
standard deviation (SD) and range (min.-max.) of acquisition parameters across institutes are: 
TR/TE 2083 ± 635 (475-3000) / 29 ± 4 (24-45) msec., number of frames 242 ± 208 (85-947), in-
plane 3.2 ± 0.4 (2.5-3.8) mm2, through-plane resolution 3.5 ± 0.5 (2.5-4.0) mm, and number of 
slices 40 ± 6 (31-50). !
! ADHD-200. Data was acquired on a Siemens 3.0T scanner as follows: TR/TE 2000/30 
msec., in-plane resolution 2mm2, through-plane resolution 3.0/3.5mm, and number of slices 33. 
Each 8-minute (240 frame) acquisition was repeated three times during each session. Data 
were concatenated across acquisitions for connectivity analysis. 
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B. Groups of individuals included in analyses 
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ADOS scores 
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aware/cog.

N=Train/Test

N=Train/Test

Split-half CV

Split-half CV
x 200

x 200

N=112
ADHD

ADHD 
Index/Hyper/Inatt.

Figure 1.A./B. and Figure 3.

N=Train/Test
Split-half CV

x 200

Figure 2.A.iii./iv.

Figure 2.A.i./ii.

Figure 2.B.ii.Figure 2.B.i.

Figure 5.B.

Figure 5.A.

Figure 4.

Sup. Figure 1. Behavior metrics, data sets & groups, and sex/medication    
           status dependence of SRS/ADOS behavior scores

- - --

- - --

- - --

- - --

- - --

- - --

- - --

- - --

R-Value

No Data

Control male 

Control female

Autism male

Autism female

P-values Total!
N=352

Com.!
N=352

Mot.!
N=352

Man.!
N=352

Aware.!
N=260

Cog.!
N=260

Control 0.17 0.03 0.78 0.49 0.15 0.28
Autism 0.31 0.37 0.35 0.46 0.85 0.35

P-values Total!
N=79

Soaff.!
N=57

Gen. Tot.!
N=58

Social.!
N=76

Sev.!
N=58

Autism 0.01 0.64 0.95 0.05 0.58

C. No behavior score differences between sexes
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Control off med. 
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Autism on med.

P-values Total!
N=348
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N=348!

Mot.!
N=348

Man.!
N=348

Aware.!
N=257

Cog.!
N=257

Control 0.12 0.09 0.06 0.12 0.93 0.33
Autism 0.32 0.43 0.60 0.29 0.86 0.94

D. No behavior score differences between on/off medication groups
P-values Total!

N=79
Soaff.!
N=57

Gen. Tot.!
N=58

Social.!
N=76

Sev.!
N=58

Autism 0.84 0.13 0.28 0.74 1.00
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SRS sub-scales

ADOS sub-scales

ADOS sub-scales

A. Correlation of SRS/ADOS sub-scores
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N=352

N=250/102 Male/Female

N=230/122 TD/ASD

N=147/103 TD/ASD Male N=83/19 TD/ASD Female

FIQ 
116 ± 12 
(85 - 144)

Motion 
0.06 ± 0.02 
(0.02 - 0.10)

Age 
11 ± 2 
(6 - 14)

FIQ 
107 ± 18 
(67 - 149)

Motion 
0.06 ± 0.02 
(0.03 - 0.10)

Age 
11 ± 2 
(6 - 15)

FIQ 
115 ± 12 
(89 - 149)

Motion 
0.06 ± 0.02 
(0.02 - 0.10)

Age 
10 ± 1 
(8 - 14)

FIQ 
99 ± 15 

(73 - 123)

Motion 
0.06 ± 0.02 
(0.02 - 0.10)

Age 
10 ± 2 
(8 - 14)

Age 
10 ± 2 
(6 - 14)

FIQ 
116 ± 12 
(85 - 149)

Motion 
0.06 ± 0.02 
(0.02 - 0.10)

Age 
11 ± 2 
(6 - 15)

FIQ 
105 ± 17 
(67 - 149)

Motion 
0.06 ± 0.02 
(0.02 - 0.10)

Age 
11 ± 2 
(6 - 15)

FIQ 
112 ± 15 
(67 - 149)

Motion 
0.06 ± 0.02 
(0.02 - 0.10)

Age 
10 ± 1 
(8 - 14)

FIQ 
112 ± 14 
(73 - 149)

Motion 
0.06 ± 0.02 
(0.02 - 0.10)

Age 
11 ± 2 
(6 - 15)

FIQ 
112 ± 15 
(67 - 149)

Motion 
0.06 ± 0.02 
(0.02 - 0.10)

OR

NV 
Mean ± SD 

(Min. - Max.)

A. SRS total, communication, motivation and mannerisms sub-scales

N=260

N=185/75 Male/Female

N=180/80 TD/ASD

N=116/69 TD/ASD Male N=64/11 TD/ASD Female

FIQ 
116 ± 11 
(91 - 137)

Motion 
0.05 ± 0.02 
(0.02 - 0.08)

Age 
10 ± 2 
(6 - 14)

FIQ 
111 ± 14 
(87 - 139)

Motion 
0.05 ± 0.01 
(0.03 - 0.08)

Age 
11 ± 2 
(6 - 15)

FIQ 
114 ± 11 
(89 - 136)

Motion 
0.05 ± 0.02 
(0.02 - 0.08)

Age 
10 ± 1 
(8 - 14)

FIQ 
106 ± 12 
(92 - 123)

Motion 
0.05 ± 0.02 
(0.03 - 0.08)

Age 
11 ± 2 
(8 - 14)

Age 
10 ± 2 
(6 - 14)

FIQ 
115 ± 11 
(89 - 137)

Motion 
0.05 ± 0.02 
(0.02 - 0.08)

Age 
11 ± 2 
(6 - 15)

FIQ 
110 ± 14 
(87 - 139)

Motion 
0.05 ± 0.01 
(0.03 - 0.08)

Age 
11 ± 2 
(6 - 15)

FIQ 
114 ± 13 
(87 - 139)

Motion 
0.05 ± 0.02 
(0.02 - 0.08)

Age 
10 ± 1 
(8 - 14)

FIQ 
112 ± 12 
(89 - 136)

Motion 
0.05 ± 0.02 
(0.02 - 0.08)

Age 
11 ± 2 
(6 - 15)

FIQ 
114 ± 12 
(87 - 139)

Motion 
0.05 ± 0.02 
(0.02 - 0.08)

OR

B. SRS cognition and awareness sub-scales

Sup. Figure 2. Mean ± SD (min.-max.) motion, FIQ and age for male/female, TD/ASD groups

N=79 ASD

N=73/6 Male/Female
Age 

15 ± 4 
(9 - 24)

FIQ 
104 ± 6 

(93 - 114)

Motion 
0.06 ± 0.01 
(0.04 - 0.08)

Age 
14 ± 4 

(10 - 20)

FIQ 
102 ± 6 

(93 - 108)

Motion 
0.06 ± 0.01 
(0.05 - 0.07)

Age 
15 ± 4 
(9 - 24)

FIQ 
105 ± 6 

(93 - 114)

Motion 
0.06 ± 0.01 
(0.04 - 0.08)

C. ADOS module three

N=58 ASD

N=49/9 Male/Female
Age 

13 ± 2 
(9 - 19)

FIQ 
104 ± 6 

(93 - 113)

Motion 
0.06 ± 0.01 
(0.04 - 0.08)

Age 
12 ± 2 
(9 - 17)

FIQ 
100 ± 7 

(93 - 111)

Motion 
0.06 ± 0.01 
(0.04 - 0.07)

Age 
13 ± 2 
(9 - 19)

FIQ 
103 ± 6 

(93 - 113)

Motion 
0.06 ± 0.01 
(0.04 - 0.08)

D. ADOS module four
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SRS Model Age FIQ Motion
(+ve) + (-ve) R-value P-Value R-value P-Value R-value P-Value R-value P-Value
Total Score 0.32 5E-10 -0.01 0.86 -0.01 0.90 -0.04 0.50

Communication 0.30 1E-08 -0.03 0.61 0.01 0.90 -0.04 0.50
Motivation 0.23 2E-05 -0.04 0.49 0.01 0.88 -0.04 0.45

Mannerisms 0.37 1E-12 0.01 0.81 0.01 0.88 -0.04 0.48
Cognition 0.27 1E-05 -0.00 0.97 0.02 0.76 -0.08 0.19

Awareness 0.27 1E-05 0.01 0.84 -0.00 0.98 -0.05 0.46

A. SRS, CPM results - with age, FIQ and motion as covariates (ref. Figure 1. A.), N=352/260

Sup. Table 1. SRS/ADOS (ABIDE-I/II) and ADHD (ADHD-200) CPM results

B. ADOS, CPM results (ref. Figure 1. B.), N=58-79

SRS Model Age FIQ Motion
(+ve) + (-ve) R-value P-Value R-value P-Value R-value P-Value R-value P-Value
Total Score 0.25 9E-05 -0.01 0.91 -0.01 0.83 -0.07 0.29

Communication 0.25 8E-05 -0.02 0.77 -0.01 0.93 -0.08 0.21
Motivation 0.18 5E-03 -0.04 0.48 0.01 0.93 -0.08 0.22

Mannerisms 0.32 3E-07 -0.03 0.61 -0.02 0.76 -0.05 0.47
Cognition (+ve) 0.19 0.01 -0.04 0.56 0.03 0.72 -0.11 0.15

Awareness (+ve) 0.17 0.02 0.00 0.99 -0.03 0.65 -0.02 0.81

C. SRS, CPM results for male individuals, N=250/185

D. ADOS, results for male individuals, N=47-73

ADOS Model FIQ Age Motion
Generic Module 4 R-value P-Value R-value P-Value R-value P-Value R-value P-Value
Total (+ve) + (-ve) 0.40 2E-03 -0.16 0.24 0.01 0.97 -0.15 0.27

Social Interaction (+ve) 0.31 8E-03 0.16 0.17 -0.14 0.24 0.09 0.47
Module 3

Total (+ve) + (-ve) 0.43 1E-04 0.16 0.16 -0.07 0.55 0.17 0.15
Social Affect (+ve) + (-ve) 0.54 3E-05 -0.13 0.35 0.14 0.30 -0.05 0.74

Severity (+ve) + (-ve) 0.60 1E-06 -0.01 0.93 0.12 0.38 -0.13 0.35

ADOS Model FIQ Age Motion
Generic Module 4 R-value P-Value R-value P-Value R-value P-Value R-value P-Value
Total (+ve) + (-ve) 0.39 7E-03 -0.23 0.13 0.05 0.74 -0.13 0.39

Module 3
Total (+ve) + (-ve) 0.23 0.05 0.14 0.25 -0.11 0.36 0.10 0.41

Social Affect (+ve) + (-ve) 0.58 3E-05 -0.21 0.17 0.17 0.26 -0.11 0.48
Severity (+ve) + (-ve) 0.60 1E-05 -0.12 0.44 0.13 0.39 -0.19 0.20

ADHD Model Age FIQ Motion
(+ve) + (-ve) R-value P-Value R-value P-Value R-value P-Value R-value P-Value

Index 0.39 3E-05 -0.06 0.51 0.05 0.64 0.17 0.07
Hyperactivity 0.30 1E-03 -0.13 0.16 -0.01 0.94 0.13 0.17

Inattention 0.40 2E-05 -0.04 0.70 0.05 0.61 0.17 0.08

E. ADHD, results for all individuals (ref. Figure 4.A.), N=112
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i. ii.

Sup. Figure 3. (+ve/-ve) SRS split-half CV, permutation testing results, and whole  
           brain connectivity predicted SRS/ADOS scores in all individuals

A. SRS split-half CV results vs. permutation testing
i. SRS, train/test, and null (+ve) Null Train/Test (+ve) ii. SRS, train/test, and null (-ve) Null Train/Test (-ve)

B. CPM results applied to all individuals, N=632
TD ASD (+ve): TD ASD (-ve): 
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C. Predicted scores from whole brain, N=632
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Man. Total Com. Mot. Cog. Aware. Man. Total Com. Mot. Cog. Aware.

Sup. Figure 3. A. As in Figure 2.A.i. for +ve (i.) and -ve (ii.) feature sets. B. As in Figure 2.B.i. for +ve and -ve feature sets (P<1E-19). C. 
As a control, replacing CPM connectivity measures with whole brain connectivity (all edges) to predict behavior scores for all individuals 

(N=632) results in no difference between ASD and TD individuals (P>0.3). 
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Sup. Figure 4. (+ve/-ve) ADOS split-half CV, permutation testing results, and whole 
           brain connectivity predicted ADOS scores in all individuals

A. ADOS split-half CV results vs. permutation testing
i. ADOS, train/test, and null (+ve) Null Train/Test (+ve) ii. ADOS, train/test, and null (-ve) Null Train/Test (-ve)

B. CPM results applied to all individuals, N=632
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C. Predicted scores from whole brain, N=632

ADOS Behaviors ADOS Behaviors

Severity Social Affect Total Gen. Total Social Inter.

Sup. Figure 4. A. As in Sup. Figure 2.A.ii. +ve (i.) and -ve (ii.) feature sets. B. As in Figure 2.B.ii. for +ve and -ve feature sets (P<0.01). C. 
As a control, replacing CPM connectivity measures with whole brain connectivity (all edges) to predict behaviour scores for all individuals 

(N=632) results in no difference between ASD and TD individuals (P>0.3). 
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Sup. Figure 5. Anatomy of SRS and ADOS composite networks
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Sup. Figure 5. As in Figure.3., for SRS and ADOS, layered plots show the cumulative likelihood estimated from the probability of edges being 
shared between a priori  atlas networks and each SRS or ADOS composite network. Significant overlap (>0.9991) is indicated with asterisks (✴). 
Here, in place of sub-scale networks [Figure 3.], composite network thresholds are plotted. For SRS composite networks (A.), ‘one’ is the lowest 

threshold (edges appearing at least once in any sub-scale network, and ‘six’ is the highest threshold (edges appearing in all sub-scale networks). 
For ADOS (B.), ‘one’ is also the lowest threshold, and ‘three’ is the highest threshold (there being only three ADOS sub-scale networks). Inlays show 

the edges of example SRS/ADOS +ve/-ve composite networks (threshold = 3) as circle-plots as well as edges/nodes overlaid on glass brains.  

Sup. Figure 6. For SRS (A.) and ADOS (B.) layer plots of the cumulative number of edges in sub-scale (A./B.i.) and composite (A./B.ii.) networks 
versus edge length. For each sub-scale and composite network, the number of edges as well as the median and interquartile range of edge lengths 
(mm) is indicated on each layer plot. Sub-scale networks (A./B.i.), have a similar number of edges. On the other hand, there is a large discrepancy 

in the number of edges contained in the lowest versus highest threshold composite network (approximately an order of magnitude difference). 
Networks with edge lengths which are not normally distributed (lillietest, MATLAB) are denoted by a cross (☨). For all not normally distributed 
networks, edges are skewed towards longer lengths (skewness, MATLAB). No networks are prone to outliers (kurtosis, MATLAB). There is a 

difference between +ve and -ve feature set edge lengths (✴) for ADOS sub-scale (P<2E-10) and composite networks (ranksum, MATLAB, P<0.02). 
In summary, edge length distributions are largely consistent between sub-scale and composite networks. The feature which does distinguish 

between edges contained within low versus high threshold composite networks is the magnitude of the slope of edge strength versus behavior score 
(C.i./ii.) (i.e. edge strengths which change less with differences in behavior score are contained within low-threshold composite networks, and edges 

which change more are contained within high-threshold composite networks). However, predictive power of composite networks is largely 
independent of threshold (C.iii.). All composite SRS networks were used to predict SRS scores in an independent sample (N=57, ABIDE-I/II 

individuals with ADOS, but without SRS scores available). Predicted SRS versus known ADOS score for thresholds one through six are plotted.  
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Sup. Figure 7. Anatomy of ADHD sub-scale and composite networks
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Sup. Figure 7. As in Supplementary Figure 4.A.ii./B.ii., (A.) shows layer plots of the cumulative number of edges versus length for ADHD composite 
networks. The number of edges, median and interquartile ranges of edge lengths (mm) is indicated on each layer plot. As with SRS and ADOS 
composite networks, the number of edges depends on threshold. More edges belong to the lowest threshold and fewer to the higher threshold 

networks. Networks with edge lengths which are not normally distributed (lillietest, MATLAB) are denoted by a cross (☨). For all not normally 
distributed networks, edges are skewed towards longer lengths (skewness, MATLAB). None of the networks are prone to outliers (kurtosis, MATLAB), 
and there is a difference between +ve and -ve feature set edge lengths for all networks (ranksum, MATLAB, P<1E-03). As in Supplementary Figure 
3., (B.) shows layered plots of the cumulative likelihood estimated from the probability of edges being shared between a priori networks and each 
ADHD composite network. Inlays show the edges of example +ve/-ve composite networks (threshold = 3) as circle-plots as well as edges/nodes 

overlaid on glass brains. 
!
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Sup. Figure 8. Summary of SRS/ADOS/ADHD composite network anatomy and shared  
           across scale anatomy at the network and edge level

Sup. Figure 8. From layer plots in Supplementary Figures 5 (SRS/ADOS) and 7 (ADHD) we infer which are the shared contributing functional 
network feature sets between composite SRS, ADOS and ADHD networks. We relate this ‘network-level’ summary to the strict edge overlap across 
scales [Figure 5 C./D.]. We compare at composite network threshold three. In each column in the main table (left), the contributing atlas-networks 

and atlas-network pairs (feature sets) are listed for each composite network. Contributing feature sets are indicated in the aforementioned 
Supplementary Figures by an asterisk (✴). In row #1, contributing within-network feature sets are listed: CBL, SC, and DMN. In rows labeled #2, 

between-network feature sets are listed which include the CBL, SC, and DMN (row #1 networks). Rows labeled #3-7 list all other between-network 
feature sets. Note that entries are repeated (e.g. SC-CBL is listed twice: once in the ‘SC’, and once in the ‘CBL’ row). Contributing feature sets found 

in two composite networks are connected by colored lines. If contributing feature sets are found between two +ve composite networks the 
connecting line is red, if between two -ve composite networks the line is blue, and if between +ve and -ve composite networks the line is purple. 

Given that a higher score indicates a worse prognosis on all scales, shared features between +ve and -ve networks (purple lines) implies duplicitous 
roles of these feature sets (i.e. increased network strength is correlated with a worse score on one scale, but a better score on another scale). Recall 

that not all edges within a contributing feature set are found within any composite network (just more than would be expected by chance). Thus, it 
does not follow from this result that the same edges are implicated in these instances. All shared features between +ve and -ve composite networks 

are within ADOS composite networks, or between ADOS and ADHD scales. In our across scale predictions [Figure 5.A.], the ADOS composite 
network did not predict ADHD scores. Likewise, the ADHD composite network did not predict ADOS scores. Evidence of seemingly opposite 

contributions by the same underlying feature sets may be in-line with this result. Feature sets identified by the strict edge-overlap between 
composite networks [Figure 5 C./D.] are listed in the auxiliary table (right). There are no contributing shared edges between SRS and ADOS 

composite networks. Shared SRS/ADHD edges which also appear in the main table are indicated by a cross (☨). The only feature set identified at 
both the network and edge level (i.e. shares edges across SRS and ADHD scales and contributes significantly to both composite networks) is the 
DMN in SRS/ADOS (-ve/-ve), indicated by a square ended line. Although significant, the number of shared edges between SRS/ADHD (-ve/-ve) 

within the DMN is still very small: <2% of edges within either network. 
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