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Abstract

The analysis of the brain from a connectivity perspective is unveiling novel insights into brain
structure and function. Discovery is, however, hindered by the prior knowledge used to make
hypotheses. On the other hand, exploratory data analysis is made complex by the high dimen-
sionality of data. Indeed, in order to assess the effect of pathological states on brain networks,
neuroscientists are often required to evaluate experimental effects in case-control studies, with
hundreds of thousand connections.

In this paper, we propose an approach to identify the multivariate relationships in brain connec-
tions that characterise two distinct groups, hence permitting the investigators to immediately dis-
cover sub-networks that contain information about the differences between experimental groups.
In particular, we are interested in data discovery related to connectomics, where the connections
that characterize differences between two groups of subjects are found, rather than maximizing
accuracy in classification since this does not guarantee reliable interpretation of specific dif-
ferences between groups. In practice, our method exploits recent machine learning techniques
employing sparsity to deal with weighted networks describing the whole-brain macro connec-
tivity. We evaluated our technique on functional and structural connectomes from human and
mice brain data. In our experiments, we automatically identified disease-relevant connections in
datasets with unsupervised and anatomy driven parcellation approaches using high-dimensional
datasets.
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Introduction

The analysis of brain networks, or connectomes, is a recent and exciting advancement in mag-
netic resonance imaging (MRI) which promises to identify new phenotypes for healthy, diseased
or ageing brains (Sporns (2011)). A connectome is a mathematical description of the brain,
which is conceived as a network, where brain areas (nodes) are connected by links (edges)
(Sporns (2010)), and connections can be either given by white matter tracts between pairs of
brain regions, or by an index of correlation of functional activity (Richiardi et al. (2011)). This
allows for analysing the brain as a complex system of dynamically interacting components with-
out explicitly relying on local activation or brain morphology.

Case-control studies and connectomics

Experiments with connectomes are typically designed by comparing a studied group with a
control group in order to identify brain-network topological biomarkers relevant to the studied
group (Rubinov and Sporns (2010)). Indeed, inter-group differences in some of these topological
measures have been discovered for various neuropsychiatric disorders (Bullmore and Sporns
(2009)), like Alzheimer’s disease (Stam et al. (2009)), multiple sclerosis (He et al. (2009)),
schizophrenia (Lynall et al. (2010); Cocchi et al. (2014)), stroke (Grefkes and Fink (2011);
Bonilha et al. (2014)), major depression (Zeng et al. (2014)), etc. All these approaches use
topological measures with statistical tests to assess their discrimination power in a univariate
analysis framework. Alternatively, in a multi-variate framework, machine learning methods have
been proposed to differentiate groups of subjects using topological measures (e.g., Iturria-Medina
et al. (2011)). Surveys on graph-topological metrics using functional magnetic resonance imag-
ing (fMRI) data and related clinical applications using structural features are given respectively
in Varoquaux and Craddock (2013) and Griffa et al. (2013).

Local differences between connectomes

The main drawback of these approaches is the limited interpretability of graph statistics as they
miss the local characterization of the groups in terms of differences in the connectivity, but rather
employ global statistics which are difficult to be translated into clinical settings for local analysis.
A method which allows insights on local connectivity patterns in case-control studies relies on
Network-Based Statistics (NBS). In this approach, the connectivity between pairs of brain re-
gions is tested for significance using univariate statistics for functional (Fornito et al. (2011)) and
anatomical (Zalesky et al. (2011)) connectivity disturbances. Simpson et al. (2013) extended the
NBS method using a permutation test based on Jaccard index at node level. While, Chen et al.
(2015) enhanced NBS regulating the topological structures comprised. With the same aim, trying
to identify discriminating regions between groups, Ng et al. (2016) and Gaonkar and Davatzikos
(2013) proposed to analyse the weights resulting from trained support vector machines (SVM). In
particular, in Ng et al. (2016) a projection of covariance estimates onto a common tangent space
was carried out to reduce the statistical dependencies between elements. Then, these estimates
were used in a SVM framework which uses its weights to find meaningful difference between
two groups. Preliminary results showed that more advanced machine learning approaches based
on SVM coupled with Riemannian/Grassmannian geometry can be used to discriminate groups
of connectomes (Dodero et al. (2015)). Despite NBS and its extensions have been shown to out-
performs other methods in comprehensive comparisons (Kim et al. (2014)), the identification of
graph sub-networks is a pre-requisite which can limit the detected connections. Moreover, the
threshold for the significance of the statistics has to be set, influencing considerably the results

2


https://doi.org/10.1101/277046
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/277046; this version posted March 8, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(Baggio et al. (2018)). Searching for a more specific and localized information, van den Heuvel
and Sporns (2011) proposed a sub-graph level analysis, with a specific emphasis on the potential
functional importance of highly connected hubs (“rich-clubs”). Although the focus on rich-clubs
is insightful, this method could leave out subtle differences between case-control groups which
are not present in highly connected hubs.

Relation to previous methods

In this context, we are interested in data discovery related to connectomics, where the connec-
tions that characterize differences between two groups of subjects are found, and where maximiz-
ing accuracy does not guarantee reliable interpretation since similar accuracies can be obtained
from distinct sets of features (Rondina et al. (2014)). To overcome the limitations of the univari-
ate approaches which perform statistical tests on single connections mentioned in the previous
subsection - and in particular to the most commonly used NBS (Zalesky et al. (2010)) - we use a
multivariate bootstrap-like approach. Therefore, we propose a fully data driven method to iden-
tify relevant brain sub-networks in experiments with case-control design. Our approach aims at
creating an hypothesis generation tool for connectomes investigations. The method is supposed
to work equally well with functional and structural MRI data, and no prior knowledge about the
type of connectivity is required, only examples of brain connectivity matrices of two groups are
needed.

A similar method proposed by McMenamin and Pessoa (2015) implemented a two-layer di-
mensionality reduction technique based on principal component analysis (PCA), followed by
quadratic discriminant analysis to identify clusters with altered connectivity at voxel level. How-
ever, when PCA was used for feature selection, the eigenvalues of the covariance matrix were
used regardless the prior knowledge on the groups to be discriminated, and in doing so the result-
ing features may not be those which were really meaningful in terms of discrimination between
groups. Conversely, our method directly performs a sparse version of linear discriminant analy-
sis (LDA) that, by design, tries to optimize the feature selection step aiming at discriminating the
groups. This allows the proposed method to be more specific in terms of identified discriminating
connections.

More specifically, our model is based on an ensemble of sparse linear discriminant models
allowing to find the networks’ elements (a set of edges) able to consistently distinguish two
groups, in the attempt to minimize the subset of selected connectivity features and simultaneously
maximize the difference between the groups, jointly using the selected features. Essentially, the
system acts as a filter removing the elements that are not useful to discriminate between the
groups.

Other methods have already used sparsity to estimate relevant connections (Huang et al.
(2010); Lee et al. (2011); Gramfort et al. (2013)). However, these methods did not focus on find-
ing the discriminant connections between groups while performing the sparse selection. They
use sparsity to reduce the number of connections regardless on the inter-class discrimination.

Paper overview

Owing to the sparsity principle driving the learning method combined with the statistical ro-
bustness of ensemble methods, our multivariate approach can scale up with the number of anal-
ysed connections, even when employing a limited number of whole-brain connectivity matri-
ces. By virtue of being multivariate, this approach can identify brain sub-networks whose edges
combination can characterize the differences between the connectomes but taken independently
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cannot. Moreover, the method does not have to rely on covariance matrices. It just needs an in-
dex describing the strength of connectivity between the areas in terms of correlation, similarity,
dissimilarity or other metrics. For example, in case of structural connectivity the matrix can be
determined counting the number of connections between the areas.

We validated the approach on three real datasets. In a first experiment, we used the structural
connectivity, based on the tractography extracted from diffusion tensor imaging (DTI). Specifi-
cally, we compared a group of acallosal BTBR mice (a well-characterized model of autism) with
a group of control normocallosal and normosocial C57BL/6J mice (Sforazzini et al. (2014a);
Squillace et al. (2014)). Performing this experiment with a simple and well known connectivity
dysfunction, without the use of any prior anatomical parcellation to avoid any prior bias, we em-
pirically validated the approach, which was able to retrieve the expected dissimilarity between
the two groups

A further experiment was conducted on functional connectivity matrices from a publicly avail-
able dataset of patients affected by schizophrenia (Zalesky et al. (2010)). The final experiment
was carried out on a larger dataset of attention deficit hyperactivity disorder (ADHD) children
compared to typically developing (TD) children. In all cases, our method successfully detected
inter group differences relevant to the medical condition investigated.

(a) (b)

Figure 1: Example of axial section tractography of (a) a normo-callosal C57BL/6J control and acallosal BTBR (b) mouse
respectively, where the different anatomical structures are apparent but difficult to understand. In particular, the lack of
corpus callous in (b) is visible.

Methods and Data

This section first describes the two types of data used to test the proposed method: a mice DTI
dataset with high dimensionality, and two publicly available human fMRI datasets. Afterwards
the pre-processing and the proposed computational model for discriminating patterns in whole-
brain analysis are described.

Data

Mouse Structural Connectivity Data
The mice cohort was composed of two groups of 22-26 weeks old male subjects: BTBR T+tf/J

mice which share analogies to all diagnostic symptoms of autism and characteristic functional
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and structural features of the brain (Ren et al. (2007); Dodero et al. (2013); Fenlon et al. (2015)),
and C57BL/6J mice which are characterised by normal sociability and represent the control
group. The animal preparation protocol is described in Sforazzini et al. (2014b) and Dodero et al.
(2013). Fig. 1 depicts an example of the expected difference between the BTBR and C57BL/6J
mice groups. In particular, BTBR mice lack the corpus callosum differently from the C57BL/6J
mice.

Briefly, brains were imaged inside intact skulls to avoid post-extraction deformations. Ex-vivo
high-resolution DTI and T2-weighted images were acquired on paraformaldehyde-fixed speci-
mens with a 7 Tesla Bruker Pharmascan MRI scanner (Billerica, MA, USA). T2-weighted MR
anatomical images were acquired using a RARE sequence with the following imaging param-
eters: TR/TE = 550/33 ms, RARE factor = 8, echo spacing 11 ms, and a voxel size of 90 um
isotropic. DTI volumes were acquired using 4 scans at bO and 81 scans with different gradient
directions (b=1262 s/mm?), with resolution 130 x 130 ,umz, using a 4-shot EPI sequence with
TR/TE = 5500/26 ms. Anatomical and DTI sequences were acquired sequentially at the same
centre with the same scanner.

This dataset is used to show that the algorithm is able to identify difference between the groups
which are expected to be found as a proof of concept.

Human Functional Connectivity Schizophrenia Data

Functional connectivity was firstly investigated on a previously described resting-state fMRI
dataset used in a study aiming at identifying differences in brain networks (Zalesky et al. (2010)).
This dataset has been chosen to allow direct comparison to the state-of-art method NBS (Zalesky
et al. (2010)). 12 patients with schizophrenia (all males, mean age 32.8 + 9.2 years) and 15
controls (all males, mean age 33.3 + 9.2 years) participated in this study. The two groups were
matched for age, gender and years of education. Patients were diagnosed according to standard
operational criteria in the Diagnostic and Statistical Manual of Mental Disorders (American Psy-
chiatric Association et al. (1980)). All subjects underwent blood-oxygenation-level dependent
(BOLD) fMRI scanning at rest. All patients were treated at the time of the scan but did not
receive any medication on the day of scanning. The functional data of these individuals were
acquired by using a 1.5 Tesla GE Signa scanner (General Electric, Milwaukee, WI) with the
following parameters for BOLD acquisition: TR/TE 2/40 s, flip angle 70 degrees, voxel size
3.05 x 3.05 x 7 mm, and 512 frame/volume. These data are publicly available (Zalesky et al.
(2010)).

Human Functional Connectivity ADHD Data

Functional connectivity was also investigated on a larger resting-state fMRI dataset comprising
ADHD and TD subjects (Castellanos et al. (2008)). In particular, we used the publicly available
New York University Child Center dataset?, which is the main cohort of this study. The dataset
comprised 95 ADHD subjects (67 male and 28 female, mean age 11.4 + 2.7) which were either
inattentive, or hyperactive or both, and 92 healthy TD (45 male and 47 female, mean age 12.4 +
3.1) which represents the control group.

The fMRI volumes were acquired with a Siemens Allegra 3T, with TR/TE 2000/15 ms and
voxel size 3 X 3 X 3 mm.

Zhttp://umcd.humanconnectomeproject.org
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Methods

Mouse Dataset Processing and Encoding

Deterministic tractography was performed on the DTI volumes after eddy current corrections,
by using the Fiber Assignment by Continuous Tracking (FACT) algorithm (Mori et al. (1999)).
Fibres were reconstructed in the original volumes following the 2nd-order Runge-Kutta integra-
tion scheme (Lazar et al. (2003)) starting from the centre of each voxel and following the main
direction of the tensor. The tracking was stopped when the fibre made a sharp turn (> 35°) or
entered a voxel with fractional anisotropy (FA) < 0.15.

To allow inter-subject comparisons, registration matrices to a common space were computed
for each subject by using affine transformation (12 degrees of freedom). The obtained registra-
tion matrices were then applied to the endpoints of each fibre. This allowed the tractography
algorithm to work on the original volume space without warping the tensors.

To enable a purely data-driven inter-group comparisons without the use of anatomical priors,
the brain volumes were split into 3D cubes of size 1 X 1 X 1 mm, without considering any atlas.
Each cube was a node in the graph and the connectivity matrix was built counting the fibres
starting and ending into two distinct cube elements of the grid, avoiding the inclusion of u-fibers.
This resulted in defining 42,704 edges.

The advantage of this approach was that the result of the proposed analysis method was nearly
independent from the size of parcellation. Indeed, not considering the anatomy nor the physi-
ology of the brain might result in bundles of fibers split into “sub-bundles” connecting adjacent
cubes. However, if there is a difference between the two groups it is retrieved for all sub-bundles,
hence the overall bundles are then reconstructed. Yet the choice of using a fine grid or an atlas is
arbitrary.

Schizophrenia Dataset Processing and Encoding

Brain volumes were already pre-processed according to the steps indicated in Zalesky et al.
(2010), and made available on-line as precomputed functional connectivity matrices. Briefly,
data were pre-processed by using the Cambridge Brain Activation (CamBA) software®. All
volumes were motion corrected, filtered with a pass-band leaving only frequencies in the range
0.03 < f < 0.06 Hz, and skull stripped. Brain volumes were also registered by using affine
transformation (12 degrees of freedom). 74 regions of interest (nodes) were selected following
Zalesky et al. (2010) within the automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer
et al. (2002)). Regions for which node-averaged time series could not be accurately estimated
were excluded. In particular, olfactory cortex and gyrus rectus were removed because of the
signal drop-outs.

The average signal within each node was calculated. Fluctuations of nuisance signals of no
interest were reduced via linear regression against reference time series extracted from the seed
regions defined by the white matter and cerebrospinal fluid. The functional connectivity was
defined for each subject by temporal correlation among the time series resulting in a 74 X 74
connectivity matrix.

ADHD Dataset Preprocessing and Encoding
This dataset has been pre-processed as described in Colby et al. (2012), and the final connectiv-
ity matrices are publicly available. In brief, resting-state fMRI data were preprocessed following

3http://www.bmu.psychiatry.cam.ac.uk/software/
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these steps: Removal of first 4 EPI volumes, slice timing correction, motion correction, and then
applying the regressors for WM, CSF, motion time courses and a low order polynomial detrend-
ing. A band-pass filter of 0.009 < f < 0.08 Hz was also applied. Lastly, the data were blurred
using a 6-mm Full Width at Half Maximum Gaussian filter. The functional region of interests
were obtained using the method described in Craddock et al. (2012) for 200 areas.

Multi-link Analysis (MLA)

The interpretation of differences in brain networks is not always straightforward given indi-
vidual variability and the high dimensionality of data (Sporns (2012)). Moreover, the internal
structure of the brain connectivity with cross-relationships and dependencies in the feature space
(the edges) may prevent a full retrieval of groups’ differences using univariate analysis. Machine
learning and dimensionality reduction techniques are designed to solve these issues, and hence
these methods are a natural choice for addressing this discrimination task. We propose a two-
stage feature selection process. At the first stage a classifier reinforcing sparsity is employed to
select discriminant features, then only features which are consistent across dataset are kept.

An approach simultaneously implementing both techniques in a common sparse framework
is sparse logistic regression, which has been already used to select relevant voxels for decoding
fMRI activity patterns (Yamashita et al. (2008); Ryali et al. (2010)). Alternatively, in case of
Gaussian-distributed data, the well known linear discriminant analysis has been extended to
the sparse case with the sparse discriminant analysis (SDA) model (Clemmensen et al. (2011);
Witten and Tibshirani (2011)). In particular, the method by Clemmensen et al. (2011) implements
the elastic net regression with the £;-norm on the feature weights that indirectly sets the number
of selected features. In all our experiments we resorted to this SDA model with the assumption
that data in each group have a Gaussian distribution.

For all the experiments, the connectivity matrices are vectorized and ordered as rows in a
n X p data-matrix X, with n being the number of observations and p their dimensionality. The
corresponding classification of objects is encoded into the n X K indicator matrix Y, where each
cell Yy indicates whether observation i belongs to class k. The SDA proposed by Clemmensen
et al. (2011) then finds the discriminant vectors S for each class k and the vector of scores 6; by
the convex optimization given by the following regularized linear discriminant formulation

ming, g, [[Y6 — XB,I1* + 17 11Bell1 + v B{ B

. LTy T (D

subject to ZHkY Yo, =1,
OI{YTYGI =0VI<k.

where Q is an arbitrary positive definite matrix, which allows to calculate a smooth discriminant
vectors B; even if the number of samples is smaller than the number of features (n < p). In
our experiments we used € = I which makes the formulation an elastic net problem. The non-
negative parameters 77 and y control respectively the ¢; and ¢, regularization.

The advantage of the proposed sparse method is its capability of managing high-dimensional
data thanks to the ¢, regularization. Moreover, the {; regularization term allows the model to
select a small subset of features for the linear discrimination. This might result in a loss of
predictive power while however reducing the over-fitting problem. In contrast, the £, penalty
term enjoys the grouping effect property, i.e., it works keeping small and comparable the weights
of correlated predictors (Zou and Hastie (2005)). Moreover, ¢, penalty term is much better at
minimizing the prediction error than ¢, regularization. As a result, their combination allows
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to determine a good trade-off between an optimal classifier and a minimal selection of relevant
predictors.

Although it is acknowledged that this type of model can be affected by the choice of 1 which
represents the advantage and limitation of the method, indeed we noticed that the algorithm was
satisfactorily discriminating the two classes on a wide range of n values. In this work we were
mostly interested on discriminant features rather than finding an optimal classification. However,
the results are shown using the values which allow better accuracy estimated in cross-validation
manner and using the minimum number of features according to compactness criterion. The
parameter y was not optimized for the same reason and it was fixed as 107® to guarantee a
minimal regularization. Lastly, the parameter i can also be reformulated as the desired number
of variables selected by the model. In the following we will refer to this number as « instead of
n. We address the reader to Zou and Hastie (2005) for a description of the relation between 1 and
a, and further details on the algorithm are given in the Appendix.

Although this model is very powerful in determining small and good subset of features al-
lowing to linearly discriminate the classes, it suffers from a stability problem (Meinshausen and
Buhlmann (2010)), i.e., small changes in the data can drastically change the result of a single run.
To cope with this stability issue, in order to improve the robustness of SDA, we have introduced
a leveraging principle exploiting the ensemble of low-stability algorithms to produce a more sta-
ble feature selection (Giancardo et al. (2012)). In particular this leveraging principle consisted in
a bagging-like approach without randomization during the bootstrap. Indeed this combines the
output of multiple weak learners to create a stronger one (Meir and Rétsch (2003)). Boosting can
be seen as a specific instance of leveraging algorithm (Mason et al. (2000)).

In our specific case, the SDA classifier was trained with a balanced leave-one-out approach,
i.e.: in turn we removed one sample, we trained the model on the remaining sample, and tested
only the sample that were left out. The process was repeated for all samples generating a cross-
validation statistics. This ended up in an ensemble of models each one with a subset of “relevant”
features (connections), selected so to maximize the discrimination between the two groups.

Statistics over the ensemble of all models were then refined by occurrence validation, where
only features which were frequently selected during cross-validation were retained, i.e., features
occurring in less than a pre-defined percentage of runs were discarded. In all our experiments
reported below this threshold was determined as half the number of subjects in the corresponding
dataset.

The weights of the selected features 5; were then used to evaluate their importance, namely,
the higher the weight, the more important the feature is.

Results

In this section we report the results for the experiments with high-dimensional structural con-
nectivity with murine data, and two datasets of human functional connectivity collected to study
respectively schizophrenia and autism.

Mice Structural Connectivity Data
In order to prove the discriminative power of our approach, we tested its ability to correctly
distinguish the structural connectomes of two groups of mice (C57BL/6] and BTBR) character-
ized by previously described white matter alterations, i.e., the presence/absence of the two major
neocortical intra-hemispheric tracts: the corpus callosum and the dorsal hippocampal commis-
sure (Sforazzini et al. (2014b)). Being the structural alteration in the BTBR mice well known,
8
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Figure 2: Histogram describing the occurrences of features selected for the mouse experiment as discriminative over all
runs of the model within the ensemble framework. Higher values indicate those edges that characterize the differences
between BTBR and control mice in many classifiers. This histogram is used to select a sub-set of “relevant” features.
Namely, the most frequent features highlighted by the histogram are kept.

this dataset is used to validate the proposed method. Indeed, the BTBR mice model represents
a ground truth of expected differences between the two groups. Over and above, more than the
discrimination between the groups, we are interested in empirically assessing the ability of our
approach to correctly identify white matter tracts differences in the two groups.

Indeed, by using the proposed algorithm, the model correctly classified all samples in a cross-
validation schema, and structural differences - as the lack of corpus callus - were found as ex-
pected from literature.

To this aim the proposed approach returns a statistics of the relevance of features, by counting
the amount of occurrences of the features selected by the ensemble of models. Figure 2 shows
the occurrence of the detected features for the experiment with mice structural connectomes,
some of which are present in all the runs, indicating a strong relevance for the problem at hand.
Interestingly, the edges identified by the algorithm showed the expected characteristic features of
the BTBR strain, including the agenesis of the corpus callosum and the presence of rostral-caudal
rearrangement of white matter. Figure 3 shows how our algorithm (MLA) and NBS identify the
parts of the corpus callosum which are known to be missing. This experiment confirms that our
new approach and NBS are able to identify the acallosal connections in the BTBR models.

NBS and MLA select discriminative features in different ways. NBS performs univariate t-
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(b)

(c) (CY)

Figure 3: Graphical representation of the most significant features charactering the structural connectome of the two
populations: the axial views of a randomly selected subject from the C57BL/6J control population (a) using our algorithm
(@ = 50) and (b) the NBS algorithm using as a threshold p-value 0.01. While (c) and (d) are the axial views and of a
randomly selected subject from the BTBR population respectively for our algorithm and NBS. As expected BTBR mice
show a lack of corpus callosum and hippocampal commissure and an increased intra-hemispheric ipsilateral connectivity.

tests among the features while ML A performs a sparse multivariate regression.

The whole analysis from raw DTI data to tracts selection of the 10 subjects, by using Matlab
Mathworks 2014, took less than 40 minutes on a 2.6 GHz machine with 4GB of RAM. However,
the five rounds of MLA analysis required only less than 1 sec (with £; parameter @ = 50 estimated
by cross-validation which also gave 100% accuracy).

Human Functional Data

We tested the algorithm also on a publicly available dataset based on human functional MRI
recorded from patients with schizophrenia and healthy controls (Zalesky et al. (2010)) and
ADHD against TD subjects. By using the parameter @ = 30 estimated by cross-validation in the
schizophrenia experiment, the algorithm highlighted significant differences between the case and
control groups, which are reported both in Table 1 and 2 with NBS p-values, and in the histogram
of features occurrence in Figure 7 respectively for the Schizophrenia experiment. Both our al-
gorithm and NBS evidenced similar disconnected functional sub-networks in the schizophrenia
group, namely in the fronto-temporal, parietal and occipital regions. Furthermore, some connec-
tions such as those between the precentral gyrus and the fusiform gyrus, the frontal mid-orbital
gyrus and the talamus, and between the putamen and pallidum, would have been discarded by
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Table 1: Functional connections differentiating patients with schizophrenia from controls identified by MLA (our algo-
rithm). Pairs of source and target regions and p-values of the univariate t-test computed on NBS (Zalesky et al. (2010))
are reported. “Not detected” (N.D.) means not significant difference between the two areas.

p-value
# Region 1 Region 2 NBS
1 | Frontal-Mid-Orb-R | Frontal-Inf-Tri-L 0.04
2 Precentral-R Fusiform-R N.D.
3 Rolandic-Oper-L Postcentral-L 0.0001
4 Putamen-L Pallidum-R N.D.
5 | Frontal-Mid-Orb-R Thalamus-R N.D.
6 Occipital-Mid-R Thalamus-R 0.04
7 Frontal-Inf-Orb-L Heschl-L 0.0004
8 Heschl-L Temporal-Sup-L. | 0.0004

NBS as having non-significant p-values at univariate level as shown in Table 1. To rule out the
hypothesis that this difference was due to artefacts of the proposed method, we further inves-
tigated whether the non significant connections at univariate level have any correlations with
the significant connections. These connections were related to the connection Frontal-Inf-Orb-
L/Hescl-L with an R? score of 0.7 of regression (which has a value of 1 in case of a perfect
correlation). Suggesting that those connections discarded by NBS are indeed meaningful. As
an example of this correlation, Figure 4 shows the Pearson correlation between Frontal-Inf-Orb-
L/Hescl-L and one of those connections with non significant univariate statistics, specifically,
Precentral-R/Fusiform-R for all subjects. Although it cannot be ruled out that some of these
correlated features capture noise in some associated variables, the figure highlights the presence
of a correlation between these two functional connections. In particular, each point in the graph
identify the two weights for one subject and the correlation has been computed for each group
separately.

In the experiment with the ADHD data, the cross-validation found the optimal value for the the
MLA algorithm as @ = 9, which highlighted 7 discriminant connections across the groups with
an accuracy of 66%, but the NBS did not produced any significant value. This might be due to
the fact that the first key step of NBS is to identify candidate subnetworks which are then tested
for their relevance using permutation testing. These candidate subnetworks are only selected if
the nodes are explicitly connected between each others. Connectomes derived from data with
high dimensional parcellations (as the used dataset with 200 areas) are more likely to have areas
that are not connected, either because of low signal or for over parcellation. This is a problem
for methods expecting a connected graph, like NBS, but it is not for our approach that does not
have any prior on the types of connectivity expected. The connections among the areas detected
by the proposed algorithm are also reported graphically in Figure 5 and 6 respectively for the
schizophrenia and ADHD experiment. The schizophrenia and ADHD samples analysis took
respectively less than 1 second and about 30 seconds on 2.6 GHz machine with 4GB of RAM.
The classification task on the schizophrenia dataset had an accuracy of 84% in a cross-validation
setting.

11


https://doi.org/10.1101/277046
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/277046; this version posted March 8, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Pearson correlation between two connections for case-control subjects
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Figure 4: Scatter plot of the relationship between Frontal-Inf-Orb-L/Hescl-L and Precentral-R/Fusiform-R connections
in patients and controls. Each element (either star or square) represents the correlation features for the same subject.
Pearson’s correlation between these two connections was computed separately in each individual. Blue stars represent
the patients with schizophrenia sample, while green squares are control sample. Best-fit line are indicated for each
sample. While t-test rejected the significance of the difference between the diagnostic group, MLA identified each
individual as belonging to a specific group as highlighted by correlation line.

Discussion

The proposed method performs a global multivariate analysis characterizing local differences
between networks. As this method is based on sparsity principles, it is particularly suited for
those experiments with high-dimensional data and small sample size. Moreover, the analysis
based on multivariate statistics allows to retrieve sub-networks based on feature dependencies.
The limitation of NBS in detecting univariate differences is visible in the experiment with human
functional data. In fact, the proposed algorithm detects some connections which are very often
selected by the ensemble of learners, as seen in the histogram in Figure 2 and 7, but if considered
with the univariate analysis, some edges are discarded as producing non-significant p-values
(e.g., see rows 2, 4 and 5 in Table 1 for the schizophrenia experiment). Nevertheless, both
MLA and NBS gave similar results confirming the initial hypothesis given by the anatomical
differences.

The stability of the selected features is an important characteristic of the algorithm. As as-
sessed empirically, by increasing the value of @, only new features are added without removing
the previous ones. The parameter o does not need to be set automatically, but actually it rep-
resents the strength and limitation of the method. In fact, despite in the reported experiments
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Figure 5: Functional connections differentiating patients with schizophrenia from controls with MLA (our algorithm)
using @ = 30. From left to right, axial (a), sagittal (b), coronal (c) views of the brain indicate significant connections for
at least one method are depicted. Each line represents a specific functional connection. For details on the statistics and
acronyms, see Table 1.

the used o was estimated by cross-validation, the sensitivity of the algorithm can be manually
adjusted trough this single parameter which allows the neuroscientists to decide how strong the
class characterisation should be and it is directly related to the number of connections shown.
A similar user-guided approach with methods based on sparsity has been previously described
(Huang et al. (2010); Lee et al. (2011)). When MLA was applied to the acallosal BTBR mice,
a mouse model of autism (Sforazzini et al. (2014a); Squillace et al. (2014)), as shown in Figure
3, the tracts detected as discriminant were those with altered white matter connectivity in BTBR
mice with respect to control mice. These results are in line with previous results in literature,
including the lack of corpus callosum and hippocampal commissure (Wahlsten et al. (2003);
Ren et al. (2007); Fenlon et al. (2015)), and increased intra-hemispheric ipsilateral connectivity
(Dodero et al. (2013); Meyer and Roricht (1998)), also observed in human patients with autism
spectrum disorder (ASD) (Frazier and Hardan (2009); Casanova et al. (2011)). This demonstrates
that the algorithm is able to identify the known differences between groups.
13
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Table 2: Functional connections differentiating patients with ADHD from TD individuals. Pairs of source and target
regions and p-values of the univariate t-test computed on NBS (Zalesky et al. (2010)) are reported. “Not detected”
(N.D.) means not significant difference between the two areas. ADHD= Attention-Deficit/Hyperactivity Disorder, TD=

Typically developed.
p-value
# Region 1 Region 2 NBS
1 Temp-Pole-L Inf-Temp-Gyrus-posterior-division-L N.D.
2 | Temp-Fusiform-Cortex-anterior-division-L Temp-Pole-L N.D.
3 Frontal-Orb-Cortex-L Supramarginal-Gyrus-posterior-division-L N.D.
4 Temporal-Pole-L Supramarginal-Gyrus-posterior-division-L N.D.
5 | Supramarginal-Gyrus-posterior-division-L. | Parahippocampal-Gyrus-anterior-division-L. | N.D.
6 Cerebellum-Vermis VI Inf-Occipital-Cortex-R N.D.
7 | Middle-Temp-Gyrus-anterior-division-R | Lateral-Occipital-Cortex-inferior-division-L | N.D.

Similar results were obtained with the functional dataset on schizophrenia. Altered brain con-
nectivity both at the microstructural and macrocircuitry levels has been described in this disorder
in particular in the cortical areas (Pettersson-Yeo et al. (2011); Karbasforoushan and Woodward
(2012)). As depicted in Figure 5, we found widespread connectivity cortical and sub-cortical
differences in patients with schizophrenia compared to controls, some of which could have been
missed by using the NBS as shown by the p-values in Table 1. Specifically, the inter-hemispheric
connections of the frontal lobe as well as frontal sub-cortical connections differed. Reduced inter-
hemispheric connectivity has been identified early in the course of the disorder, it correlates with
severity of the disorder, and it is independent of drug treatment (Mwansisya et al. (2013)). Al-
tered cortical-sub-cortical connectivity has been frequently reported in schizophrenia (Salvador
et al. (2010)) and this is consistent with the limbic hyperactivity associated with the positive
symptoms of schizophrenia. Also, local connectivity disturbances of the Rolandic operculum
and postcentral gyrus have also been reported (Pu et al. (2014)). Furthermore, disturbed fronto-
temporal connectivity has been associated with the genetic risk for schizophrenia (Winterer et al.
(2003)), and it has been associated with positive and negative symptoms by converging imag-
ing techniques (John et al. (2009)). In particular, fronto-temporal connectivity between Heschl’s
gyrus and fronto-parietal region could be associated with auditory hallucinations and is increased
in patients with chronic auditory hallucinations (Shinn et al. (2013)). Consistently, DTI studies
showed also disruptions of tracts connecting frontal, temporal and occipital regions (Ellison-
Wright and Bullmore (2009)), thus suggesting that these structural alterations may contribute to
functional connectivity changes in schizophrenia.

The interesting aspect of the proposed method was the capacity to retain several connections
which would have been discarded by NBS, due to non-significant p-values as shown in Table 1.
As it was shown, those connections discarded by NBS but not by the proposed method are corre-
lated to significant connections, and used in a multivariate setting can help better to discriminate
groups. Despite our experiments were conducted with the same small dataset previously used by
Zalesky et al. (2010), to allow comparison with their results and the proposed method showed to
be more robust to small sample size issues.

Regarding the discriminant connections detected by the MLA algorithm for the ADHD dataset,
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Figure 6: Functional connections differentiating ADHD from TD subjects obtained by using the proposed method (MLA)
using @ = 9. From left to right, axial (a), sagittal (b), coronal (c) views of the brain indicate significant connections for
at least one method are depicted. Each line represents a specific functional connection. For details on the statistics and
acronyms, see Table 2.

among the detected areas using @ = 9, there were the connections between the Frontal Pole and
the Cingulate Gyrus, and the Frontal Pole and Angular Gyrus, which are the main Functional
hubs of the default mode network (DMN). The DMN is known to be altered in ADHD subjects
(Colby et al. (2012); Uytun et al. (2016)). As it has been hypothesized that ADHD subjects may
have diminished ability to inhibit the default processing of the DMN (Fassbender et al. (2009)).
The other detected connections could be explained as dorsal medial and medial temporal systems
still related to the DMN (Andrews-Hanna et al. (2014).

Conclusions

In this manuscript, a fully automated method to characterise brain connectivity in case-control
studies was reported. The method based on a sparse learning classification, has been tested
on structural and functional connectivity data. The approach is able to identify brain areas of
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Figure 7: Histogram showing the occurrence of each feature for the human experiment after all the runs of the model
for the schizophrenia experiment. Higher values indicate the edges that identify better the differences between patients
with schizophrenia and controls. This histogram can be used to select a sub-set of “relevant” features, where the most
frequent features are kept.

interests that can be further analysed with standard seed based approaches or through histological
white matter validation.

The algorithm successfully highlighted some known structural white matter differences in
acallosal mice, and identified previously reported functional connections in human schizophre-
nia patients with respect to control subjects. The developed software is freely distributed as a
Matlab toolbox at the url https:/fwww.iit.it/code/multi-link-analysis. Our approach can help high-
lighting differences in connectional features, and in generating hypotheses that can complement
univariate techniques.
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Sparse Discriminant Analysis

The general formulation of ¢; regularization or /asso is used in regression frameworks to min-
imize the problem ming{|ly — Xg|1?> + nl|Bll1 }, where X is a data matrix, y is the output vector, and
B is the regressor vector. Similarly, the elastic net is given as ming{|ly — XBI17 +1li8ll +¥II8ll2}. In
these equations 7 and y are tuning parameters which are used to yield sparse coefficient vector
estimation (Zou and Hastie (2005)). The parameter n can also be reformulated as the number of
desired variables which are left in the model, when used in this context we refer to it as a (Zou
and Hastie (2005)).

There are several extension to the linear discriminant analysis (Hand et al. (2006)) which
comprises lasso and elastic net, as explained by Witten and Tibshirani (2011). Our experiments
are based on the formulation proposed by Clemmensen et al. (2011). More specifically, given
the matrix data X with n observations p-dimensional for K=2 classes each of them defined as
Xj, it is possible to define the mean for a specific class as . Then, it is also possible to define
the within-class covariance matrix common to all classes as Xy, = % Z,{(:l Si(xi — p)(Xi — )
and the between-class covariance matrix Xy = Z,Ile Ty, where y is the prior probability
for each class to belong to the class k. The prior probability is generally given by the size of
respective classes.
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A Fischer discriminant analysis can classify to which class a sample belongs by using discrim-
inant vectors whose directions S which maximize

max,BEZb,Bk, @)
Px

subject to ﬁg):bﬁk =1 and BEEbﬂl =0VI<k.

Very often, as in our case, the previous maximization process is ill-posed, as the matrix X
might not be full rank as the number of features is far larger than the number of available samples.
A possible solution, proposed by Witten and Tibshirani (2011), is given by using the lasso or
elastic net regularization as

n%gxﬂﬁzbﬂk = 1llBell = YIIBill2 (2)

subject to ,BEZbﬂk =1 and ,BE XpB = OVI < k. Alternatively we used the minimization formula-
tion of Clemmensen et al. (2011), where the pair given by Sk and the vector of scores 6k solves
the problem

mingg, ) I1Y0k — XBkll* + 1 11Belli + v BE QB 3)

subject to 10T YTY6 = 1,60YTY6 = 0 VI < k, '
where Q is an arbitrary positive matrix, 7 and vy are non negative tuning parameters, and Y is a
n X K matrix of dummy variables for the K classes. This formulation of LDA as a regression
problem introduces sparsity, and allows its use when the number of features very large compared
to the number of available samples.
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