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Key	points:	

• Complex	single	cell	haematopoietic	fate	heterogeneity	can	be	visualized	and	

assessed	with	tSNE	pie	maps	

• DiSNE	movie	visualization	of	in	vivo	haematopoiesis	allows	“play	back”	of	the	

waves	of	haematopoiesis	

• Identification	of	novel	hematopoietic	progenitors	with	early	T	cell	and	later	

granulocyte	production	

	

Abstract	

Identifying	the	progeny	of	many	single	progenitor	cells	simultaneously	can	be	

achieved	by	tagging	progenitors	with	unique	heritable	DNA	barcodes,	and	allows	

inferences	of	lineage	relationships,	including	longitudinally.	While	this	approach	has	
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shed	new	light	on	single	cell	fate	heterogeneity,	data	interpretation	remains	a	major	

challenge.	In	this	study,	we	applied	our	developmental	interpolated	t-Distributed	

Stochastic	Neighbor	Embedding	(DiSNE)	movie	approach	to	visualize	the	clonal	

dynamics	of	hematopoietic	reconstitution	in	primates	and	identify	novel	

developmental	patterns,	namely	a	potential	cluster	of	hematopoietic	progenitors	

with	early	T	cell	and	later	granulocyte	production.		

	

Introduction	

Hematopoiesis	is	a	dynamic	process	where	a	given	stem	or	progenitor	cell	may	

differ	in	its	quantitative	contribution	to	different	lineages,	and	this	may	vary	over	

time.	Consensus	models	of	hematopoiesis	are	still	in	flux,	and	contributed	by	

population	and	single	cell	approaches	through	RNA-sequencing	and	fate	analysis	

(Naik	et	al.,	2013b;	Paul	et	al.,	2015;	Rodriguez-Fraticelli	et	al.,	2018;	Sanjuan-Pla	et	

al.,	2013;	Velten	et	al.,	2017).	One	consistent	feature,	however,	is	that,	stem	and	

progenitor	fractions	give	rise	to	lineages	at	different	times(Forsberg	et	al.,	2006).	In	

these	‘waves’,	Mk/E,	myeloid	and	DC	lineages	peak	early	(i.e.,	1-2	weeks),	whereas	

lymphoid	development,	which	requires	DNA	recombination	for	receptor	

rearrangement	for	T	cells	and	B	cells,	peaks	much	later	(i.e.,	4-8	weeks).	These	data	

represent	population-level	snapshots	but	do	not	account	for	how	individual	clones	

stack	to	generate	the	ensemble	average.		

	

One	strategy	to	unravel	this	complexity	in	vivo	involves	lineage	tracing	of	a	single	

cell	per	mouse,	and	has	been	utilised	in	several	landmark	studies	(Dykstra	et	al.,	
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2007;	Osawa	et	al.,	1996;	Yamamoto	et	al.,	2013).	These	represent	informative	but	

logistically	challenging	experiments,	generally	limited	to	dozens	or	hundreds	of	

clones	in	total,	and	where	single	cells	are	not	in	competition.	Another	strategy	to	

study	clonal	heterogeneity	is	the	use	of	cellular	barcoding,	which	allows	the	in	vivo	

fate	of	individual	cells	within	a	population	to	be	assessed	in	a	competitive	setting	

within	one	animal	(Lu	et	al.,	2011;	Naik	et	al.,	2013b;	2014).	Building	on	the	seminal	

studies	using	retroviral	integration	site	analysis(Lemischka	et	al.,	1986),	this	

technology	relies	on	differential	tagging	of	progenitor	cells	with	unique	heritable	

DNA	sequence	tags	(barcodes)	so	that	subsequent	quantification	and	barcode	

comparison	between	progeny	cell	types	allows	inference	of	lineage	relationships.	At	

its	simplest	level,	barcodes	shared	between	cell	types	infers	derivation	from	

common	ancestors,	whereas	differing	barcodes	infers	separate	ancestors.	This	

approach	has	revolutionized	the	assessment	of	cell	fate	heterogeneity	by	offering	a	

fine-grained	analysis	of	the	quantity,	quality,	location	and	kinetics	of	cell	fate.	

Several	studies	utilizing	this	technology	have	offered	novel	insights	into	fate	and	

clone	size	heterogeneity	in	hematopoiesis	(Gerrits	et	al.,	2010;	Lu	et	al.,	2011;	Naik	

et	al.,	2013a),	breast	tissue	and	cancer	development	(Eirew	et	al.,	2015;	Nguyen	et	

al.,	2014a;	2014b)	and	T	cell	immunity	(Gerlach	et	al.,	2013;	Schepers	et	al.,	2008;	

van	Heijst	et	al.,	2009).	Limited	studies	have	further	dissected	fate	heterogeneity	

through	time	in	transplantation	settings,	either	in	mice	(Verovskaya	et	al.,	2013)	or	

primates	(Kim	et	al.,	2014;	Wu	et	al.,	2014).		Add	to	this	the	emergence	of	in	situ	

barcode	labeling	techniques	that	read	out	native	haematopoiesis	(Höfer	et	al.,	2016;	

Pei	et	al.,	2017;	Rodriguez-Fraticelli	et	al.,	2018;	Sun	et	al.,	2014),	and	one	can	
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appreciate	that	single	cell	approaches	are	only	beginning	to	reveal	the	true	

complexity	of	haematopoiesis	and	other	developmental	systems.	

	

The	data	derived	from	cellular	barcoding	experiments	can	be	complex,	and	

interpretation	remains	a	major	challenge.	Inspired	by	recent	analyses	of	cytometry	

data	using	t-SNE(Amir	et	al.,	2013;	Becher	et	al.,	2014;	Van	der	Maaten	and	Hinton,	

2008),	we	customized	this	algorithm	for	dynamic	visualization	and	extrapolation	of	

fate	biases	over	time	(Lin	et	al.,	2018).	Here,	using	this	approach,	we	re-classify	

CD34+	hematopoietic	progenitors	in	primates	into	groups	of	lineage-restricted	

progenitors	that	contribute	in	different	waves	in	addition	to	stable	multi-lineage	

contributing	clones.	The	analysis	identified	a	group	of	progenitors	displaying	

unexpected	early	T	cell	followed	by	later	granulocyte	production.	

	

Materials	and	Methods	

Data	sets	and	processing	

Data	from	the	Naik	et	al.	(Naik	et	al.,	2013a)	and	Wu	et	al.	(Wu	et	al.,	2014)	studies	

were	first	bioinformatically	processed	and	filtered	as	described	originally(Naik	et	

al.,	2013a).	Each	sample	was	then	normalized	to	100,000	read	counts	and	

transformed	using	hyperbolic	arcsin.	Barcodes	with	no	counts	for	all	samples	were	

removed,	and	this	data	was	then	used	to	generate	t-SNE	maps.	

	

t-SNE	
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MATLAB	source	code	for	t-SNE	was	obtained	from	http://lvdmaaten.github.io/tsne/	

and	was	run	using	parameters	as	described	in	Amir	et	al.	(Amir	et	al.,	2013).	PCA	

was	not	used	as	a	preprocessing	step	prior	to	performing	t-SNE.	When	investigating	

cell	type-specific	reconstitution	kinetics,	barcodes	with	no	counts	in	the	cell	type	of	

interest	at	any	time	point	were	removed,	even	if	counts	were	present	in	other	cell	

types	at	some	time	point.	Also,	a	small,	random	perturbation	between	0	and	0.001	

was	added	to	the	barcode	read	counts	as	too	many	barcodes	had	exactly	the	same	

read	count	profile,	which	affects	the	clustering	ability	of	t-SNE.	When	generating	the	

dynamic	t-SNE	pie	map	movies,	all	progenitors	were	assumed	to	have	no	output	to	

any	cell	type	at	the	initial	frame	(time	=	0	months).	At	intermediate	frames	between	

time	points	where	experimental	data	was	gathered,	the	clone	size	and	relative	

proportions	of	output	to	the	progeny	cell	types	for	each	progenitor	was	

approximated	using	linear	interpolation.	

	

Manual	classification	on	t-SNE	

Manual	classification	of	t-SNE	maps	was	conducted	such	that	all	identified	classes	at	

least	have	a	common	dominant	feature	(e.g.,	all	have	B	cell	progeny),	if	not	the	exact	

same	qualitative	output.	Small	classes	with	fewer	than	10	progenitors	were	also	

avoided.	Automated	methods	for	classifying	data	such	as	k-means	or	DensVM	

(Becher	et	al.,	2014)	are	not	suitable	for	cellular	barcoding	data	as	they	establish	a	

centroid	for	each	class	and	group	data	points	within	some	degree	of	variation	from	

that	centroid.	Other	methods	such	as	DBSCAN	can	be	used,	but	were	not	utilized	

here.	
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JS	divergence	

For	computing	the	JS	divergence,	a	bin	size	of	5	in	each	t-SNE	dimension	was	used	to	

discretize	the	t-SNE	map.	JS	divergence	was	calculated	using	the	PieMaker	software	

package	(Lin	et	al.,	2018)	(https://data.mendeley.com/datasets/9mkz5n9jtf/1).	

	

DiSNE	movie	visualization	and	JS	divergence	

DiSNE	movies	were	generated	using	the	PieMaker	software	package	following	the	

instruction	in	the	user	manual(Lin	et	al.,	2018)	

(https://data.mendeley.com/datasets/9mkz5n9jtf/1). 	

	

Additional	algorithms	

All	hierarchical	clustering	performed	in	this	study	used	Euclidian	distance	and	

complete	linkage.	PCA,	Isomap	and	LLE	were	run	using	the	MATLAB	Toolbox	for	

Dimensionality	Reduction	(van	der	Maaten	et	al.,	2009)	downloaded	from	

http://lvdmaaten.github.io/drtoolbox/.	For	Isomap	and	LLE,	the	smallest	

connectivity	parameter	that	provided	a	mapping	for	all	high-dimensional	data	

points	was	used.	

	

Results	

t-SNE	is	an	effective	tool	for	visualizing	cell	fate	heterogeneity	in	mouse	LMPPs	

In	order	to	first	test	t-SNE	based	visualization	of	multi-lineage	data	derived	in	vivo	

(Lin	et	al.,	2018),	we	first	evaluated	heterogeneity	in	cell	output	of	LMPPs	in	mice.	
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We	pooled	previously	generated	cellular	barcoding	data(Naik	et	al.,	2013a)	from	six	

mice	across	three	experiments	and,	in	order	to	directly	compare	between	

experiments,	the	six	cell	types	that	were	assessable	for	all	mice	were	included:	from	

the	bone	marrow	(BM)	B	cells,	neutrophils	and	monocytes;	and	from	the	spleen	

cDC1,	pDC	and	B	cells.	Application	of	t-SNE	to	this	data	created	a	two-dimensional	

map	on	which	each	point	represented	a	barcoded	LMPP,	and	where	LMPPs	with	a	

similar	output	of	progeny	lay	close	together	(Figure	1a).	Points	on	the	t-SNE	map	

were	then	manually	classified	such	that	the	qualitative	(cell	types	produced)	output	

of	progenitors	in	each	class	was	approximately	the	same,	with	at	least	the	same	

dominant	feature	(see	Supplemental	Experimental	Procedures	for	manual	versus	

automated	classification).	We	identified	eleven	classes	of	LMPPs	using	this	approach	

(Figure	1a)	and	generated	heat	maps	to	visualize	the	clonal	qualitative	and	

quantitative	(abundance	of	cells)	output	from	each	class	(Figure	1b).	The	t-SNE	

algorithm	allowed	effective	identification	of	seven	mono-outcome	classes	-	one	for	

each	cell	type	as	well	as	an	additional	splenic	cDC1-only	low-output	class.	The	

remaining	multi-outcome	classes	consisted	of	1)	dominant	BM	B	cell	production	

plus	splenic	B	cells	or	cDC1s	and	pDCs;	2)	splenic	B	cells	and	cDC1s	and	pDCs;	3)	

splenic	cDC1s	and	pDCs;	and	4)	BM	monocytes	and	neutrophils	and	splenic	cDC1s	

and	pDCs,	with	a	small	subpopulation	of	these	progenitors	contributing	greatly	to	

splenic	B	cells	as	well.	These	results	showed	that	the	t-SNE	algorithm	is	effective	in	

positioning	the	LMPPs	based	on	their	qualitative	and	quantitative	outputs.	
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We	then	compared	where	the	progenitors	from	each	t-SNE	class	were	positioned	

relative	to	the	ordering	determined	by	hierarchical	clustering	as	shown	in	Figure	1c.	

Importantly,	the	classes	did	not	always	segregate,	indicating	that	patterns	observed	

from	t-SNE	analysis	may	not	be	identifiable	from	hierarchical	clustering.	To	examine	

any	advantage	of	t-SNE	compared	to	classic	dimensionality	reduction	techniques,	

we	also	“backgated”	t-SNE	classes	onto	the	first	two	dimensions	using	Principal	

Component	Analysis	(PCA).	t-SNE	was	superior	to	PCA	in	distributing	LMPPs	in	two	

dimensions	by	visual	assessment	(Figure	1d).	We	then	performed	a	quantitative	

assessment	of	four	different	dimensionality	reduction	techniques	including	t-SNE,	

PCA,	Isomap	and	locally	linear	embedding	(LLE).	We	identified	the	20	nearest	

neighbors	based	on	Euclidian	distance	for	each	LMPP	and	computed	the	proportion	

of	nearest	neighbors	conserved	after	various	degrees	of	dimensionality	reduction	

(Figure	1e).	t-SNE	consistently	outperformed	Isomap	and	LLE,	and	also	had	a	higher	

conservation	than	PCA	when	reducing	to	three	dimensions	or	less.	Considering	the	

difficulty	in	visualizing	information	beyond	two	to	three	dimensions,	t-SNE	better	

captured	groups	of	LMPPs	with	a	similar	fate	than	did	any	of	the	classical	techniques,	

demonstrating	its	utility	as	a	discovery	tool	for	pattern	identification.	

	

Although	t-SNE	generated	a	low-dimensional	representation	of	the	data	to	enable	

intuitive	exploration,	further	inspection	was	necessary	to	infer	meaning.	To	

facilitate	this,	we	applied	a	recently	developed	visualization	tool	called	the	PieMaker	

{Lin:2018gk}	and	generated	“t-SNE	pie	map”	for	individuadl	clones.	We	scaled	point	

size	according	to	the	clone	size	of	that	progenitor	(i.e.,	the	summed	output	of	each	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2018. ; https://doi.org/10.1101/279406doi: bioRxiv preprint 

https://doi.org/10.1101/279406
http://creativecommons.org/licenses/by-nc-nd/4.0/


LMPP	across	all	progeny	cell	types),	and	each	point	was	also	replaced	by	a	pie	chart	

portraying	the	relative	proportions	of	output	to	the	progeny	cell	types	(Figure	2a).	

From	this	visual	representation,	we	noticed	that	almost	all	LMPPs	from	the	mono-

outcome	classes	only	contributed	a	small	amount	to	their	respective	cell	type,	and	

conversely,	within	the	multi-outcome	classes	existed	individual	LMPPs	that	had	

major	contribution	to	one	or	more	cell	types	(Figure	2b).	The	“t-SNE	pie	map”	

thereby	facilitated	visualization	of	both	cell	fate	and	clone	size	heterogeneity,	and	

revealed	potential	positive	correlation	between	the	two	clonal	properties.	

	

A	major	challenge	in	analyzing	single	cell	tracking	data	is	to	assess	biological	

reproducibility	of	any	identified	patterns	of	cell	fate,	and	applying	t-SNE	to	the	

pooled	data	of	six	mice	allowed	such	assessment.	By	overlaying	mouse	identity	onto	

all	LMPPs,	we	observed	that	most	classes	contained	representatives	from	each	

mouse	(Figure	S1a).	We	also	quantified	this	as	a	proportion	of	LMPPs	per	mouse	in	

each	class	(Figure	2c)	and	found	that	most	classes	showed	similar	representation	

levels	across	mice,	indicating	reproducibility	of	those	classes.	In	some	classes,	such	

as	class	four	(low	output	cDC1-only	progenitors)	and	six	(splenic	B	cell-only	

progenitors),	there	was	high	representation	in	a	single	mouse.	Whether	this	

reflected	a	bona	fide	class	of	LMPPs	that	was	not	reproducibly	detected	due	to	

suboptimal	sampling,	a	difference	in	the	environment	of	that	mouse,	or	instead	a	

spurious	event,	could	be	determined	by	examining	more	mice	or	a	greater	number	

of	progenitors	per	mouse.	Therefore,	as	described	previously{Lin:2018gk},	t-SNE	
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not	only	allows	identification	of	major	patterns	of	cell	fate,	but	also	assessment	of	

biological	reproducibility.		

	

The	Jenson-Shannon	(JS)	divergence	can	be	applied	to	t-SNE	maps	as	a	holistic	and	

quantitative	‘similarity’	metric	(Amir	et	al.,	2013).	The	minimum	divergence	of	0	

indicates	exactly	the	same	distribution	of	progenitors	on	the	t-SNE	map,	whereas	

the	maximum	divergence	of	1	indicates	no	overlap.	To	assess	animal	variability,	we	

first	calculated	the	JS	divergence	for	each	pair	of	mice	and,	following	hierarchical	

clustering,	found	that	mice	from	the	same	experiment	were	similar	with	JS	

divergence	<0.5	(Figure	S1b).	In	fact,	mice	one	to	four	from	experiments	one	and	

two	consistently	had	a	pairwise	divergence	<0.5,	but	mice	from	experiment	three	

(especially	mouse	five)	showed	greater	differences	from	the	other	mice.	We	also	

computed	JS	divergences	for	each	mouse	against	the	other	mice	pooled	(e.g.,	mouse	

one	against	mice	two	to	six	pooled),	and	found	that	the	divergences	were	

substantially	lowered.	This	indicated	that	a	sampling	effect	may	have	contributed	to	

the	large	fluctuations	in	divergences	between	pairs	of	mice,	and	increasing	the	

number	of	progenitors	from	each	mouse	could	decrease	this	variability	between	

animals.	This	strategy	of	applying	t-SNE	on	pooled	data	followed	by	computing	the	

JS	divergence	facilitates	a	quantitative	comparison	between	samples,	and	could	be	

used	to	compare	the	effect	of	different	conditions	to	stem	and	progenitor	fate	(e.g.,	

host	animals	in	the	steady-state	versus	inflammation).	
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Hematopoietic	progenitors	from	primates	consist	of	lineage-restricted	

sequential	contributors	and	multi-lineage	stable	clones	

To	visualize	longitudinal	single	cell	tracking	data,	we	customized	a	recently	

developed	framework,	which	included	our	developmental-interpolated	t-SNE	

(DiSNE)	movie	and	spindle	plot	visualization	of	clusters	(Lin	et	al.,	2018).	We	

obtained	data	a	recent	study	(Wu	et	al.,	2014),	where	hematopoietic	stem	and	

progenitor	cells	from	three	rhesus	macaques	were	barcode-labeled	and	their	output	

to	peripheral	blood	T	cells,	B	cells,	natural	killer	(NK)	cells,	monocytes	and	

granulocytes	were	tracked	over	time.	Cellular	output	was	assessed	at	1,	2,	3,	4.5,	6.5	

and	9.5	months,	with	the	final	time	differing	for	each	animal:	6.5,	9.5	and	4.5	months	

for	rhesus	macaques	ZH17,	ZH33	and	ZG66	respectively.		

	

We	first	inspected	the	degree	of	variation	in	progenitors	between	the	different	

rhesus	macaques	by	generating	a	single	t-SNE	map	for	all	progenitors	that	

contributed	at	any	time	point	from	the	three	animals	(Figure	S2a).	Points	on	the	t-

SNE	map	again	represented	single	progenitors	but	which	now	clustered	according	

not	only	to	a	similar	pattern	of	output,	but	also	dependent	on	their	kinetics	of	

contribution.	Note	that	in	pooling	data	across	the	three	rhesus	macaques,	the	last	

time	point	incorporated	was	4.5	months,	the	time	up	to	which	data	was	available	for	

all	animals.	Surprisingly,	although	progenitors	from	ZH33	and	ZG66	fell	in	similar	

regions	of	the	t-SNE	map	(JS	divergence:	0.38),	the	majority	of	the	ZH17	progenitors	

lay	outside	these	regions	(JS	divergence:	0.88	and	0.90	compared	with	ZH33	and	

ZG66	respectively,	and	0.88	compared	with	ZH33	and	ZG66	pooled),	indicating	very	
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different	reconstitution	kinetics	in	ZH17	compared	to	the	other	two	animals.	We	

therefore	proceeded	with	analyzing	individual	animals	without	pooling	data.	

	

To	generate	DiSNE	movies,	we	performed	t-SNE	on	data	from	each	rhesus	macaque	

separately,	incorporating	all	time	points	available	for	that	animal,	and	the	resulting	

t-SNE	maps	were	converted	into	pie	maps	each	focusing	on	a	single	time	point	

(Figure	3	and	S2b-c).	Although	the	entire	data	set	across	all	time	points	was	

embedded	within	each	individual	pie,	each	of	these	only	displayed	the	behavior	of	

progenitors	at	its	respective	time	point,	without	capturing	the	dynamic	component.	

We	then	linked	these	series	of	static	t-SNE	pie	maps	between	time	points	to	

generate	DiSNE	movies	for	dynamic	visualization	of	the	reconstitution	process	

encompassing	the	complexities	of	qualitative,	quantitative,	and	temporal	(order	and	

timing	of	contribution)	characteristics	of	individual	clones	(Movies	S1-3).		

	

When	comparing	the	DiSNE	movies	and	static	t-SNE	pie	maps	between	individual	

animals,	we	noticed	distinct	patterns	in	ZH17	(Movie	S1	&	Figure	3)	compared	to	

ZH33	(Movie	S2	&	Figure	S2b)	and	ZG66	(Movie	S3	&	Figure	S2c).	In	ZH17,	we	

observed	very	pronounced	waves	of	transient	contribution	from	progenitors	with	

progeny	limited	to	a	single	dominant	cell	type	(Figure	3).	This	lineage-restricted	

sequential	contribution	was	particularly	evident	in	the	lymphoid	lineages,	with	

transient	T	and	B	cell	clones	dominating	production	for	up	to	4.5	months.	Although	

myeloid-restricted	sequential	contribution	was	also	observed	at	1	month,	myeloid	

production	by	2	months	was	stably	associated	with	multi-lineage	clones.	On	the	
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other	hand,	lineage-restricted	sequential	contribution	was	much	less	obvious	in	

ZH33	and	ZG66,	with	stable	multi-lineage	clones	as	the	major	contributors	as	early	

as	2	months	(Figure	S2b-c).	Importantly,	a	class	of	stable	NK	cell-restricted	

progenitors	that	persisted	up	to	the	last	time	point	was	strikingly	apparent	in	the	t-

SNE	pie	maps	from	all	animals,	supporting	the	main	finding	from	the	original	study	

(Wu	et	al.,	2014)	that	NK	cells	have	a	distinct	lineage	origin	(Figure	3	and	S2b-c).	

	

To	uncouple	the	production	of	each	individual	cell	type	from	the	derivation	of	

others	to	appreciate	‘per	lineage’	reconstitution	kinetics,	we	performed	t-SNE	on	

data	for	each	cell	type	separately,	incorporating	all	time	points	available	(Figure	4a	

showed	t-SNE	on	B	cell	output).	These	t-SNE	maps	were	then	manually	classified,	

and	the	contribution	of	each	class	to	that	cell	type	through	time	was	visualized	in	a	

spindle	plot	(Figure	4b	for	B	cells	and	S3	for	all	cell	types).	Examining	individual	cell	

types	separately	again	demonstrated	two	main	progenitor	classes:	transient	

sequential,	versus	stable	contribution,	with	a	higher	representation	of	sequential	

clones	in	ZH17	compared	to	the	two	other	animals,	which	were	reconstituted	with	

stable,	multi-lineage	clones	early	in	time.	As	seen	in	Figure	S3,	there	was	a	large	

variety	of	patterns	in	which	clones	contributed	to	hematopoiesis.	Particularly	

interesting	were	progenitors	that	contributed	at	multiple	non-consecutive	time	

points	(e.g.,	class	15	of	B	cells	in	ZH17),	indicating	a	termination	of	contribution	

followed	by	subsequent	re-contribution.	
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Using	spindle	plots,	we	also	highlighted	the	activities	considering	all	cell	types	of	

two	particular	groups	of	progenitors	from	ZH17	through	time	(Figure	4c).		In	one	

group	we	focused	on	the	progenitors	contributing	stably	to	NK	cells,	reiterating	the	

main	finding	of	study	(Wu	et	al.,	2014)	in	an	visually	intuitive	manner.	In	another	

group,	we	identified	progenitors	initially	producing	T	cells	followed	later	by	

granulocyte	production.	This	ordering	of	events	is	peculiar	as	granulocyte	

production	is	thought	to	precede	that	of	T	cells,	and	co-production	in	the	absence	of	

other	cell	types	is	rare.	As	this	cluster	of	progenitors	was	only	identified	in	one	

primate,	further	studies	should	confirm	or	exclude	the	existence	of	progenitors	with	

such	behavior	and	the	mechanisms	responsible.	Our	method	therefore	facilitated	

classification,	which	when	presented	as	spindle	plots,	intuitively	captured	the	

complexity	and	dynamics	of	hematopoietic	reconstitution.	

	

Discussion	

The	analysis	of	high-dimensional	data	is	a	broad	challenge	in	biology,	and	a	major	

factor	hampering	progress	is	our	inability	to	‘see’	the	data.	By	applying	our	recently	

developed	DiSNE	visualization	tools	we	were	able	to	identify	and	assess,	de	novo,	

patterns	of	reproducibility	in	in	vivo	models	of	haematopoiesis	in	mice	and	

primates.	In	particular,	we	identified	rare	subsets	with	unique	size,	fate	and	

temporal	properties.	This	is	exemplified	by	the	identification	of	a	subset	of	CD34+	

hematopoietic	progenitors	that	had	an	early	T	cell	(without	B	cell)	production	wave,	

with	a	later	granulocyte	(without	monocyte)	production	wave	(Figure	4c,	

population	2).	This	represents	a	subset	of	progenitors	that	was	missed	in	the	
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original	macaque	barcoding	study	(Wu	et	al.,	2014).		It	is	novel	both	for	the	

unexpected	order	of	development	(T	cell	development	typically	proceeds	

granulocyte	production	(Forsberg	et	al.,	2006;	Luc	et	al.,	2008;	Reya	et	al.,	2001))	

and	that	no	other	cell	types	within	their	respective	lineages	were	co-produced.	This	

is	the	first	report	of	such	a	progenitor	and,	while	such	a	pattern	would	need	to	be	

validated	further,	demonstrates	the	power	of	our	computational	approach	for	novel	

pattern	identification.	

	

This	finding	also	fits	with	a	growing	body	of	evidence	of	unusual	pairings	of	fate	

from	stem/progenitors	(Ceredig	et	al.,	2009),	including	for	T	cell	development	with	

other	myeloid	cells	(Bell	and	Bhandoola,	2008;	Bhandoola	et	al.,	2007;	De	Obaldia	et	

al.,	2013).	However,	as	these	studies	tend	to	study	output	at	the	population	level,	

and	at	a	single	time	point,	our	findings	add	fine-grained	temporal	and	clonal	

complexity	in	understanding	the	dynamics	of	hematopoiesis.	This	data	is	consistent	

with	a	‘graded’	or	‘probabilistic’	model	where	commitment	can	occur	at	all	stages	of	

hematopoiesis,	i.e.,	currently	defined	progenitor	populations	contain	a	mixed	

population	of	committed	in-transit	cells,	and	uncommitted	cells	(Naik,	2008;	Nimmo	

et	al.,	2015).	A	longer-term	challenge	will	be	to	fit	these	data	into	a	revised	model	

that	is	more	informative	and	accurate	than	current	oversimplified	stick-and-ball	

bifurcation	models	of	hematopoiesis.	

	

Another	challenge	will	be	identifying	the	causative	factors	of	fate	heterogeneity	

whether	they	are	intrinsic	or	extrinsic.	Emerging	high	throughput	studies	using	
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single	cell	RNA-sequencing	are	revealing	such	regulators,	however	definitive	linking	

of	each	gene	to	its	bona	fide	fate	profile	is	precluded	due	to	the	destructive	nature	of	

scRNA-seq.	Such	knowledge	may	have	clinical	benefit	if,	for	example,	one	could	

isolate	or	engineer	the	sub-fraction	of	CD34+	cells	that	represent	true-long	term	

stable	HSCs	for	transplantation,	or	select	for	transient	progenitors	that	generate	a	

restricted	repertoire	of	cell	types.	We	are	currently	exploring	experimental	means	

to	explore	and	link	fate	heterogeneity	with	gene	expression	heterogeneity	to	

uncover	fate	programs	at	the	single	cell	level.	The	method	described	herein	provides	

the	framework	to	rapidly	examine	such	relationships	and	appreciate	biological	

processes	at	a	systems	level.	
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Figure	legends	

Figure	1.	t-SNE	for	visualization	and	classification	of	cellular	barcoding	data	

a)	t-SNE	map	of	the	output	of	1,418	LMPPs	from	six	mice	to	six	different	cell	types.	

Progenitors	were	manually	classified	and	named	based	on	their	patterns	of	output	

in	b.	b)	Heat	maps	of	each	class	where	each	row	represents	a	barcode	and	each	

column	the	cell	type	for	which	the	barcode	contributes,	and	color	is	indicative	of	the	

relative	contribution	of	each	LMPP	to	each	cell	type.	Number	of	barcodes	in	each	

class	is	shown	in	brackets.	c)	Hierarchical	clustering	of	the	same	data,	with	the	

progenitors	in	each	t-SNE	class	“backgated”	and	highlighted	in	columns	to	the	right.	

Note	that	t-SNE	classes	are	largely	dispersed	down	the	clustered	heat	map,	and	not	

grouped,	indicating	that	hierarchical	clustering	does	not	capture	the	same	classes	as	

t-SNE.	d)	t-SNE	classes	backgated	onto	a	two-dimensional	PCA	of	the	same	data.	

Note	how	the	t-SNE	classes	are	not	easily	separable.	e)	Comparison	of	different	

dimensionality	reduction	techniques	for	their	conservation	of	the	20	nearest	
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neighbors.	Error	bars	are	standard	errors	of	the	mean	across	the	six	mice.	t-SNE	

outperforms	PCA,	Isomap	and	LLE	for	conservation	of	nearest	neighbors	at	lower	

numbers	of	dimensions	(i.e.,	groups	of	progenitors	with	similar	fate	patterns	are	

best	segregated	with	t-SNE	when	plotted	in	two	dimensions).	

	

Figure	2.	Behavior	and	reproducibility	of	LMPP	classes	identified	using	t-SNE	

a)	t-SNE	pie	map	of	the	same	data	as	in	Figure	1a,	with	point	size	scaled	according	to	

the	clonal	output	of	each	progenitor,	and	converted	to	a	pie	chart	to	visualize	the	

relative	contribution	of	that	clone	to	the	different	cell	types.	b)	Contribution	of	t-

SNE	classes	to	each	cell	type,	with	classes	contributing	to	10%	or	more	to	a	cell	type	

labeled.	Error	bars	are	standard	errors	of	the	mean	across	the	six	mice,	and	class	

numbering	and	color	is	consistent	with	Figure	1.	The	dominantly	contributing	

classes	are	all	multi-outcome.	c)	The	proportion	of	LMPPs	from	each	of	six	mice	

present	in	each	class.	Lines	span	range	of	LMPP	proportions	for	each	class,	and	each	

symbol	represents	an	individual	mouse.	Most	classes	have	representative	LMPPs	

from	each	mouse.	

	

Figure	3.	Static	visualization	of	reconstitution	kinetics	in	ZH17	

t-SNE	pie	maps	of	the	output	from	1,354	hematopoietic	stem	and	progenitor	cells	

from	ZH17	to	five	different	cell	types	sampled	at	five	time	points.	The	underlying	t-

SNE	map	(where	each	progenitor	is	located	in	the	reduced	t-SNE	dimensions)	is	

constructed	from	the	entire	data	set	(i.e.,	all	cell	types	at	all	time	points),	but	the	

point	size	and	pie	chart	proportions	for	each	panel	are	set	according	to	the	
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respective	specific	time	point.	Empty	(white)	points	indicate	no	contribution	at	that	

time	point.	See	Movie	S1	for	dynamic	visualization.	Lineage-restricted	sequential	

contributors	are	primarily	located	along	the	periphery	of	the	map	and	are	the	main	

contributors	at	earlier	time	points,	and	later	on	their	activity	is	replaced	by	the	

multi-lineage	stable	clones	positioned	in	the	centre	of	the	map.	Note	the	persistence	

of	the	NK-specific	progenitors	in	the	top	right	corner	of	the	map	through	all	time	

points	sampled.	

	

Figure	4.	Reconstitution	kinetics	identified	using	t-SNE	

a)	t-SNE	maps	of	the	B	cell	output	of	progenitors	from	the	three	rhesus	macaques	

across	all	time	points	sampled.	Progenitors	were	manually	classified,	and	those	that	

contributed	to	5%	or	more	of	all	B	cells	at	any	time	point	are	labeled.	b)	Spindle	

plots	depicting	the	patterns	of	B	cell	reconstitution	in	the	three	rhesus	macaques.	

Each	spindle	represents	a	class	from	a	(except	Misc,	see	below),	and	the	width	of	the	

spindle	indicates	the	amount	of	B	cell	contribution	of	that	class	at	that	time	point.	

Classes	which	do	not	contribute	to	5%	or	more	of	all	B	cells	at	any	time	point	are	not	

shown	individually,	but	are	instead	all	agglomerated	and	plotted	as	the	

miscellaneous	(Misc)	spindle	at	the	bottom	of	each	panel.	Reconstitution	kinetics	in	

ZH17	showed	very	pronounced	waves	of	transient	contribution,	whereas	stable	

clones	played	a	much	greater	role	in	ZH33	and	ZG66.	Note	that	each	cell	type	of	each	

animal	was	analyzed	independently	and	hence	class	numbers	across	cell	types	and	

animals	are	also	independent.	c)	Two	groups	of	progenitors	from	ZH17	are	

highlighted	on	the	t-SNE	map	considering	all	cell	types	(left	panel),	and	the	activities	
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of	progenitors	from	these	groups	are	visualized	using	spindle	plots	(middle	and	

right	panels).	The	width	of	each	spindle	indicates	the	amount	of	contribution	of	the	

group	of	progenitors	to	the	corresponding	cell	type	at	that	time	point,	and	each	

partition	of	the	spindle	represents	an	individual	progenitor	within	the	group.	

Partitions	of	the	spindles	are	shaded	randomly	for	ease	of	visualization.	Group	1	

primarily	contributes	stably	to	NK	cells,	whereas	group	2	predominantly	

contributes	transiently	to	granulocytes	at	2	months.	Note	that	although	a	few	

progenitors	from	group	1	contribute	to	cell	types	other	than	NK	cells	at	various	time	

points,	all	progenitors	from	both	groups	contribute	to	T	cells	at	1	month.	This	is	

especially	interesting	in	group	2	as	granulocyte	production	is	thought	to	precede	T	

cell	production.	
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