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Abstract	

We	 conducted	 a	meta-analysis	 of	 genome-wide	 association	 studies	 (GWAS)	with	~16	million	

genotyped/imputed	genetic	variants	in	62,892	type	2	diabetes	(T2D)	cases	and	596,424	controls	

of	European	ancestry.	We	 identified	139	 common	and	4	 rare	 (minor	 allele	 frequency	<	0.01)	

variants	associated	with	T2D,	42	of	which	(39	common	and	3	rare	variants)	were	independent	of	

the	known	variants.	Integration	of	the	gene	expression	data	from	blood	(n	=	14,115	and	2,765)	

and	other	T2D-relevant	 tissues	 (𝑛 = up	to	385)	with	 the	GWAS	 results	 identified	33	putative	

functional	genes	for	T2D,	three	of	which	were	targeted	by	approved	drugs.	A	further	integration	

of	DNA	methylation	(𝑛 = 1,980)	and	epigenomic	annotations	data	highlighted	three	putative	T2D	

genes	 (CAMK1D,	TP53INP1	and	ATP5G1)	 with	 plausible	 regulatory	 mechanisms	 whereby	 a	

genetic	 variant	 exerts	an	 effect	 on	T2D	 through	epigenetic	 regulation	of	gene	 expression.	We	

further	found	evidence	that	the	T2D-associated	loci	have	been	under	purifying	selection.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 20, 2018. ; https://doi.org/10.1101/284570doi: bioRxiv preprint 

https://doi.org/10.1101/284570
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

Introduction	

Type	2	diabetes	(T2D)	is	a	common	disease	with	a	worldwide	prevalence	that	increased	rapidly	

from	4.7%	in	1980	to	8.5%	in	20141.	It	is	primarily	caused	by	insulin	resistance	(failure	of	the	

body’s	normal	response	to	insulin)	and/or	insufficient	insulin	production	by	beta	cells2.	Genetic	

studies	using	 linkage	analysis	and	candidate	gene	approaches	have	 led	 to	 the	discovery	of	an	

initial	 set	 of	 T2D-associated	 loci	 (e.g.,	 PPARG,	KCNJ11	 and	TCF7L2)3-5.	 Over	 the	 past	 decade,	

genome-wide	 association	 studies	 (GWAS)	 with	 increasing	 sample	 sizes	 have	 identified	 144	

genetic	variants	(not	completely	independent)	at	129	loci	associated	with	T2D6-8.	

	

Despite	 the	 large	number	of	 variants	discovered	using	GWAS,	 the	 associated	variants	 in	 total	

explain	only	a	small	proportion	(~10%)	of	the	heritability	of	T2D9,10.	This	well-known	“missing	

heritability”	problem	is	likely	due	to	the	presence	of	common	variants	(minor	allele	frequencies	

(MAF)	>	0.01)	that	have	small	effects	that	have	not	yet	been	detected	and/or	rare	variants	that	

are	not	well	tagged	by	common	SNPs9.	The	contribution	of	rare	variants	to	genetic	variation	in	

the	occurrence	of	 common	diseases	 is	 under	debate11,	 and	a	 recent	 study	 suggested	 that	 the	

contribution	 of	 rare	 variants	 to	 the	 heritability	 of	 T2D	 is	 likely	 to	 be	 limited12.	 If	most	 T2D-

associated	genetic	variants	are	common	in	the	population,	continual	discoveries	of	variants	with	

small	 effects	 are	 expected	 from	 large-scale	 GWAS	 using	 the	 current	 experimental	 design.	

Furthermore,	 limited	progress	has	been	made	in	understanding	the	regulatory	mechanisms	of	

the	 genetic	 loci	 identified	 by	 GWAS.	 Thus,	 the	 etiology	 and	 the	 genetic	 basis	 underlying	 the	

development	 of	 the	 disease	 remain	 largely	 unknown.	 Recent	 methodological	 advances	 have	

provided	us	with	an	opportunity	to	identify	functional	genes	and	their	regulatory	elements	by	

combining	GWAS	summary	statistics	with	data	from	molecular	quantitative	trait	loci	studies	with	

large	sample	size13-15.	

	

In	this	study,	we	performed	a	meta-analysis	of	GWAS	with	the	largest	sample	size	for	T2D	to	date	

(62,892	 cases	 and	 596,424	 controls),	 by	 combining	 three	 large	 GWAS	 data	 sets:	 DIAbetes	

Genetics	Replication	And	Meta-analysis	(DIAGRAM)7,	Genetic	Epidemiology	Research	on	Aging	

(GERA)16	and	the	full	cohort	release	of	the	UK	Biobank	(UKB)17.	We	then	integrated	the	GWAS	

meta-analysis	 results	with	 gene	 expression	 and	DNA	methylation	data	 to	 identify	 genes	 that	

might	 be	 functionally	 relevant	 to	 T2D	 and	 to	 infer	 plausible	 mechanisms	 whereby	 genetic	

variants	affect	T2D	risk	through	gene	regulation	by	DNA	methylation15.	We	further	estimated	the	

genetic	architecture	of	T2D	using	whole-genome	estimation	approaches.	

	

Results	

Meta-analysis	identifies	39	previously	unknown	loci	
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We	meta-analyzed	5,053,015	genotyped	or	imputed	autosomal	SNPs	(MAF	>	0.01)	in	62,892	T2D	

cases	and	596,424	controls	from	the	DIAGRAM	(12,171	cases	vs.	56,862	controls	in	stage	1	and	

22,669	cases	vs.	58,119	controls	in	stage	2),	GERA	(6,905	cases	and	46,983	controls)	and	UKB	

(21,147	cases	and	434,460	controls)	data	sets	after	quality	controls	(Supplementary	Fig.	1	and	

Methods).	Summary	statistics	in	DIAGRAM	were	imputed	to	the	1000	Genomes	Project18	(1KGP)	

phase	1	using	a	summary-data-based	 imputation	approach,	 ImpG19	 (Supplementary	Note	1),	

and	we	used	an	inverse-variance	method20	to	meta-analyze	the	imputed	DIAGRAM	data	with	the	

summary	data	from	GWAS	analyses	of	GERA	(1KGP	imputed	data)	and	UKB	(Haplotype	Reference	

Consortium21	 or	 HRC	 imputed	 data)	 (Methods	 and	 Fig.	 1a).	 All	 the	 individuals	 except	 for	 a	

Pakistani	 cohort	 in	 DIAGRAM	 stage	 2	 (see	 Methods)	 were	 of	 European	 ancestry.	 We	

demonstrated	by	linkage	disequilibrium	(LD)	score	regression	analysis22,23	that	the	inflation	in	

test	 statistics	 due	 to	 population	 structure	 was	 negligible	 in	 each	 data	 set,	 and	 there	 was	 no	

evidence	 of	 sample	 overlap	 among	 the	 three	 data	 sets	 (Supplementary	 Note	 2	 and	

Supplementary	Table	1).	The	mean	χ2	statistic	was	1.685.	LD	score	regression	analysis	of	the	

meta-analysis	summary	statistics	showed	an	estimate	of	SNP-based	heritability	 (ℎ01234 )	on	 the	

liability	scale	of	0.196	(s.e.	=	0.011)	and	an	estimate	of	intercept	of	1.049	(s.e.	=	0.014),	consistent	

with	a	model	in	which	the	genomic	inflation	in	test	statistics	is	driven	by	polygenic	effects22,24.	

After	clumping	the	SNPs	using	LD	information	from	the	UKB	genotypes	(clumping	r2	threshold	=	

0.01	 and	 window	 size	 =	 1	 Mb),	 there	 were	 139	 near-independent	 variants	 at	 P	 <	 5×10-8	

(Supplementary	Table	2).	All	of	the	loci	previously	reported	by	DIAGRAM	were	still	genome-

wide	significant	in	our	meta-analysis	results.	The	most	significant	association	was	at	rs7903146	

(P	=	1.3×10-347)	at	the	known	TCF7L2	locus5,25.	Among	the	139	variants,	39	are	not	in	LD	with	the	

known	variants	(Fig.	1	and	Table	1).	The	result	remained	unchanged	when	the	GERA	cohort	was	

imputed	to	HRC	(Supplementary	Fig.	2).	We	regarded	these	39	variants	as	novel	discoveries;	

more	than	half	of	them	passed	a	more	stringent	significance	threshold	at	P	<	1×10-8	(Table	1),	a	

conservative	 control	 of	 genome-wide	 false	 positive	 rate	 (GWFPR)	 suggested	 by	 a	 recent	

simulation	study26.	The	functional	relevance	of	some	novel	gene	loci	to	the	disease	is	supported	

by	existing	biological	or	molecular	evidence	related	to	insulin	and	glucose	(Supplementary	Note	

3).	Forest	plots	showed	that	the	effect	directions	of	the	39	novel	loci	were	consistent	across	the	

three	GWAS	data	sets	(Supplementary	Fig.	3).	Regional	association	plots	show	that	some	loci	

have	 complicated	LD	 structures,	 and	 it	 is	 largely	unclear	which	 genes	are	 responsible	 for	 the	

observed	SNP-T2D	associations	(Supplementary	Fig.	4).	We	also	performed	gene-based	analysis	

by	 GCTA-fastBAT27	 and	 conditional	 analysis	 by	 GCTA-COJO28	 and	 discovered	 four	 loci	 with	

multiple	independent	signals	associated	with	T2D	(Supplementary	Note	4-5,	Supplementary	

Fig.	5	and	Supplementary	Tables	3-5).	
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Of	all	the	139	T2D-associated	loci	identified	in	our	meta-analysis,	16	and	25	were	significant	in	

insulin	secretion	and	sensitivity	GWAS,	respectively,	from	the	MAGIC	consortium29,30	(URLs)	after	

correcting	for	multiple	tests	(i.e.,	0.05	/	139),	with	only	one	locus	showing	significant	associations	

with	 both	 insulin	 secretion	 and	 sensitivity.	 The	 limited	 number	 of	 overlapping	 associations	

observed	might	be	due	 to	 the	 relatively	 small	 sample	 sizes	 in	 the	 insulin	 studies.	We	 further	

estimated	the	genetic	correlation	(rg)	between	insulin	secretion	(or	sensitivity)	and	T2D	by	the	

bivariate	LD	score	regression	approach23	using	summary-level	data.	The	estimate	of	rg	between	

T2D	and	insulin	secretion	was	-0.15	(s.e.	=	0.10),	and	that	between	T2D	and	insulin	sensitivity	

was	-0.57	(s.e.	=	0.10).	

	

Rare	variants	associated	with	T2D	

Very	 few	 rare	 variants	 associated	with	 T2D	 have	been	 identified	 in	previous	 studies31-35.	We	

included	10,849,711	rare	variants	(0.0001	<	MAF	<	0.01)	in	the	association	analysis	in	UKB	and	

detected	 11	 rare	 variants	 at	 P	 <	 5×10-8	 and	 4	 of	 them	 were	 at	 P	 <	 5×10-9	 (Fig.	 1b	 and	

Supplementary	Table	6).	We	focused	only	on	the	4	signals	at	P	<	5×10-9	because	a	recent	study	

suggested	that	a	P-value	 threshold	of	5×10-9	 is	 required	 to	control	a	GWFPR	at	0.05	in	GWAS	

including	both	common	and	rare	variants	imputed	from	a	fully	sequenced	reference26.	Three	of	

the	 rare	 variants	 were	 located	 at	 loci	 with	 significant	 common	 variant	 associations.	 The	

rs78408340	(OR	=	1.33,	P	=	4.4×10-14)	is	a	missense	variant	that	encodes	a	p.Ser539Trp	alteration	

in	PAM	and	was	reported	to	be	associated	with	decreased	insulin	release	from	pancreatic	beta	

cells32.	Variant	rs146886108	(odds	ratio	(OR)	=	0.72,	P	=	4.4×10-9)	is	a	novel	locus,	which	showed	

a	protective	effect	against	T2D,	is	a	missense	variant	that	encodes	p.Arg187Gln	in	ANKH36.	Variant	

rs117229942	(OR	=	0.70,	P	=	4.0×10-11)	is	an	intron	variant	in	TCF7L25.	Variant	rs527320094	(OR	

=	2.74,	P	=	4.6×10-9),	 located	 in	LOC105378797,	 is	also	novel	rare-variant	association,	with	no	

other	significant	SNP	(either	common	or	rare)	within	a	±1	Mb	window.	We	did	not	observe	any	

substantial	 difference	 in	 association	 signals	 for	 these	 four	 variants	 between	 the	 results	 from	

BOLT-LMM37	and	logistic	regression	considering	the	difference	in	sample	size	(Supplementary	

Table	6).	

	

Sex	or	age	heterogeneity	analysis	

To	examine	sex	or	age	heterogeneity	in	the	SNP	effects,	we	performed	a	GWAS	analysis	within	

each	sex	(male	or	female)	and	by	age	(two	age	categories	separated	by	the	median	year	of	birth)	

in	UKB	and	tested	the	difference	in	the	estimated	SNP	effects	between	the	two	sex	(or	age)	groups	

using	a	heterogeneity	test	(Supplementary	Note	6).	There	was	no	evidence	for	sex	heterogeneity	

(Supplementary	 Fig.	 6),	 consistent	 with	 the	 observation	 that	 the	 male-female	 genetic	

correlation	estimated	by	bivariate	LDSC23	was	not	significantly	different	from	1	(𝑟̂7 = 	0.94,	𝑠. 𝑒. =
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0.042,	and	𝑃>?@@ABACDA = 0.17).	There	was	only	one	genome-wide	significant	signal	(rs72805579	

at	the	TMEM17	locus	with	Pheterogeneity	=	2.1×10-9)	with	age	heterogeneity	(Supplementary	Fig.	6).	

The	estimates	of	SNP	effects	were	of	opposite	directions	in	the	two	age	groups,	but	the	effect	was	

not	genome-wide	significant	in	either	age	group	(Supplementary	Table	7).	In	addition,	the		

	

Gene	expression	and	DNA	methylation	associated	with	T2D	

Most	previous	studies	have	reported	the	gene	in	closest	physical	proximity	to	the	most	significant	

SNP	at	a	GWAS	locus.	However,	gene	regulation	can	be	influenced	by	genetic	variants	that	are	

physically	 distal	 to	 the	 genes38.	 To	 prioritize	 genes	 identified	 through	 the	 genome-wide	

significant	loci	that	are	functionally	relevant	to	the	disease,	we	performed	an	SMR	analysis39	to	

test	for	association	between	the	expression	level	of	a	gene	and	T2D	using	summary	data	of	GWAS	

from	 our	meta-analysis	 and	 expression	 quantitative	 trait	 loci	 (eQTL)	 from	 the	 eQTLGen	 (n	 =	

14,115)	and	CAGE	consortia	(n	=	2,765)40	(Methods).	In	both	eQTL	data	sets,	gene	expression	

levels	were	measured	in	blood,	and	the	cis-eQTL	within	2	Mb	of	the	gene	expression	probes	with	

PeQTL	<	5×10-8	were	selected	as	the	instrumental	variables	in	the	SMR	test.	We	identified	40	genes	

in	eQTLGen	and	24	genes	in	CAGE	at	an	experimental-wise	significance	level	(PSMR	<	2.7×10-6,	i.e.,	

0.05/mSMR,	 with	𝑚1GH = 18,602 	being	 the	 total	 number	 of	 SMR	 tests	 in	 the	 two	 data	 sets)	

(Supplementary	Tables	8-9).	To	filter	out	the	SMR	associations	due	to	linkage	(i.e.,	two	causal	

variants	in	LD,	one	affecting	gene	expression	and	the	other	affecting	T2D	risk),	all	the	significant	

SMR	associations	were	 followed	by	 a	HEIDI39	 (HEterogeneity	 In	Dependent	 Instruments)	 test	

implemented	in	the	SMR	software	tool	(Methods).	Therefore,	genes	not	rejected	by	HEIDI	were	

those	associated	with	T2D	through	pleiotropy	at	a	shared	genetic	variant.	Of	the	genes	that	passed	

the	SMR	test,	27	genes	in	eQTLGen	and	15	genes	in	CAGE	were	not	rejected	by	the	HEIDI	test	

(PHEIDI	>	7.8×10-4,	i.e.,	0.05/mSMR,	with	𝑚1GH = 64	being	the	total	number	of	SMR	tests	in	the	two	

data	sets)	(Table	2	and	Supplementary	Tables	8-9),	with	seven	genes	in	common	and	33	unique	

genes	 in	 total.	 SNPs	 associated	 with	 the	 expression	 levels	 of	 genes	 including	 EHHADH	

(rs7431357),	SSSCA1	(rs1194076)	and	P2RX4	(rs2071271)	in	eQTLGen	were	not	significant	in	

the	T2D	meta-analysis,	likely	because	of	the	lack	of	power;	these	SNPs	are	expected	to	be	detected	

in	future	studies	with	larger	sample	sizes.		

	

To	identify	the	regulatory	elements	associated	with	T2D	risk,	we	performed	SMR	analysis	using	

methylation	quantitative	trait	locus	(mQTL)	data	from	McRae	et	al.41	(n	=	1,980)	to	identify	DNA	

methylation	(DNAm)	sites	associated	with	T2D	through	pleiotropy	at	a	shared	genetic	variant.	In	

total,	235	DNAm	sites	were	associated	with	T2D,	with	PSMR	<	6.3×10-7	(𝑚1GH = 78,961)	and	PHEIDI	>	

1.6×10-4	(𝑚JKLML = 323)	(Supplementary	Table	10);	these	sites	were	significantly	enriched	in	

promoters	(fold	change	=	1.60	and	Penrichment	=	1.6×10-7)	and	weak	enhancers	(fold	change	=	1.74	
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and	Penrichment	=	1.4×10-2)	(Supplementary	Note	7	and	Supplementary	Fig.	7).	Identification	of	

DNAm	sites	and	their	target	genes	relies	on	consistent	association	signals	across	omics	levels15.	

To	demonstrate	 this,	we	conducted	the	SMR	analysis	to	 test	 for	associations	between	the	235	

T2D-associated	 DNAm	 sites	 and	 the	 33	 T2D-associated	 genes	 and	 identified	 22	 DNAm	 sites	

associated	with	16	genes	in	eQTLGen	(Supplementary	Table	11)	and	21	DNAm	sites	associated	

with	15	genes	 in	CAGE	(Supplementary	Table	12)	at	PSMR	<	2.5×10-7	(𝑚1GH = 202,609)	and	

PHEIDI	 >	 2.1×10-4	 (𝑚JKLML = 235 ).	 These	 results	 can	 be	 used	 to	 infer	 plausible	 regulatory	

mechanisms	for	how	genetic	variants	affect	T2D	risk	by	regulating	the	expression	levels	of	genes	

through	DNAm	(see	below).	

	

SMR	associations	in	multiple	T2D-relevant	tissues	

To	replicate	the	SMR	associations	in	a	wider	range	of	tissues	relevant	to	T2D,	we	performed	SMR	

analyses	based	on	 cis-eQTL	data	 from	 four	 tissues	 in	GTEx	 (i.e.,	 adipose	 subcutaneous	 tissue,	

adipose	visceral	omentum,	liver	and	pancreas).	We	denoted	these	four	tissues	as	GTEx-AALP.	Of	

the	27	putative	T2D	genes	identified	by	SMR	and	HEIDI	using	the	eQTLGen	data,	10	had	a	cis-

eQTL	at	PeQTL	<	5×10-8	in	at	least	one	of	the	four	GTEx-AALP	tissues	(Supplementary	Table	13).	

Note	that	the	decrease	in	eQTL	detection	power	is	expected	given	the	much	smaller	sample	size	

of	GTEx-AALP	(n	=	153	to	385)	compared	to	that	of	eQTLGen	(n	=	14,115).	As	a	benchmark,	17	of	

the	27	genes	had	a	cis-eQTL	at	PeQTL	<	5×10-8	in	GTEx	blood	(n	=	369).	We	first	performed	the	SMR	

analysis	 in	 GTEx-blood	and	 found	 that	12	 of	 the	17	 genes	were	 replicated	 at	PSMR	 <	 2.9×10-3	

(i.e., 0.05	/	17)	(Supplementary	Table	13).	We	then	conducted	the	SMR	analysis	in	GTEx-AALP.	

The	result	showed	that	8	of	the	10	genes	showed	significant	SMR	associations	at	PSMR	<	1.3×10-3	

(i.e., 0.05	/	(10 × 4))	in	at	least	one	of	the	four	GTEx-AALP	tissues,	a	replication	rate	comparable	

to	 that	 found	 in	GTEx-blood.	Among	the	8	genes,	CWF19L1,	 for	which	 the	cis-eQTL	effects	are	

highly	consistent	across	different	tissues,	was	significant	in	all	the	data	sets	(Supplementary	Fig.	

8).		

	

The	replication	analysis	described	above	depends	heavily	on	the	sample	sizes	of	eQTL	studies.	A	

less	sample-size-dependent	approach	is	to	quantify	how	well	the	effects	of	the	top	associated	cis-

eQTLs	for	all	the	27	putative	T2D	genes	estimated	in	blood	(i.e.,	the	eQTLGen	data)	correlate	with	

those	estimated	in	the	GTEx	tissues,	accounting	for	sampling	variation	in	estimated	SNP	effects42.	

This	approach	avoids	the	need	to	use	a	stringent	P-value	threshold	to	select	cis-eQTLs	in	the	GTEx	

tissues	with	small	sample	sizes.	We	found	that	the	mean	correlation	of	cis-eQTL	effects	between	

eQTLGen	 blood	 and	 GTEx-AALP	 was	 0.47	 (s.e.	 =	 0.16),	 comparable	 to	 and	 not	 significantly	

different	from	the	value	of	0.64	(s.e.	=	0.16)	between	eQTLGen	and	GTEx	blood.	We	also	found	

that	the	estimated	SMR	effects	of	18	genes	that	passed	the	SMR	test	and	were	not	rejected	by	the	
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HEIDI	 test	 in	either	eQTLGen	or	GTEx	were	highly	correlated	(Pearson’s	correlation	r	=	0.80)	

(Supplementary	 Fig.	 9).	 Note	 that	 this	 correlation	 is	 not	 expected	 to	 be	 unity	 because	 of	

differences	in	the	technology	used	to	measure	gene	expression	(Illumina	gene	expression	arrays	

for	eQTLGen	vs.	RNA-seq	for	GTEx).	

	

These	results	support	the	validity	of	using	eQTL	data	from	blood	for	the	SMR	and	HEIDI	analysis;	

using	 this	 method,	 we	 can	 make	 use	 of	 eQTL	 data	 from	 very	 large	 samples	 to	 increase	 the	

statistical	power,	consistent	with	the	conclusions	of	a	recent	study42.	In	addition,	blood	is	also	

considered	to	be	a	T2D-relevant	tissue,	and	tissue-specific	effects	that	are	not	detected	in	blood	

will	 affect	 the	 power	 of	 the	 SMR	 and	 HEIDI	 analysis	 rather	 than	 generating	 false	 positive	

associations.		

	

Putative	regulatory	mechanisms	for	three	T2D	genes	

Here,	we	use	 the	 genes	CAMK1D,	TP53INP1	and	ATP5G1	 as	 examples	 to	hypothesize	possible	

mechanisms	of	how	genetic	variants	affect	T2D	risk	by	controlling	DNAm	for	gene	regulation15.	

Functional	gene	annotation	information	was	acquired	from	the	Roadmap	Epigenomics	Mapping	

Consortium43	(REMC).		

	

The	significant	SMR	association	of	CAMK1D	with	T2D	was	identified	in	both	eQTL	data	sets	(Table	

2	 and	Supplementary	 Tables	 10-11).	 The	 top	 eQTL,	 rs11257655,	 located	 in	 the	 intergenic	

region	(active	enhancer)	between	CDC123	and	CAMK1D,	was	also	a	genome-wide	significant	SNP	

in	our	meta-analysis	(P	=	2.0×10-17).	It	was	previously	shown	that	rs11257655	is	located	in	the	

binding	motif	for	FOXA1/FOXA2	and	that	the	T	allele	of	this	SNP	is	a	risk	allele	that	increases	the	

expression	 level	 of	 CAMK1D	 through	 allelic-specific	 binding	 of	 FOXA1	 and	 FOXA244.	 Another	

functional	 study	 demonstrated	 that	 increasing	 the	 expression	 of	 FOXA1	 and	 its	 subsequent	

binding	to	enhancers	was	associated	with	DNA	demethylation45.	Our	analysis	was	consistent	with	

previous	studies	in	showing	that	the	T	allele	of	rs11257655	increases	both	CAMK1D	transcription	

(𝛽 = 0.553 	and	 s.e.	 =	 0.014,	 where	𝛽 	is	 the	 allele	 substitution	 effect	on	 gene	 expression	 in	

standard	deviation	units)	and	T2D	risk	(OR	=	1.076	and	s.e.	=	0.009)	(Supplementary	Tables	8-

9,	11).	Moreover,	rs11257655	was	also	the	top	mQTL	(Fig.	2);	the	T	allele	of	this	SNP	is	associated	

with	 decreased	 methylation	 at	 the	 site	 cg03575602	 in	 the	 promoter	 region	 of	 CAMK1D,	

suggesting	that	the	T	allele	of	rs11257655	up-regulates	the	transcription	of	CAMK1D	by	reducing	

the	methylation	 level	 at	 cg03575602.	 Leveraging	all	 the	 information	 above,	we	proposed	 the	

following	model	of	the	genetic	mechanism	at	CAMK1D	for	T2D	risk	(Fig.	3).	In	the	presence	of	the	

T	allele	at	rs11257655,	FOXA1/FOXA2	and	other	transcription	factors	bind	to	the	enhancer	region	

and	form	a	protein	complex	that	leads	to	a	decrease	in	the	DNAm	level	of	the	promoter	region	of	
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CAMK1D	 and	 recruits	 the	 RNA	 polymerase	 to	 the	 promoter,	 resulting	 in	 an	 increase	 in	 the	

expression	of	CAMK1D	(Fig.	3).	A	recent	study	showed	that	the	T	risk	allele	is	correlated	with	

reduced	DNAm	and	increased	chromatin	accessibility	across	multiple	islet	samples46	and	that	it	

is	associated	with	disrupted	beta	cell	function47.	Our	inference	highlights	the	role	of	promoter-

enhancer	 interaction	 in	 gene	 regulation;	 this	 interaction	 was	 analytically	 indicated	 by	 the	

integrative	analysis	using	the	SMR	and	HEIDI	approaches.	

	

The	second	example	is	TP53INP1,	the	expression	level	of	which	is	positively	associated	with	T2D	

as	 indicated	 by	 the	 SMR	 analysis	 (Table	 2).	 This	 is	 supported	 by	 previous	 findings	 that	 the	

protein	encoded	by	TP53INP1	regulates	the	TCF7L2-p53-p53INP1	pathway	in	such	a	way	as	to	

induce	 apoptosis	 and	 that	 the	 survival	 of	 pancreatic	beta	 cells	 is	 associated	with	 the	 level	 of	

expression	 of	 TP53INP148.	 TP53INP1	 was	 mapped	 as	 the	 target	 gene	 for	 three	 DNAm	 sites	

(cg13393036,	cg09323728	and	cg23172400)	by	SMR	(Fig.	4).	All	three	DNAm	sites	were	located	

in	the	promoter	region	of	TP53INP1	and	had	positive	effects	on	the	expression	level	of	TP53INP1	

and	on	T2D	risk	(Supplementary	Tables	7	and	9-10).	Based	on	these	results,	we	proposed	the	

following	 hypothesis	 for	 the	 regulatory	 mechanism	 (Fig.	 5).	 When	 the	 DNAm	 level	 of	 the	

promoter	region	is	low,	expression	of	TP53INP1	is	suppressed	due	to	the	binding	of	repressor(s)	

to	the	promoter.	When	the	DNAm	level	of	the	promoter	region	is	high,	the	binding	of	repressor(s)	

is	 disrupted,	 allowing	 the	 binding	 of	 transcription	 factors	 that	 recruit	 RNA	 polymerase	 and	

resulting	in	up-regulation	of	gene	expression.	Increased	expression	of	this	gene	has	been	shown	

to	increase	T2D	risk	by	decreasing	the	survival	rate	of	pancreatic	beta	cells	through	a	TCF7L2-

p53-p53INP1-dependent	pathway49,50.	

	

The	 third	 example	 involves	 two	proximal	 genes,	ATP5G1	 and	UBE2Z,	 the	 expression	 levels	 of	

which	 were	 significantly	 associated	 with	 T2D	 according	 to	 the	 SMR	 analysis	 (Table	 2).	 A	

methylation	probe	(cg16584676)	located	in	the	promoter	region	of	UBE2Z	was	associated	with	

the	 expression	 levels	 of	 both	ATP5G1	 and	UBE2Z	 (Supplementary	Fig.	10a),	 suggesting	 that	

these	two	genes	are	co-regulated	by	a	genetic	variant	through	DNAm.	The	effect	of	cg16584676	

on	 gene	 expression	 was	 negative	 (Supplementary	 Tables	 10-11),	 implying	 the	 following	

plausible	mechanism.	A	genetic	variant	near	ATP5G1	exerts	an	effect	on	T2D	by	increasing	the	

DNAm	levels	of	the	promoters	for	ATP5G1	and	UBE2Z;	this	decreases	the	binding	efficiency	of	the	

transcription	 factors	 that	 recruit	 RNA	 polymerase,	 resulting	 in	 down-regulation	 of	 gene	

expression	and	ultimately	leading	to	an	increase	in	T2D	risk	(Supplementary	Fig.	10b).	ATP5G1	

has	been	shown	to	encode	a	subunit	of	mitochondrial	ATP	synthase,	and	UBE2Z	is	a	ubiquitin-

conjugating	 enzyme.	 Insulin	 receptors	 could	 be	 degraded	 by	 SOCS	 proteins	during	 ubiquitin-

proteasomal	degradation,	and	ATP5G1	and	UBE2Z	are	likely	to	be	involved	in	this	pathway51.	The	
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function	of	insulin	receptors	is	to	regulate	glucose	homeostasis	through	the	action	of	insulin	and	

other	 tyrosine	 kinases,	 and	 dysfunction	 of	 these	 receptors	 leads	 to	 insulin	 resistance	 and	

increases	T2D	risk.	Interestingly,	in	addition	to	cg16584676,	there	were	four	other	DNAm	sites	

in	the	vicinity	that	were	significantly	associated	with	T2D	(passed	SMR	and	not	rejected	by	HEIDI).	

These	four	methylation	sites	are	located	in	the	promoter	regions	of	ATP5G1	(cg11715999),	GIP	

(cg20551517)	and	SNF8	(cg26022315	and	cg07967210).	GIP	has	been	reported	to	be	associated	

with	T2D52.	SNF8	is	a	component	of	a	complex	that	regulates	ubiquitin-proteasomal	degradation.	

These	observations	imply	that	these	four	genes	(ATP5G1,	UBE2Z,	GIP	and	SNF)	are	probably	co-

expressed	through	promoter-promoter	interactions.	

	

The	 three	 examples	 above	 provide	 hypotheses	 for	 how	 genetic	 variants	may	 affect	 T2D	 risk	

through	regulatory	pathways	and	demonstrate	the	power	of	integrative	analysis	of	omics	data	

for	this	purpose.	These	examples	describe	putative	candidates	that	could	be	prioritized	in	future	

functional	studies.	

	

Potential	drug	targets	

In	 the	SMR	analysis	described	above,	we	 identified	33	putative	T2D	genes.	We	matched	these	

genes	in	the	DrugBank	database	(URLs)	and	found	that	three	genes	(ARG1,	LTA	and	P2RX4)	are	

the	targets	of	several	approved	drugs	(drugs	that	have	been	approved	in	at	least	one	jurisdiction).	

ARG1	(UniProt	ID:	P05089),	whose	expression	level	was	negatively	associated	with	T2D	risk,	is	

targeted	 by	 three	 approved	 drugs:	 ornithine	 (DrugBank	 ID:	 DB00129),	 urea	 (DrugBank	 ID:	

DB03904)	 and	manganese	 (DrugBank	 ID:	 DB06757),	 but	 the	 pharmacological	 mechanism	 of	

action	of	these	drugs	remains	unknown.	Arginase	(ARG1	is	an	isoform	in	liver)	is	a	manganese-

containing	enzyme	that	catalyzes	the	hydrolysis	of	arginine	to	ornithine	and	urea.	Arginase	in	

vascular	tissue	might	be	a	potential	therapeutic	target	for	the	treatment	of	vascular	dysfunction	

in	diabetes53.	Metformin,	an	oral	antidiabetic	drug	that	is	used	in	the	treatment	of	diabetes,	was	

reported	to	increase	ARG1	expression	in	a	murine	macrophage	cell	line54,	consistent	with	our	SMR	

result	that	increased	expression	of	ARG1	is	associated	with	decreased	T2D	risk	(Supplementary	

Table	8).	There	is	also	evidence	for	an	interaction	between	ARG1	and	metformin	(Comparative	

Toxicogenomics	 Database,	 URLs).	 The	 likely	 mechanism	 is	 that	 metformin	activates	 AMP-

activated	protein	kinase	(AMPK),	resulting	in	increased	expression	of	ARG155,	again	consistent	

with	our	SMR	result.	LTA	(UniProt	ID:	P08637),	whose	expression	level	was	negatively	associated	

with	 T2D	 risk,	 is	 targeted	 by	 the	 approved	 drug	 etanercept	 (DrugBank	 ID:	 DB00005)	 for	

rheumatoid	arthritis	(RA)	treatment.	Previous	studies	have	shown	that	genetic	variants	in	the	

LTA-TNF	 region	 are	 significantly	 associated	 with	 the	 response	 of	 early	 RA	 to	 etanercept	

treatment56,57.	 P2RX4	 (UniProt	 ID:	 Q99571),	 the	 expression	 level	 of	 which	 was	 positively	
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associated	 with	 T2D	 risk,	 is	 targeted	 by	 eslicarbazepine	 acetate	 (DrugBank	 ID:	 DB09119;	

antagonist	 for	 P2RX4).	 Eslicarbazepine	 acetate	 is	 an	 anticonvulsant	 that	 inhibits	 repeated	

neuronal	 firing	 and	 stabilizes	 the	 inactivated	 state	 of	 voltage-gated	 sodium	 channels;	 its	

pharmacological	 action	makes	 it	 useful	 as	 an	 adjunctive	 therapy	 for	 partial-onset	 seizures58.	

Antagonists	of	P2RX4	inhibit	high	glucose,	prevent	endothelial	cell	dysfunction59,	and	are	useful	

in	the	treatment	of	diabetic	nephropathy60.	

	

To	 explore	whether	 any	 of	 these	 three	 genes	 have	 potential	 adverse	 effects,	we	 checked	 the	

associations	of	the	lead	variants	at	the	three	loci	with	other	traits	from	previous	studies,	including	

two	insulin-related	GWAS	(insulin	sensitivity30	and	insulin	secretion29)	and	four	lipid	traits	(HDL	

cholesterol,	LDL	cholesterol,	triglycerides	and	total	cholesterol)61	(Supplementary	Table	14).	

We	did	not	observe	any	significant	association	with	 insulin	traits	after	correcting	 for	multiple	

testing	(i.e., 0.05	/	(3 × 𝑡),	where	t	 is	the	number	of	traits).	However,	the	risk	allele	of	the	lead	

T2D-associated	variant	 at	 the	LTA	 locus	was	 associated	with	 increased	LDL	 cholesterol,	 total	

cholesterol	and	triglycerides.	The	risk	allele	of	the	lead	T2D-associated	variant	at	the	ARG1	locus	

was	associated	with	decreased	HDL	cholesterol	and	total	cholesterol.		

	

In	 addition	 to	 the	 three	 genes	 that	 are	 currently	 targeted	 by	 approved	 drugs,	we	 found	 two	

additional	 genes	 that	 are	 targeted	 by	 an	 approved	 veterinary	 drug	 and	 a	nutraceutical	 drug,	

respectively	(URLs	and	Supplementary	Note	8).	

	

Enrichment	of	genetic	variation	in	functional	regions	and	tissue/cell	types	

Recent	 studies	 have	 indicated	 that	 different	 functional	 regions	 of	 the	 genome	 contribute	

disproportionately	to	total	heritability62.	We	applied	a	stratified	LD	score	regression	method62	to	

dissect	the	contributions	of	the	functional	elements	to	the	SNP-based	heritability	(ℎ01234 )	for	T2D.	

There	were	significant	enrichments	in	some	functional	categories	(Supplementary	Fig.	11	and	

Supplementary	 Table	 15).	 First,	 the	 conserved	 regions	 in	 mammals63	 showed	 the	 largest	

enrichment,	with	2.6%	of	SNPs	explaining	24.8%	of	ℎ01234 	(fold-change	=	9.5;	P	=	1.9×10-4).	This	

supports	 the	 biological	 importance	 of	 conserved	 regions,	 although	 the	 functions	 of	 many	

conserved	regions	are	still	undefined.	Second,	the	histone	marker	H3K9ac64	was	highly	enriched,	

with	 12.6%	 of	 SNPs	 explaining	 59.7%	 of	ℎ01234 	(fold-change	 =	 4.7;	P	 =	 2.5×10-5).	 H3K9ac	 can	

activate	genes	by	acetylation	and	is	highly	associated	with	active	promoters.	We	also	partitioned	

ℎ01234 	into	ten	cell	type	groups	(Supplementary	Table	16);	the	top	cell	type	group	for	T2D	was	

“adrenal	 or	pancreas”	 (fold-change	=	 6.0;	P	 =	8.1×10-9),	 and	 the	 result	was	 highly	 significant	

(PBonferroni	=	1.8×10-6)	after	Bonferroni	correction	for	220	tests	(Supplementary	Fig.	12).		
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We	further	used	MAGMA65	to	test	the	enriched	gene	sets.	In	total,	305	gene	sets	in	GO_BP	terms	

and	20	gene	sets	in	KEGG	pathways	were	significantly	enriched	(Supplementary	Table	17).	The	

top	pathway	enrichment	was	“glucose	homeostasis”	(P	=	6.0×10-8)	in	GO_BP,	and	“maturity	onset	

diabetes	of	the	young”	(P	=	3.2×10-7)	in	KEGG.	To	further	investigate	the	molecular	connections	

of	T2D-associated	 genes,	 a	protein-protein	 interaction	network	was	analyzed	using	 STRING66	

(Supplementary	Fig.	13).	Among	the	functional	enrichment	(Supplementary	Table	18)	in	this	

network,	there	are	four	genes	(HHEX,	HNF1A,	HNF1B,	and	FOXA2)	involved	in	the	KEGG	pathway	

of	“maturity	onset	diabetes	of	the	young”,	and	four	genes	(ADCY5,	CAMK2G,	KCNJ11,	and	KCNU1)	

were	enriched	in	“insulin	secretion”.	

	

Natural	selection	of	T2D-associated	variants	

We	performed	an	LD-	and	MAF-	stratified	GREML	analysis67	(Methods)	in	a	subset	of	unrelated	

individuals	in	UKB	(n	=	15,767	cases	and	104,233	controls)	to	estimate	the	variance	explained	by	

SNPs	in	different	MAF	ranges	(m	=	18,138,214	in	total).	We	partitioned	the	SNPs	into	7	MAF	bins	

with	high	and	low	LD	bins	within	each	MAF	bin	to	avoid	MAF-	and/or	LD-mediated	bias	in	ℎ01234 	

(Methods).	The	ℎ01234 	was	33.2%	(s.e.	=	2.1%)	on	the	liability	scale	(Supplementary	Table	19).	

Under	an	evolutionary	neutral	model	and	a	constant	population	size68,	the	explained	variance	is	

uniformly	distributed	as	a	function	of	MAF,	which	means	that	the	variance	explained	by	variants	

with	MAF	≤	0.1	equals	that	explained	by	variants	with	MAF	>	0.4.	However,	in	our	results,	the	

MAF	bin	containing	low-MAF	and	rare	variants	(MAF	<	0.1)	showed	a	larger	estimate	than	any	

other	MAF	 bin	 (Fig.	 6a	 and	Supplementary	Table	 19),	 consistent	with	 a	model	 of	 negative	

(purifying)	selection	or	population	expansion69.	To	further	distinguish	between	the	two	models	

(negative	 selection	 vs.	 population	 expansion),	 we	 performed	 an	 additional	 analysis	 using	 a	

recently	developed	method,	BayesS70,	to	estimate	the	relationship	between	variance	in	effect	size	

and	MAF	(Methods).	The	method	also	allowed	us	to	estimate	ℎ01234 	and	polygenicity	(π)	on	each	

chromosome.	 The	 results	 (Fig.	 6b)	 showed	 that	 the 	ℎ01234 	of	 each	 chromosome	 was	 highly	

correlated	with	its	length	(r	=	0.92),	consistent	with	the	results	of	previous	studies	for	height	and	

schizophrenia71,72.	The	mean	estimate	of	π,	i.e.,	the	proportion	of	SNPs	with	non-zero	effects,	was	

1.75%	across	all	chromosomes	(Fig.	6c	and	Supplementary	Table	20),	suggesting	a	high	degree	

of	polygenicity	for	T2D.	The	sum	of	per-chromosome	ℎ01234 	from	BayesS	was	31.9%	(s.e.	=	4.1%)	

on	the	liability	scale,	slightly	higher	than	that	based	on	HapMap3	SNPs	from	an	HE	regression	

analysis	(28.7%,	s.e.	=	1.1%)	using	a	full	set	of	unrelated	UKB	individuals	(n	=	348,580)	or	from	

an	LD	score	regression	analysis	(22.6%,	s.e	=	1.2%)	using	all	the	UKB	individuals	(n	=	455,607)	

(Supplementary	Table	21).	The	variance	in	effect	size	was	significantly	negatively	correlated	

with	MAF	(𝑆U=	-0.53,	s.e.	=	0.09),	consistent	with	a	model	of	negative	selection	on	deleterious	rare	
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alleles	(Fig.	6d)	and	inconsistent	with	a	recent	study12	concluding	that	T2D-associated	loci	have	

not	been	under	natural	selection.	Our	conclusion	regarding	negative	selection	is	also	consistent	

with	the	observation	that	the	minor	alleles	of	9	of	the	11	rare	variants	at	P	<	5E-8	were	T2D	risk	

alleles	(Supplementary	Table	6).	The	signal	of	negative	selection	implies	that	a	large	number	of	

rare	variants	will	be	discovered	in	future	GWAS	in	which	appropriate	genotyping	strategies	are	

used.	

	

Polygenic	risk	score	(PRS)	analysis		

We	used	DIAGRAM	and	UKB	as	the	discovery	set	and	GERA	as	a	validation	set	in	the	PRS	analysis73.	

To	avoid	sample	overlap	between	the	discovery	and	validation	sets,	we	re-ran	the	meta-analysis	

excluding	 the	GERA	cohort	and	 identified	109	near-independent	common	SNPs	at	P	<	5×10-8.	

These	SNPs	were	then	used	to	derive	prediction	equations	for	individuals	in	GERA	(Methods).	

We	divided	GERA	into	ten	subsets	to	acquire	the	sampling	variance	of	the	estimated	classification	

accuracy.	On	average,	the	classification	accuracy	(measured	by	the	area	under	the	curve	or	AUC74)	

was	0.579	(s.e.	=	0.003),	 lower	than	the	classification	accuracy	of	0.599	(s.e.	=	0.002)	obtained	

using	all	SNP	effects	(~5.1	million	SNPs)	estimated	from	GCTA-SBLUP	(Summary-data-based	Best	

Linear	Unbiased	Prediction)75	(Supplementary	Table	22).	We	further	quantified	the	variance	

explained	by	the	109	genome-wide	significant	SNPs	by	fitting	them	to	a	multiple	regression	model	

with	phenotypes	in	GERA.	These	SNPs	explained	3.9%	of	the	phenotypic	variance	on	the	liability	

scale	compared	with	an	estimate	of	ℎ01234 	of	7.2%	from	GREML	using	HapMap3	SNPs,	although	the	

ℎ01234 	in	GERA	was	much	lower	than	that	in	UKB.	

	

Discussion	

In	this	study,	we	sought	to	identify	novel	genetic	loci	associated	with	T2D	by	a	meta-analysis	of	

GWAS	with	the	largest	sample	size	to	date	and	to	infer	plausible	genetic	regulation	mechanisms	

at	known	and	novel	loci	by	an	integrative	analysis	of	GWAS	and	omics	data.	We	identified	139	

near-independent	common	variants	(𝑃 < 5 × 10WX)	and	4	rare	variants	(𝑃 < 5 × 10WY)	for	T2D	

in	the	meta-analysis.	Of	the	139	common	loci,	39	were	novel	compared	with	the	results	of	all	49	

previous	 T2D	 GWAS	 from	 the	 GWAS	 Catalog	 (URLs)76,	 including	 the	 two	 recent	 studies	 by	

DIAGRAM52	and	Zhao	et	al.77.	By	integrating	omics	data,	we	have	inferred	the	genetic	mechanisms	

for	 the	 three	 genes	 CAMK1D,	 TP53INP1	 and	 ATP5G1;	 the	 inferred	 mechanisms	 suggest	 that	

enhancer-promoter	interactions	with	DNA	methylation	play	an	important	role	in	mediating	the	

effects	of	genetic	variants	on	T2D	risk.	These	findings	provide	deeper	insight	into	the	etiology	of	

T2D	and	suggest	candidate	genes	for	functional	studies	in	the	future.	Furthermore,	our	estimation	

of	genetic	architecture	suggests	that	T2D	is	a	polygenic	trait	for	which	both	rare	and	common	

variants	contribute	to	the	genetic	variation	and	indicates	that	rarer	variants	tend	to	have	larger	
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effects	on	T2D	risk	(Fig.	7).	Assuming	that	most	new	mutations	are	deleterious	for	fitness,	our	

result	is	consistent	with	a	model	in	which	mutations	that	have	larger	effects	on	T2D	(and	thereby	

on	 fitness	 through	 pleiotropy)	 are	 more	 likely	 to	 be	 maintained	 at	 low	 frequencies	 in	 the	

population	by	purifying	selection.		

	

This	study	has	a	number	of	limitations.	First,	the	SNP-T2D	associations	identified	by	the	meta-

analysis	might	be	biased	by	misdiagnosis	of	T1D	(type	1	diabetes)	and	LADA	(latent	autoimmune	

diabetes	 in	 adults)78.	 Previous	 studies	 found	 that	 biases	 in	 SNP-T2D	 associations	 due	 to	

misdiagnosis	were	likely	to	be	very	modest7,52,79.	We	showed	by	two	additional	analyses	based	on	

known	T1D	loci	that	most	of	the	novel	SNP-T2D	associations	identified	in	this	study	are	unlikely	

to	be	driven	by	misdiagnosed	T1D	cases	(Supplementary	Note	9	and	Supplementary	Table	

23).	Second,	some	of	the	T2D-associated	SNPs	might	confer	T2D	risk	through	mediators	such	as	

obesity	 or	 dyslipidemia.	 To	 explore	 this	 possibility,	 we	 performed	 a	 summary-data-based	

conditional	analysis	of	the	139	T2D-associated	SNPs	conditioning	on	body	mass	index	(BMI)	or	

dyslipidemia	by	GCTA-mtCOJO80	using	GWAS	data	for	these	two	traits	from	UKB.	It	appeared	that	

the	effect	sizes	of	most	T2D-associated	SNPs,	with	the	exception	of	a	few	outliers	(e.g.,	FTO,	MC4R,	

POCS	and	TFAP2B),	were	not	affected	by	BMI	or	dyslipidemia	(Supplementary	Fig.	14).	These	

loci	were	among	those	showing	the	strongest	associations	with	BMI81,	consistent	with	the	finding	

from	 a	 previous	 T2D	 study82.	 Third,	 among	 the	 39	 novel	 loci,	 there	 was	 only	 one	 locus	

(ARG1/MED23,	Supplementary	Fig.	15)	at	which	the	association	between	gene	expression	and	

T2D	risk	was	significant	in	SMR	and	not	rejected	by	HEIDI	(Table	2).	This	is	because	the	power	

of	the	SMR	test	depends	primarily	on	the	SNP	effect	from	GWAS13,	which	is	small	for	the	novel	

loci.	Finally,	we	employed	the	SMR	and	HEIDI	methods	to	map	CpG	sites	to	their	target	genes	and	

to	 identify	 the	 CpG	 sites	 associated	with	 T2D	 because	 of	 pleiotropy.	 The	 SMR	approach	 uses	

genome-wide	significant	mQTL	as	an	instrumental	variable	for	each	CpG	site,	which	requires	a	

large	sample	size	for	the	mQTL	discovery.	In	this	study,	we	used	mQTL	data	based	on	Illumina	

HumanMethylation450	 arrays	 because	 of	 the	 relatively	 large	 sample	 size	 (n	 =	 1,980).	

Unfortunately,	we	did	not	have	access	 to	mQTL	data	 from	whole-genome	bisulfite	sequencing	

(WGBS)	 in	a	 large	 sample.	Nevertheless,	 it	 is	 noteworthy	 that	 there	 are	 three	T2D-associated	

variants	at	the	CAMK1D/CDC123,	ADCY5,	and	KLHDC5	loci	that	show	hypomethylation	and	allelic	

imbalance	as	identified	by	Thurner	et	al.46	using	WGBS	data	(n	=	10),	all	of	which	were	genome-

wide	significant	in	our	mQTL-based	SMR	analysis.	Despite	these	limitations,	our	study	highlights	

the	 benefits	 of	 integrating	 multiple	 omics	 data	 to	 identify	 functional	 genes	 and	 putative	

regulatory	mechanisms	driven	by	local	genetic	variation.	Future	applications	of	integrative	omics	

data	 analyses	 are	 expected	 to	 increase	 our	 understanding	 of	 the	 biological	 mechanisms	

underlying	human	disease.	
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Methods	

Summary	statistics	of	DIAGRAM,	GERA,	and	UKB	

The	data	used	in	this	study	were	derived	from	659,316	individuals	of	European	ancestry	and	a	

small	 cohort	 from	 Pakistan	 and	 were	 obtained	 from	 three	 data	 sets:	 DIAbetes	 Genetics	

Replication	And	Meta-analysis	(DIAGRAM)7,	Genetic	Epidemiology	Research	on	Adult	Health	and	

Aging	(GERA)16	and	UK	Biobank	(UKB)17.		

	

DIAGRAM:	 The	 DIAGRAM	 data	 were	 obtained	 from	 publicly	 available	 databases	 (URLs)	 and	

included	 two	 stages	 of	 summary	 statistics.	 In	 stage	 1,	 there	 were	 12,171	 cases	 and	 56,862	

controls	from	12	GWAS	cohorts	of	European	descent,	and	the	genotype	data	were	imputed	to	the	

HapMap2	Project83	(~2.5	million	SNPs	after	quality	control).	In	stage	2,	there	were	22,669	cases	

and	 58,119	 controls	 genotyped	 on	Metabochips	 (~137,900	 SNPs),	 including	 1,178	 cases	 and	

2,472	controls	of	Pakistani	descent.	There	was	limited	evidence	of	genetic	heterogeneity	between	

individuals	of	European	and	those	of	Pakistani	descent	for	T2D7.	The	sample	prevalence	was	23.3%	

(17.6%	in	stage	1	and	28.1%	in	stage	2).	We	imputed	the	stage	1	summary	statistics	by	ImpG19	

and	combined	the	imputed	data	with	stage	2	summary	statistics	(Supplementary	Note	1).	

	

GERA:	There	were	6,905	 cases	 and	46,983	 controls	 in	GERA,	and	 the	 sample	prevalence	was	

12.4%.	We	cleaned	the	GERA	genotype	data	using	standard	quality	control	(QC)	filters	(excluding	

SNPs	with	missing	rate	≥	0.02,	Hardy-Weinberg	equilibrium	test	P-value	≤	1×10–6	or	minor	

allele	count	≤	1	and	removing	individuals	with	missing	rate	≥	0.02)	and	imputed	the	genotype	

data	to	the	1000	Genomes	Projects	(1KGP)	reference	panels84	using	IMPUTE285.	We	used	GCTA86	

to	 compute	 the	 genetic	 relationship	matrix	 (GRM)	of	 all	 the	 individuals	based	on	 a	 subset	 of	

imputed	SNPs	(HapMap3	SNPs	with	MAF	≥	0.01	and	imputation	info	score	≥	0.3),	removed	the	

related	 individuals	at	a	genetic	relatedness	threshold	of	0.05,	and	retained	53,888	individuals	

(6,905	 cases	 and	 46,983	 controls)	 for	 further	 analysis.	 We	 computed	 the	 first	 20	 principal	

components	(PCs)	from	the	GRM.	The	summary	statistics	in	GERA	were	obtained	from	a	GWAS	

analysis	 using	 PLINK287	 with	 sex,	 age,	 and	 the	 first	 20	 principal	 components	 (PCs)	 fitted	 as	

covariates.	To	examine	the	influence	of	imputation	panel	on	the	meta-analysis	result,	we	further	

imputed	 GERA	 to	 the	 Haplotype	 Reference	 Consortium21	 (HRC)	 using	 the	 Sanger	 imputation	

service	(URLs).	

	

UKB:	Genotype	data	 from	UKB	were	cleaned	and	 imputed	to	HRC	by	the	UKB	team17,21.	There	

were	21,147	cases	and	434,460	controls,	and	the	sample	prevalence	was	5.5%.	We	identified	a	

European	subset	of	UKB	participants	(n	=	456,426)	by	projecting	the	UKB	participants	onto	the	
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1KGP	PCs.	Genotype	probabilities	were	converted	to	hard-call	genotypes	using	PLINK287	(--hard-

call	0.1),	and	we	excluded	SNPs	with	minor	allele	count	<	5,	Hardy-Weinberg	equilibrium	test	P-

value	<	1×10–6,	missing	genotype	rate	>	0.05,	or	imputation	info	score	<	0.3.	The	UKB	phenotype	

was	acquired	from	self-report,	ICD10	main	diagnoses	and	ICD10	secondary	diagnoses	(field	IDs:	

20002,	41202	and	41204).	The	GWAS	analysis	in	UKB	was	conducted	in	BOLT-LMM37	with	sex	

and	age	fitted	as	covariates.	In	the	BOLT-LMM	analysis,	we	used	711,933	SNPs	acquired	by	LD	

pruning	(r2	<	0.9)	from	Hapmap3	SNPs	to	control	for	relatedness,	population	stratification	and	

polygenic	effects.	We	transformed	the	effect	size	from	BOLT-LMM	on	the	observed	0-1	scale	to	

the	odds	ratio	(OR)	using	LMOR88.		

	

Inverse	variance	based	meta-analysis		

Before	 conducting	 the	 meta-analysis,	 we	 performed	 several	 analyses	 in	 which	 we	 examined	

genetic	 heterogeneity	 and	 sample	 overlap	 among	 data	 sets	 (Supplementary	 Note	 2).	 We	

performed	a	two-stage	meta-analysis.	The	first	stage	combined	DIAGRAM	stage	1	(GWAS	chip)	

data	with	GERA	and	UKB.	The	second	stage	combined	DIAGRAM	stage	1	and	2	(GWAS	chip	and	

metabolism	chip)	with	GERA	and	UKB.	We	extracted	 the	SNPs	common	to	 the	 three	data	sets	

(5,526,193	SNPs	 in	 stage	1	 and	5,053,015	million	SNPs	 in	 stage	2)	 and	performed	 the	meta-

analyses	using	an	 inverse-variance	based	method	 in	METAL20.	The	stage	1	meta-analysis	data	

were	only	used	to	estimate	the	SNP-based	heritability,	and	the	stage	2	meta-analysis	data	were	

used	in	the	follow-up	analyses.	

	

Summary-data-based	Mendelian	Randomization	(SMR)	analysis	

We	 performed	 an	 SMR	 and	 HEIDI	 analysis39	 to	 identify	 genes	 whose	 expression	 levels	 were	

associated	with	a	trait	due	to	pleiotropy	using	summary	statistics	from	GWAS	and	eQTL/mQTL	

studies.	The	HEIDI	test39	uses	multiple	SNPs	in	a	cis-eQTL	region	to	distinguish	pleiotropy	from	

linkage.	In	the	SMR	analysis,	we	used	eQTL	summary	data	from	the	eQTLGen	Consortium	(n	=	

14,115	in	whole	blood),	the	CAGE	(n	=	2,765	in	peripheral	blood)40	and	the	GTEx	v7	release	(n	=	

385	in	adipose	subcutaneous	tissue,	n	=	313	in	adipose	visceral	omentum,	n	=	153	in	liver,	n	=	

220	in	pancreas	and	n	=	369	from	whole	blood)89.	In	CAGE	and	eQTLGen,	gene	expression	levels	

were	measured	 using	 Illumina	 gene	 expression	 arrays;	 in	 GTEx,	 gene	 expression	 levels	were	

measured	by	RNA-seq.	The	SNP	genotypes	in	all	three	cohorts	were	imputed	to	1KGP.	The	mQTL	

summary	data	were	obtained	from	genetic	analyses	of	DNA	methylation	measured	on	Illumina	

HumanMethylation450	arrays	(n	=	1,980	in	peripheral	blood)41.		

	

Estimating	the	genetic	architecture	for	T2D	
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The	 MAF-	 and	 LD-stratified	 GREML	 (GREML-LDMS)	 is	 a	 method	 for	 estimating	 SNP-based	

heritability	that	is	robust	to	model	misspecification67,90.	For	ease	of	computation,	we	limited	the	

analysis	to	a	subset	of	unrelated	UKB	individuals	(15,767	cases	and	104,233	controls);	 in	this	

subset,	we	kept	all	15,767	cases	among	the	unrelated	individuals	to	maximize	the	sample	size	of	

cases	 and	 randomly	 selected	 104,233	 individuals	 from	 332,813	 unrelated	 controls.	 We	 first	

estimated	the	segment-based	LD	score,	stratified	~18	million	SNPs	into	two	groups	based	on	the	

segment-based	LD	scores	(high	vs.	low	LD	groups),	and	then	stratified	the	SNPs	in	each	LD	group	

into	seven	MAF	bins	(1E-4-1E-3,	1E-3-1E-2,	1E-2-0.1,	0.1-0.2,	0.2-0.3,	0.3-0.4	and	0.4-0.5).	We	

computed	the	GRMs	using	the	stratified	SNPs	and	performed	GREML	analysis	fitting	14	GRMs	

(with	sex,	age,	and	the	first	10	PCs	fitted	as	covariates)	in	one	model	to	estimate	the	SNP-based	

heritability	in	each	MAF	bin.	We	used	10%	as	the	population	prevalence	to	convert	the	estimate	

to	that	on	the	liability	scale.	

	

We	used	GCTB-BayesS70	to	estimate	the	joint	distribution	of	SNP	effect	size	and	allele	frequency.	

This	analysis	is	based	on	348,580	unrelated	individuals	(15,767	cases	and	332,813	controls)	and	

HapMap3	SNPs	(~1.23	million)	with	sex,	age	and	the	first	10	PCs	fitted	as	covariates.	Each	SNP	

effect	has	a	mixture	prior	of	a	normal	distribution	and	a	point	mass	at	zero,	with	an	unknown	

mixing	 probability,	 π,	 representing	 the	 degree	 of	 polygenicity.	 The	 variance	 in	 effect	 size	 is	

modeled	to	be	dependent	on	MAF	through	a	parameter	S.	Under	an	evolutionarily	neutral	model,	

SNP	effect	sizes	are	independent	of	MAF,	i.e.,	S	=	0.	A	negative	(positive)	value	of	S	indicates	that	

variants	with	lower	MAF	are	prone	to	having	larger	(smaller)	effects,	consistent	with	a	model	of	

negative	(positive)	selection.	A	Markov-chain	Monte	Carlo	(MCMC)	algorithm	was	used	to	draw	

posterior	samples	for	statistical	inference.	The	posterior	mean	was	used	as	the	point	estimate,	

and	 the	 posterior	 standard	 error	 was	 approximated	 by	 the	 standard	 deviation	 of	 the	MCMC	

samples.	We	conducted	the	analysis	chromosome-wise	for	ease	of	computation.	

	

Polygenic	risk	score	(PRS)	analysis	in	GERA	

We	used	DIAGRAM	and	UKB	as	the	discovery	set	and	GERA	as	a	validation	set	for	the	PRS	analysis.	

To	avoid	sample	overlap,	we	re-ran	the	meta-analysis	excluding	GERA	and	clumped	significant	

SNPs	from	the	meta-analysis	(excluding	GERA)	using	UKB	as	the	reference	for	LD	estimation	(P-

value	threshold	=	5×10-8,	LD	r2	threshold	=	0.01	and	window	size	=	1	Mb).	After	clumping,	there	

were	109	independent	SNPs.	These	SNPs	were	used	to	generate	PRS	for	each	individual	in	GERA.	

We	then	calculated	the	area	under	the	curve74	(AUC)	as	a	measure	of	classification	accuracy.	To	

quantify	the	sampling	variance	in	classification	accuracy,	the	GERA	data	set	was	divided	evenly	

into	ten	groups,	each	with	sample	size	~6,000	and	similar	sample	prevalence.	We	also	applied	

the	GCTA-SBLUP	(Summary-based	Best	Linear	Unbiased	Prediction)	method75	 to	estimate	 the	
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SNP	effects	when	they	were	fitted	jointly	and	compared	the	classification	accuracy	based	on	all	

SNPs	with	that	based	on	the	109	significant	SNPs.		

	

URLs	

MAGIC	consortium:	https://www.magicinvestigators.org/	

DrugBank:	https://www.drugbank.ca/		

DrugBank	documentation:	https://www.drugbank.ca/documentation	

GWAS	catalog:	http://www.ebi.ac.uk/gwas/	

DIAGRAM	summary	data:	http://www.diagram-consortium.org/	

Sanger	imputation	service:	https://imputation.sanger.ac.uk/	

	

Supplementary	Information	

The	supplementary	information	includes	10	supplementary	notes,	15	supplementary	figures	and	

23	supplementary	tables.	
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Table	1	Common	variants	at	39	previously	unknown	T2D-associated	loci		

CHR	 BP	 SNP	 A1	 A2	 MAF	 OR	(95%	CI)	 P-value	 Nearest	gene	
1	 117530507	 rs1127655	 C	 T	 0.47	 1.04	(1.03-1.06)	 2.47E-08	 PTGFRN	
2	 121309759	 rs12617659	 T	 C	 0.15	 0.93	(0.91-0.95)	 2.83E-11	 LOC105373585	(GLI2)	
3	 46925539	 rs11926707	 T	 C	 0.37	 0.95	(0.94-0.97)	 1.69E-08	 PTH1R	
3	 152053250	 rs4472028	 T	 C	 0.44	 1.05	(1.03-1.06)	 2.08E-10	 MBNL1	
4	 83584496	 rs993380	 A	 G	 0.33	 1.05	(1.04-1.07)	 4.59E-10	 SCD5	
4	 103988899	 rs7674212	 T	 G	 0.41	 0.95	(0.94-0.97)	 6.18E-10	 SLC9B2	
5	 112927686	 rs10077431	 A	 C	 0.21	 0.95	(0.94-0.97)	 4.76E-08	 YTHDC2	
6	 50816887	 rs72892910	 T	 G	 0.17	 1.07	(1.05-1.09)	 6.43E-11	 TFAP2B	
6	 131898208	 rs2246012	 C	 T	 0.16	 1.05	(1.03-1.07)	 2.43E-08	 ARG1,	MED23	
7	 103418846	 rs2299383	 T	 C	 0.42	 1.04	(1.03-1.06)	 1.49E-08	 RELN	
7	 117510621	 rs13239186	 T	 C	 0.30	 1.06	(1.04-1.07)	 2.70E-10	 CTTNBP2	
8	 8168987	 rs7841082	 T	 C	 0.44	 0.96	(0.94-0.97)	 4.94E-08	 SGK223	
8	 9188762	 rs11774915	 T	 C	 0.34	 1.05	(1.03-1.07)	 8.73E-09	 LOC157273	(TNKS)	
8	 10633159	 rs10100265	 A	 C	 0.39	 1.05	(1.03-1.07)	 6.29E-10	 PINX1	
8	 19852310	 rs17411031	 G	 C	 0.26	 0.96	(0.94-0.97)	 3.04E-08	 LPL	
8	 30863722	 rs10087241	 G	 A	 0.41	 1.05	(1.03-1.07)	 2.80E-09	 PURG	
8	 146003567	 rs2294120	 G	 A	 0.46	 0.96	(0.94-0.97)	 1.62E-08	 ZNF34	
9	 34025640	 rs1758632	 C	 G	 0.38	 0.95	(0.94-0.97)	 1.36E-09	 UBAP2	

9	 96919182	 rs10114341	 C	 T	 0.44	 0.96	(0.95-0.97)	 1.15E-08	 LOC107987099	
(PTPDC1)	

10	 71469514	 rs2616132	 A	 G	 0.47	 1.05	(1.03-1.06)	 6.58E-09	 FAM241B	
10	 75594050	 rs2633310	 T	 G	 0.44	 0.96	(0.94-0.97)	 2.38E-08	 CAMK2G	
10	 101976501	 rs11591741	 C	 G	 0.44	 0.95	(0.94-0.97)	 1.23E-09	 CHUK	
12	 26463082	 rs11048456	 C	 T	 0.24	 1.05	(1.03-1.07)	 2.97E-09	 ITPR2	
12	 71439589	 rs7138300	 C	 T	 0.44	 1.05	(1.03-1.06)	 5.65E-10	 TSPAN8	
12	 93978504	 rs11107116	 T	 G	 0.22	 1.05	(1.03-1.07)	 3.75E-08	 SOCS2	
13	 51096095	 rs963740	 T	 A	 0.29	 0.95	(0.94-0.97)	 2.23E-08	 DLEU1	
15	 63823301	 rs982077	 A	 G	 0.43	 1.05	(1.03-1.06)	 2.58E-10	 USP3	
16	 69666683	 rs244415	 A	 G	 0.41	 0.95	(0.94-0.97)	 3.88E-09	 NFAT5	
17	 17653411	 rs12945601	 T	 C	 0.39	 1.05	(1.03-1.07)	 1.72E-09	 RAI1	
17	 40542501	 rs17405722	 A	 G	 0.07	 1.09	(1.06-1.12)	 2.28E-09	 STAT3	
17	 45885756	 rs9911983	 C	 T	 0.43	 0.96	(0.95-0.97)	 4.82E-08	 OSBPL7	
17	 56757584	 rs302864	 A	 G	 0.09	 1.07	(1.05-1.10)	 2.46E-08	 TEX14	
17	 61687600	 rs17631783	 T	 C	 0.26	 0.95	(0.94-0.97)	 3.95E-08	 TACO1	
19	 19407718	 rs10401969	 C	 T	 0.08	 1.10	(1.07-1.13)	 4.13E-12	 SUGP1	

20	 22435749	 rs6515236	 C	 A	 0.25	 0.95	(0.93-0.97)	 3.34E-08	 LOC105372562	
(FOXA2)	

20	 32675727	 rs6059662	 A	 G	 0.34	 0.96	(0.94-0.97)	 1.51E-08	 EIF2S2	
20	 45594711	 rs6066138	 A	 G	 0.28	 0.95	(0.94-0.97)	 1.93E-09	 EYA2	
22	 30552813	 rs16988333	 G	 A	 0.09	 0.93	(0.90-0.95)	 9.17E-09	 HORMAD2	
22	 44377442	 rs4823182	 G	 A	 0.34	 1.05	(1.03-1.07)	 3.36E-10	 SAMM50	
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Table	2	Putative	functional	genes	for	T2D	identified	from	the	SMR	analysis	
Data	set	 probeID	 Chr	 Gene	 topSNP	 A1	 A2	 Freq	 PGWAS	 PeQTL	 PSMR	 PHEIDI	

eQTLGen	

55879	 1	 CD101	 rs10737727	 C	 A	 0.48	 1.1E-07	 1.2E-116	 2.5E-07	 9.2E-03	

68011	 2	 CEP68	 rs2249105	 G	 A	 0.38	 4.1E-10	 1.3E-190	 1.0E-09	 2.9E-02	

9391	 3	 EHHADH	 rs7431357	 A	 G	 0.16	 2.4E-07	 1.6E-39	 1.4E-06	 1.2E-01	

43929	 4	 RP11-10L12.4	 rs223359	 T	 C	 0.48	 1.2E-07	 <	1E-300	 1.4E-07	 3.1E-02	

68382	 5	 ANKH	 rs1061813	 G	 A	 0.46	 3.4E-09	 1.4E-110	 1.3E-08	 3.9E-01	

62965	 5	 POC5	 rs10515213	 G	 A	 0.21	 2.1E-06	 1.3E-244	 2.5E-06	 9.4E-04	

40809	 6	 RREB1	 rs2714337	 T	 A	 0.35	 3.9E-10	 2.8E-48	 1.0E-08	 1.6E-03	

44795	 6	 MICB	 rs2253042	 T	 C	 0.33	 2.1E-08	 <1E-300	 2.0E-08	 8.8E-04	

29725	 6	 HLA-DQB1	 rs1063355	 T	 G	 0.43	 3.7E-19	 1.5E-38	 1.6E-13	 7.6E-03	

12660	 6	 CENPW	 rs1591805	 G	 A	 0.51	 1.6E-09	 1.4E-21	 3.8E-07	 3.2E-02	

56635	 6	 ARG1	 rs2246012	 C	 T	 0.15	 2.4E-08	 <1E-300	 2.7E-08	 9.0E-01	

39116	 6	 MED23	 rs3756784	 G	 T	 0.19	 2.6E-08	 6.9E-67	 1.3E-07	 8.1E-01	

16667	 8	 TP53INP1	 rs10097617	 C	 T	 0.51	 7.5E-08	 9.9E-86	 2.4E-07	 2.5E-01	

17817	 8	 RPL8	 rs2958517	 G	 A	 0.47	 1.5E-06	 <1E-300	 1.8E-06	 7.0E-01	

51129	 10	 CAMK1D	 rs11257655	 T	 C	 0.20	 2.0E-17	 <1E-300	 1.1E-16	 2.3E-02	

45148	 10	 CAMK1D	 rs11257655	 T	 C	 0.20	 2.0E-17	 3.7E-131	 1.2E-15	 2.6E-02	

51050	 10	 CAMK1D	 rs11257655	 T	 C	 0.20	 2.0E-17	 <1E-300	 1.3E-16	 1.5E-02	

14584	 10	 CAMK1D	 rs11257655	 T	 C	 0.20	 2.0E-17	 <1E-300	 1.2E-16	 4.2E-03	

55828	 10	 CWF19L1	 rs34027394	 A	 G	 0.42	 5.2E-09	 <1E-300	 6.4E-09	 4.7E-01	

54041	 10	 SNORA12	 rs34762508	 T	 C	 0.42	 5.8E-09	 1.3E-16	 1.9E-06	 9.1E-01	

564	 10	 PLEKHA1	 rs11200629	 G	 A	 0.48	 5.1E-08	 5.0E-151	 1.1E-07	 1.4E-01	

44452	 10	 PLEKHA1	 rs7072204	 G	 A	 0.48	 5.4E-08	 1.8E-180	 1.1E-07	 1.5E-01	

54567	 11	 SSSCA1	 rs1194076	 A	 C	 0.24	 7.6E-07	 1.4E-268	 9.3E-07	 8.5E-01	

59012	 11	 ARAP1	 rs9667947	 C	 T	 0.15	 2.1E-20	 2.0E-10	 1.5E-07	 5.4E-03	

64698	 12	 P2RX4	 rs2071271	 T	 C	 0.27	 3.6E-07	 <1E-300	 4.5E-07	 2.9E-01	

14501	 12	 CAMKK2	 rs11065504	 C	 G	 0.36	 2.0E-06	 <1E-300	 2.4E-06	 4.3E-03	

25086	 12	 CAMKK2	 rs11065504	 C	 G	 0.36	 2.0E-06	 <1E-300	 2.4E-06	 2.2E-03	

19328	 15	 C15orf38	 rs7174878	 A	 G	 0.26	 5.2E-10	 2.5E-214	 1.0E-09	 3.0E-03	

55328	 15	 RCCD1	 rs2290202	 T	 G	 0.14	 2.3E-07	 <1E-300	 2.9E-07	 2.8E-03	

28542	 17	 ANKFY1	 rs4790598	 G	 T	 0.38	 7.1E-08	 1.8E-45	 4.5E-07	 1.1E-02	

9982	 17	 ATP5G1	 rs1962412	 T	 C	 0.31	 5.6E-11	 1.1E-120	 2.9E-10	 2.6E-03	

42278	 17	 ATP5G1	 rs318095	 T	 C	 0.48	 4.0E-12	 3.6E-117	 3.9E-11	 5.2E-02	

60420	 17	 UBE2Z	 rs15563	 A	 G	 0.48	 3.4E-12	 1.3E-52	 2.6E-10	 4.7E-03	

60551	 17	 UBE2Z	 rs962272	 A	 G	 0.48	 3.8E-12	 9.6E-67	 1.4E-10	 7.4E-02	

CAGE	

ILMN_1754865	 1	 PABPC4	 rs1985076	 C	 T	 0.22	 2.0E-12	 3.0E-23	 8.9E-09	 4.1E-01	

ILMN_1757343	 1	 PABPC4	 rs17513135	 T	 C	 0.23	 2.7E-13	 7.7E-32	 6.3E-10	 3.1E-01	

ILMN_1795464	 6	 LTA	 rs2516479	 G	 C	 0.40	 3.9E-10	 9.4E-28	 5.9E-08	 5.6E-03	

ILMN_1712390	 6	 CUTA	 rs115196245	 C	 G	 0.03	 5.1E-10	 1.2E-27	 6.7E-08	 1.1E-02	

ILMN_1812281	 6	 ARG1	 rs2246012	 C	 T	 0.15	 2.4E-08	 1.1E-113	 5.3E-08	 8.6E-01	
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ILMN_1714108	 8	 TP53INP1	 rs896853	 G	 C	 0.48	 1.3E-07	 2.3E-33	 1.3E-06	 4.8E-01	

ILMN_1711314	 10	 NUDT5	 rs11257655	 T	 C	 0.20	 2.0E-17	 8.0E-36	 2.4E-12	 2.8E-03	

ILMN_1795561	 10	 CAMK1D	 rs11257655	 T	 C	 0.20	 2.0E-17	 2.7E-112	 2.2E-15	 1.6E-01	

ILMN_1751561	 10	 CAMK1D	 rs11257655	 T	 C	 0.20	 2.0E-17	 8.6E-102	 3.3E-15	 8.4E-02	

ILMN_1906187	 10	 LOC283070	 rs11257655	 T	 C	 0.20	 2.0E-17	 1.9E-101	 3.4E-15	 6.9E-03	

ILMN_1651886	 10	 CWF19L1	 rs34027394	 A	 G	 0.42	 5.2E-09	 3.0E-130	 1.4E-08	 4.8E-01	

ILMN_1662839	 10	 PLEKHA1	 rs11200594	 C	 T	 0.52	 1.1E-07	 1.8E-44	 6.2E-07	 1.9E-01	

ILMN_1727134	 12	 KLHDC5	 rs12578595	 T	 C	 0.20	 1.9E-11	 9.9E-25	 1.7E-08	 3.3E-03	

ILMN_1813846	 12	 P2RX4	 rs2071271	 T	 C	 0.27	 3.6E-07	 2.1E-68	 1.1E-06	 2.7E-01	

ILMN_1743021	 12	 CAMKK2	 rs35898441	 T	 C	 0.35	 4.1E-07	 9.9E-136	 7.5E-07	 1.3E-02	

ILMN_2367638	 12	 CAMKK2	 rs3794207	 T	 C	 0.35	 6.5E-07	 4.0E-132	 1.2E-06	 2.6E-02	

ILMN_2189406	 15	 C15orf38	 rs12594774	 A	 G	 0.26	 2.7E-10	 4.9E-28	 3.8E-08	 1.1E-02	

ILMN_1712430	 17	 ATP5G1	 rs7212779	 A	 G	 0.29	 1.6E-10	 7.7E-26	 4.7E-08	 1.5E-02	

ILMN_1676393	 17	 ATP5G1	 rs12325727	 G	 A	 0.52	 6.3E-11	 1.1E-31	 1.3E-08	 2.7E-01	

Columns	are	eQTL	data	set,	probe	ID,	probe	chromosome,	gene	name,	probe	position,	SNP	name,	

SNP	position,	effect	allele,	other	allele,	frequency	of	the	effect	allele	in	the	reference	sample,	GWAS	

P-value,	eQTL	P-value,	SMR	P-value	and	HEIDI	P-value.	

	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 20, 2018. ; https://doi.org/10.1101/284570doi: bioRxiv preprint 

https://doi.org/10.1101/284570
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 26 

	
Figure	1	Manhattan	plot	of	common	variants	identified	by	the	meta-analysis	and	rare	variants	

identified	by	a	GWAS	analysis	in	UKB.	a)	GWAS	results	for	common	variants	(MAF	>	0.01)	in	the	

meta-analysis.	The	39	novel	loci	are	annotated	and	highlighted	in	green.	b)	GWAS	results	of	rare	

variants	(0.0001	<	MAF	<	0.01)	in	UKB.	Four	loci	with	P	<	5×10-9	are	highlighted	in	red.	For	better	

graphical	presentation,	SNPs	with	1×10-60	<	Pmeta	<	1×10-330	and	Pmeta	>	1×10-2	have	been	omitted	

from	both	panels.	The	blue	lines	denote	the	genome-wide	significant	threshold	of	P	<	5×10-8,	and	

the	red	lines	denote	a	more	stringent	threshold	of	P	<	5×10-9	
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Figure	2	Prioritizing	genes	and	regulatory	elements	at	the	CDC123/CAMK1D	locus	for	T2D.	The	

results	of	the	SMR	analysis	that	integrates	data	from	GWAS,	eQTL	and	mQTL	studies	are	shown.	

The	top	plot	shows	-log10(P-value)	of	SNPs	from	the	GWAS	meta-analysis	for	T2D.	Red	diamonds	

and	blue	circles	represent	-log10(P-value)	from	the	SMR	tests	for	associations	of	gene	expression	

and	DNAm	probes	with	T2D,	respectively.	Solid	diamonds	and	circles	represent	the	probes	not	

rejected	by	the	HEIDI	test.	The	yellow	star	denotes	the	top	cis-eQTL	SNP	rs11257655.	The	second	

plot	 shows	 -log10(P-value)	 of	 the	 SNP	association	 for	 gene	 expression	 probe	 51129	 (tagging	

CAMK1D).	 The	 third	 plot	 shows	 -log10(P-value)	 of	 the	 SNP	 association	 with	 DNAm	 probes	

cg03575602	and	cg16894855	from	the	mQTL	study.	The	bottom	plot	shows	25	chromatin	state	

annotations	 (indicated	 by	 colors)	 of	 127	 samples	 from	 Roadmap	 Epigenomics	 Mapping	

Consortium	(REMC)	for	different	primary	cells	and	tissue	types	(rows).		 	
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Figure	3	Hypothesized	mechanism	of	how	a	CAMK1D	variant	affects	T2D	risk.	When	the	allele	of	

rs11257655	in	the	enhancer	region	(red)	changes	from	C	to	T,	the	enhancer	activator	protein	

FOXA1/FOXA2	(orange	ellipsoid)	binds	to	the	enhancer	region	and	the	DNA	methylation	level	in	

the	 promoter	 region	 is	 reduced;	 this	 increases	 the	 binding	 efficiency	 of	 RNA	 polymerase	 II	

recruited	 by	 mediator	 proteins	 (gray	 circles)	 and	 therefore	 increases	 the	 transcription	 of	

CAMK1D.	
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Figure	4	Prioritizing	genes	and	regulatory	elements	at	TP53INP1	locus	for	T2D.	Shown	are	the	

results	from	the	SMR	analysis	that	integrates	data	from	GWAS,	eQTL	and	mQTL	studies.	The	top	

plot	shows	-log10(P-value)	from	the	GWAS	meta-analysis	for	T2D.	Red	diamonds	and	blue	circles	

represent	 -log10(P-value)	 from	 the	 SMR	 tests	 for	 associations	of	 gene	 expression	 and	DNAm	

probes	with	T2D,	respectively.	Solid	diamonds	and	circles	represent	the	probes	not	rejected	by	

the	 HEIDI	 test.	 The	 second	 plot	 shows	 -log10(P-value)	 of	 the	 SNP	 association	 with	 gene	

expression	probe	16667	(tagging	TP53INP1).	The	 third	plot	shows	 -log10(P-value)	of	the	SNP	

association	 with	 DNAm	 probe	 cg13393036	 and	 cg09323728.	 The	 bottom	 plot	 shows	 25	

chromatin	state	annotations	(indicated	by	colors)	of	127	samples	from	Roadmap	Epigenomics	

Mapping	Consortium	(REMC)	for	different	primary	cells	and	tissue	types	(rows).		
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Figure	5	Hypothesized	mechanism	of	how	TP53INP1	affects	T2D	risk.	When	the	promoter	region	

is	highly	methylated,	which	prevents	binding	of	repressor	protein	(red	rounded	rectangle)	to	the	

promoter	 region,	 RNA	 polymerase	 II	 (green	 ellipsoid),	 transcription	 factor	 protein	 (orange	

ellipsoid)	and	mediator	proteins	(gray	circles)	will	form	a	transcription	initiation	complex	that	

increases	the	transcription.	However,	when	the	methylation	level	of	the	promoter	region	is	low,	

repressor	 protein	 can	 more	 efficiently	 bind	 to	 the	 promoter,	 blocking	 the	 binding	 of	 the	

transcription	initiation	complex	to	the	promoter,	which	decreases	the	transcription	of	TP53INP1.		
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Figure	 6	 Estimating	 the	 SNP-based	 heritability	 and	 polygenicity	 and	 detecting	 signals	 of	

purifying	 selection	 in	 the	 UKB	 data.	 Shown	 in	 panel	 are	 the	 results	 from	 the	 GREML-LDMS	

analysis.	 Shown	 in	panels	b,	 c	 and	d	 are	 the	 results	 from	 the	BayesS	 analysis.	 Error	bars	 are	

standard	errors	of	the	estimates.	a)	Variance	explained	by	SNPs	in	each	MAF	bin.	We	combined	

the	 estimates	 of	 the	 first	 three	 bins	 (MAF	<	 0.1)	 to	 harmonize	 the	width	 of	 all	MAF	 bins.	 b)	

Chromosome-wide	SNP-based	heritability	against	chromosome	length.	c)	Estimate	of	the	BayesS	

parameter	(S)	reflecting	the	strength	of	purifying	selection	on	each	chromosome.	d)	Proportion	

of	SNPs	with	non-zero	effects	on	each	chromosome	(π).		
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