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Abstract. Quantitative T2 data from an NIH-sponsored multi-center study of Normal Brain 
Development was used to perform automatic voxel-wise analysis of the changes in T2 
evolution in the brain in healthy children within the age range from birth to 5 years.  All data 
were non-linearly registered into a common coordinate space. The T2 parameters were 
estimated by 2 point fitting from the PD-weighted and T2-weighted image data, or by least-
squares fitting of 4 data points when addition intermediate weighting images were available. 
The main result of this study is voxel-level map of monoexponential evolution of T2 in this 
age range indicating the delay (in months) and the rate (in 1/months) of development.  The 
automatic maps are compared to manual region-of-interest based estimates of T2 evolution. 

Introduction 

It is known that T1-weighted image contrast between the grey and white matter in the 
MRI is reversed during the first 4-6 postnatal months. The same is true for T2-weighted 
contrast up to 9-10 months.  The actual timing of the change depends on the imaging 
sequence, field strength and the brain region.  In this study data from an NIH-sponsored 
multi-center study of Normal Brain Development (NIH pediatric database (Almli, Rivkin 
et al.)) was used to perform automatic voxel-level analysis of the change of T2 relaxation 
over time for children 1-60 months old. The goal of this study was to perform voxel-level 
analysis of the maturation throughout the brain and quantify the differences in rate and 
time-delay between different anatomical regions.  

Methods 

Our goal is to use data from multiple subjects at different ages to build relaxometry maps.  
However, the nature of the problem is complex: there are dramatic changes of the contrast 
between subsequent scans of the same subject over time and there are significant changes 
of the shape and size of the brain between subjects and over time.  These issues required 
us to develop a special data processing technique to be able to co-register scans from the 
different subjects with different ages in a common coordinate system. In order to achieve 
these requirements we have used following approach: 

 
• All subjects were subdivided into groups based on their age. 
• Within each group, an anatomical average template was constructed using nonlinear 

algorithm (Fonov, Evans et al. 2011) using the T1w image modality. 
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• Nonlinear registration was performed between groups using Mutual Information 
(Mattes, Haynor et al. 2001),(Ibanez) as a cost function. 

• For each scan the cumulative nonlinear mapping was created by concatenating 
mappings from the scan to the age-specific average template, and from the age-
specific average to the 44-60 month old (mo) template. 

• Resulting nonlinear mappings were used to resample individual T2 relaxometry maps, 
estimated using data from each subject-timepoint, into the common coordinate system. 

Average anatomical template 

The technique of making an average anatomical template is described in (Fonov, Evans et 
al. 2011).  The problem can be formulated as following: given a set of 3D volumes (I1 … 
In), our objective is to find a 3D template J, such that (Equation 1), where Xi are individual 
3D mappings of each volume Ii to match the template (Equation 2): under elastic body 
deformation constraint (Miller, Banerjee et al.). Under these assumptions it is possible to 
express Xi as a deformation vector field: ( ) ( ) )(),( 11 xhxxXxhxxX iiii
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may be defined at the discrete grid with given distance (step size) between nodes – as it is 
used in the ANIMAL algorithm 
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Using these ideas we have developed following algorithm: 
1. Given Jk – the template, for each scan Ii calculate Xi,k – mappings from the template to 

a scan, using the Y-1
i,k-1 ( inverse corrected mappings) from the previous iteration as a 

starting point (use identity for the first iteration.) 
2. Calculate the mean shift of the current template (Equation 3) 
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3. Calculate corrected inverse mappings: kkiki XXY ,0
1
,, •= −  

4. Apply corrected inverse mappings to individual subjects and generate an average 
which will be used as a new template (Equation 4):  

( ) ( )( ) nxYIxJ
n

kik ∑=+ ,1  (4) 

5. Repeat from step 1, until convergence is reached 

The method is essentially dependant of the initial template and the possibility to find the 
nonlinear mapping between the given template and an individual scan. For the practical 
reasons we have bootstrapped the technique by doing manual linear registration of 100 
scans of subjects of different ages to the MNI152 space, followed by removal of the 
average scaling to represent the average brain size of the population. These scans were 
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then used to create first version of the age dependant average anatomical templates, which 
were used as starting points for the algorithm described above. 

T2 relaxometry 

Each dataset was processed in the following way. All dual echo scans were registered 
linearly to the T1w scan using a mutual information cost function. The resulting 
transformation was concatenated with a nonlinear mapping from the individual scan to the 
age-specific template and then with the mapping to the oldest (44-60 mo) anatomical 
template. The concatenated registration parameters were applied to the dual-echo scans to 
map all information from all subjects into the common coordinate system. All images 
were manually inspected for the quality of registration. T2 was estimated in each dataset in 
a voxel-wise manner using linearized equation ( ln(Si)=ln(S0)-TEi/T2 ) where S0 is the 
equilibrium signal and Si is the signal is corresponding echo time  TEi.  

Regressions of T2 over age were performed in a voxel-by-voxel fashion using all images 
that passed QC.  A mono-exponential (T2=A+B*exp(-t*C) ) model was used. For the sake 
of presentation we found it is better to represent results using a different notation: 
T2=A*(1+exp(-(t+D)*C)). This method facilitates interpretation of the 3D relaxometry 
maps created.  This way, the parameter A, expressed in milliseconds, can be interpreted as 
the asymptotic average T2 after maturation. The parameter C, expressed in 1/months, is the 
rate of change of T2 with age.  Finally, the parameter D=-ln(B/A)/C, expressed in months, 
is the relative delay of the process (negative values correspond to the relative delay in 
maturation and positive is advance in maturation), compared to the average.   

To assess the accuracy of the automatic method, a human rater manually identified 
several anatomical regions of interest (ROI) on the native (unprocessed) images and 
calculated corresponding T2.  These values where then were compared to the T2 values 
extracted by the automatic technique, based on similar ROIs selected on the average 
anatomical template of 44-60 mo. 

Materials 

Longitudinal MRI scans from 114 normal healthy children were acquired across 11 age 
cohorts (Almli, Rivkin et al.), yielding a total of 346 datasets. See Fig. 1 for the age 
distribution.  Each dataset included one multislice T1w scan (TR=500ms TE=12ms) and a 
multislice dual echo PDw/T2w scan (TR=3500ms, TE=14,112ms). Some datasets 
included an additional acquisition of dual echo scans with longer TE=83,165ms. All 
calculations were performed in a Linux environment using tools from the MINC packages 
and ITK library (Ibanez). 

Results 

Average anatomical templates were successfully created using 346 datasets; see Fig. 2 for 
the illustration on the T1w modality, templates are available at http://nist.mni.mcgill.ca .   
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Out of 346 datasets, 326 have successfully passed all stages of automated T2 processing, 
and resulting regressions show significant differences of change of T2 between different 
regions of the brain during the development. Volumetric maps of A, D and C parameters 
and adjusted coefficient of determination R2 are shown in Fig. 3.   

Results of this study are consistent with a manual ROI-based analysis (Thalamus, Minor 
Forceps, Major Forceps) of T2-relaxometry performed on the same datasets in (Leppert, 
Almli et al.), see Fig. 4 for the comparison. The discrepancies between automatic and 
manual results for Major Forceps ROI for the subjects 0.5-1.0 mo may be caused by the 
large anatomical inter-subject variability of this area and also by the rapid maturation 
process happening during this age. 

Discussion and Conclusions 

We have described an automated procedure to process T2 relaxometry information in a 
large cohort of young subjects and validated the method. Our results are consistent with 
the results of our manual ROI based technique with the exception of Major Forceps for 
subjects aged 0.5-1.0 mo. This discrepancy may be caused by the rapid maturation process 
occurring in this area for the given age range, corresponding with significant changes in 
the geometrical shape of the brain in this region, confounding our inter-subject co-
registration process. 

In general, our findings are consistent with the known white matter maturation pattern: 
from central to peripheral, from inferior to superior and from posterior to anterior 
(Barkovich, Kjos et al.). For example, from the sagittal view of the C parameter map in 
Fig 3, the rate of T2 decrease in the corpus callosum is inferior to that in more peripheral 
white matter. This spatial difference could reflect more advanced myelination in the 
central white matter, such that at birth, the structures have nearly reached full maturation 
and thus exhibit a slower evolution with time. The posterior to anterior progression is 
more visible in the D parameter map, where occipital white matter exhibits a more 
pronounced delay in reaching maturation as compared to frontal white matter. The R2 

(coefficient of determination) map (Fig. 3) indicates that regression is able to explain 95% 
of inter-subject variability of T2 within the bulk of the white matter, and fails in the gray 
matter and near the edge of ventricles. This may be due to the following: the T2 
maturation process within the gray matter cannot be explained by a mono-exponential 
model and the inter-subject co-registration may be poor within the cortex.  

We think that our method should allow for the study of the development of the human 
brain in greater detail, showing quantitative differences in timing and rate of maturation of 
different parts of the brain.  
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Fig. 1. Histogram of age distribution of the datasets (n=346). Each of the 11 boxes in the 
histogram corresponds to one of the age ranges used to create a T1w average template (see Fig. 2). 

 
Fig. 2. Average anatomical templates created by the iterative non-linear inter-subject registration 
technique (T1w modality; ages in months).  One can see the change in T1w contrast with time, 
corresponding roughly to the myelination of the white matter with time.  Note also the anatomical 
detail, especially at the cortex, demonstrating the high quality non-linear inter-subject 
registrations.    
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Fig. 3. Voxel-wise regression T2=A*(1+exp(-(t+D)*C)), A  represents asymptotic T2 after 
maturation and is expressed in milliseconds, D –  the delay (when negative) or advance (when 
positive) of relative maturation expressed in months, C  is the rate of maturation, expressed in 
1/months  and R2a is adjusted coefficient of determination  R2 .  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/277038doi: bioRxiv preprint 

https://doi.org/10.1101/277038
http://creativecommons.org/licenses/by-nd/4.0/


0.5 1.0 2.0 5.0 10.0 20.0 50.0

0
10
0

20
0

30
0

40
0

50
0

60
0

Major Forceps

Age(months)

T2
(m
s)

Manual
Auto

0.5 1.0 2.0 5.0 10.0 20.0 50.0

0
10
0

20
0

30
0

40
0

50
0

60
0

Minor Forceps

Age(months)

T2
(m
s)

Manual
Auto

0.5 1.0 2.0 5.0 10.0 20.0 50.0

0
50

10
0

15
0

20
0

25
0

30
0

Thalamus

Age(months)

T2
(m
s)

Manual
Auto

 
Fig. 4. Regional T2 regression, comparison of manually obtained (red) and automatically 
calculated (blue) results estimates of T2. Note that time is shown in a logarithmic scale. 
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