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Summary 

Metabolic alterations can serve as targets for diagnosis and therapy of cancer. Due to the 

highly complex regulation of cellular metabolism, definite identification of metabolic pathway 

alterations remains challenging and requires sophisticated experimentation. Here, we applied 

a comprehensive kinetic model of the central carbon metabolism (CCM) to characterize 

metabolic reprogramming in murine liver cancer. We show that relative differences of protein 

abundances of metabolic enzymes obtained by mass spectrometry can be used to scale 

maximal enzyme capacities. Model simulations predicted tumor-specific alterations of various 

components of the CCM, a selected number of which were subsequently verified by in vitro 

and in vivo experiments. Furthermore, we demonstrate the ability of the kinetic model to 

identify metabolic pathways whose inhibition results in selective tumor cell killing. Our 

systems biology approach establishes that combining cellular experimentation with computer 

simulations of physiology-based metabolic models enables a comprehensive understanding 

of deregulated energetics in cancer. 

 

 

Keywords: cancer metabolism, hepatocellular carcinoma, kinetic modelling, quantitative 

mass spectrometry 
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Introduction 

Worldwide, hepatocellular carcinoma (HCC) is the fifth most common cancer and the third 

most common cause of cancer-related deaths (Waller et al., 2015). Countless initiatives 

around the world in conjunction with the unprecedented development of high-throughput 

analytical methodology have spiraled up the molecular knowledge about cancer in dizzying 

heights (Garraway and Lander, 2013). Clinical translation of the newly gained information 

has resulted in the approval of a plethora of molecular-targeted drugs with antiproliferative 

activity. However, despite all these advances, the overall death rate for cancer has declined 

at a much slower pace in the past 40 years compared to other major causes of mortality such 

as cardiovascular and infectious diseases (Ma et al., 2015). This is - to a large extent – 

explained by suboptimal long-term antiproliferative efficacy of newly developed molecular-

targeted drugs (Fojo and Parkinson, 2010). Cancer cells display a marked capability to 

compensate for the inactivation of signaling pathways - and other growth-promoting 

mechanisms - that are considered essential for neoplastic progression (McIntyre and Harris, 

2015; Niewerth et al., 2015). This translates into the emergence of therapy resistance, a 

major obstacle of clinical oncology and a central hallmark of human HCC (Waller et al., 

2015). To achieve effective and long-lasting therapy responses it is therefore of pivotal 

importance to identify processes that are at the same time essential and unique, thereby 

avoiding resistance via usage of alternative processes. Metabolism fulfills these 

characteristics and is indeed widely considered to represent an attractive target for cancer 

therapy (Schulze and Harris, 2012). 

 

The notion that tumors display specific metabolic alterations that can be exploited for 

diagnosis and therapy of cancer has received widespread attention in recent years (Pavlova 

and Thompson, 2016). However, it also became evident that a reliable analysis of 

metabolism, especially under in vivo situations, is challenging to perform. This is due to 

various factors, e.g. the rapid turnover of substrates and products, the intricate complexity of 

the metabolic network, the central importance of external stimuli such as hormones, growth 
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factors and the cellular microenvironment (Cazzaniga et al., 2014). One main reason for the 

insufficient understanding of metabolic changes in tumors is the strong focus on changes in 

the expression level of metabolic enzymes and transporters. The importance of downstream 

kinetic regulation, e.g. by allosteric effects or reversible phosphorylation, has been 

underestimated or completely disregarded in the last two decades (Weinberg, 2010). 

Choosing glucose metabolism of the liver as an example, we have recently demonstrated the 

necessity to combine existing knowledge on gene expression changes with the complex 

kinetic regulation of enzymes in order to understand the metabolic response of the liver to 

varying external challenges (Bulik et al., 2016). Here, we present an innovative concerted 

approach to study cancer metabolism by combining a novel physiology-based kinetic model 

of the central metabolism with high-quality quantitative proteomics data and molecular 

biological experimentation to elucidate metabolic differences between HCC and the normal 

liver in a murine HCC model. Using relative changes in the expression level of metabolic 

enzymes in HCC and normal liver cells to scale maximal enzyme activities, we simulate the 

metabolic response of HCC and the normal liver to variations in the metabolite and hormone 

profile of the blood plasma. This enables the definition of conditions at which the metabolism 

of the tumor becomes severely impaired while the metabolism of normal liver cells remains 

largely unaffected. We strongly believe that the herewith presented approach bears 

translational potential and will outline a basic roadmap to achieve this. 
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Results 

Proteome analysis of the central carbon metabolism in normal and malignant murine 

liver 

In order to generate a detailed expression profile of enzymes of the central carbon 

metabolism, HCC samples from ASV-B mice as well as liver tissue from tumor-free control 

mice were analyzed by a mass spectrometry-based shotgun proteomics approach (Cox and 

Mann, 2011). The proteomic experimental design consisted of 2 conditions (tumor and 

control), 7 biological replicates per condition and 2 technical replicates per biological 

replicate. In total, 4.415 proteins were detected across the 28 samples. Each pair of technical 

replicates was averaged resulting in 14 biological samples (Fig. S1A, S1B). Principal 

Component Analysis showed that the variance of the mouse samples was well explained by 

their status (control/tumor). The control and tumor samples are clearly separated along the 

first principal component, which explains 54% of the variance of the dataset (Fig. 1A, S1C). 

Furthermore, the second component shows that the tumor samples display a greater inter-

sample variability than the control samples, as expected given the aberrant regulation of 

tumors. A clustering of the proteomic profiles of the samples visually confirmed this, as the 

tumor profiles clearly display a greater heterogeneity than the controls (F test p-value: 3e-6, 

Fig. 1B, S1D). The minimum correlation between pairs of biological replicates ranged from 

0.75 to 0.95 (Fig. S1D). A differential expression analysis was performed between the control 

and tumor samples using linear models in order to estimate the significance of the changes 

in protein abundances (tumor/control, Fig. 1C and Materials and Methods). Out of 4.415 

proteins, 1.886 had a significant fold change and 1.018 were associated with a False 

Discovery Rate (FDR) < 5%. The log2 fold change appears to be symmetrically distributed 

around zero. 1.263 (28.6%) out of the 1.996 tested protein uniprot identifiers were associated 

with the GO term metabolic process; 702 of these had a significant fold change (FDR < 0.05, 

Fig. 1D). Thus, since the ratios tested/significant (FDR 0.05) proteins and tested/significant 

metabolic associated proteins are similar (FDR 0.53 and 0.55), global protein abundance 

changes demonstrates that the majority of differentially expressed proteins is associated with 
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metabolism (68.9% of all FDR-significant proteins). However, metabolism might be targeted 

preferentially by directional regulations. Hence, gene set analysis was performed using the 

PIANO package (Varemo et al., 2013), in order to find significant directional alterations of 

metabolism-related pathways by incorporating fold-change directionality in the statistical 

enrichment analysis. Many central metabolic pathways were found to be significantly down-

regulated (FDR ≤ 0.05), such as oxidative phosphorylation, citrate cycle and fatty acid 

metabolism (Fig. 1E, S2). This observation suggested a robust reprogramming of cellular 

metabolism in the tumor samples, especially towards a down-regulation of the abundance of 

proteins involved in energy metabolism. 

In particular, we found that the majority of glycolytic enzymes such as PFK-L (the liver-

specific isoform of 6-phosphofructokinase) and GAPDH (glyceraldehyde-3-phosphate 

dehydrogenase) are significantly upregulated in HCC tissues (Fig. S3). Furthermore, the 

fructose-bisphosphate aldolase isoforms A and C, which - unlike isoform B - preferentially 

contribute to glycolytic rather than gluconeogenic metabolite turnover, show a more than two-

fold higher expression. In contrast, enzymes of other important metabolic pathways are 

downregulated such as pyruvate carboxylase, citrate synthase, succinate dehydrogenase, 

carnitine O-palmitoyltransferase 2, glutaminase (liver isoform), glutamine synthetase and 

ornithine carbamoyltransferase (Fig. S3). 

 

Prediction of tumor-specific metabolic capacity via mathematical modeling 

Relative changes of protein abundances were mapped onto the maximal capacities of the 

respective enzymes to generate a kinetic model of the central metabolism of murine HCC 

(Fig. 2). To assess the functional consequences of alterations in metabolic enzyme 

expression, we applied the model to a typical 24h physiological plasma concentration profile 

of exchangeable model metabolites and the hormones insulin and glucagon. We used the 

plasma profile as input for the model and computed the diurnal variations in the 

concentrations of all model metabolites and fluxes for normal liver and murine HCC (Fig. 3). 

Compared with normal hepatocytes, the simulated metabolic response of murine HCC 
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revealed a number of significant alterations (Fig. 3). The activity of glycolysis is strongly 

elevated while gluconeogenesis is almost completely suppressed. In line with these 

alterations, HCC is predicted to operate continuously as a strong lactate producer, while 

normal hepatocytes take up lactate. Fatty acid uptake, ß-oxidation of fatty acids, fatty acid 

and cholesterol synthesis are strongly diminished. Oxygen consumption is lower in HCC 

compared to normal liver. In addition, ammonia detoxification and urea synthesis in HCC are 

also rigorously reduced (Fig. 3). 

 

Experimental validation of model predictions  

Next, we sought to perform a functional validation of selected model predictions. To validate 

the predicted changes of glycolysis (Fig. 4A) and mitochondrial function (Fig. 4E), 

extracellular flux analyses of normal primary hepatocytes (isolated from healthy C57Bl/6J 

mice) and isolated HCC cells (from ASV-B mice) were performed. As can be seen in figure 

4B, the extracellular acidification rate (ECAR) as a quantitative read-out of glycolytic activity 

is significantly elevated in HCC cells (t-test, p<0.0001). Moreover, in contrast to hepatocytes, 

HCC cells are capable of further increasing the glycolytic rate after inhibition of mitochondrial 

respiratory chain complexes. In line with these results, we found that HCC cells isolated from 

ASV-B mice grow significantly slower in medium without glucose compared to standard 

medium (25 mM glucose, Fig. 4C; t-test, p<0.05). Pulsed stable isotope-resolved 

metabolomics (pSIRM) revealed higher label incorporation into lactate after intraperitoneal 

administration of 13C-glucose by ASV-B tumors compared to normal liver (Fig. 4D). This 

argues for elevated glycolytic activity of murine HCCs, well in line with the above outlined 

model prediction (Fig. 4A). To test the mathematically predicted changes in oxygen uptake 

(Fig. 4E), the oxygen consumption rate (OCR) was determined and found to be decreased in 

HCC cells (Fig. 4F; t-test, p<0.0001). In addition, calculation of the OCR/ECAR-ratio showed 

that primary hepatocytes prefer oxidative phosphorylation over glycolytic energy production 

to a significantly greater extent than their HCC counterparts (Fig. S4; t-test, p<0.0001). To 

further analyze this, we quantified the cellular mitochondrial content with electron 
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microscopy. As can be seen in figure 4G and supplementary figure 4B, these analyses 

indicated that the number of mitochondria is indeed significantly different between normal 

liver and murine HCC. Taken together, these functional assays display reduced 

mitochondrial activity in murine HCC and hence nicely confirm the model prediction shown in 

Figure 4E. As outlined above, model calculations reveal a diminished capacity of HCC tumor 

tissue to synthesize urea in order to detoxify ammonia (Fig. 5A). We validated this prediction 

by measuring the urea concentration in the cell culture supernatant and indeed found 

significantly less urea in the supernatant of ASV-B cells (Fig. 5B; t-test, p<0.0001). 

Comparing the amount of urea produced by precision cut liver slices (PCLS) from normal 

and HCC liver supports this result (Fig. 5C; t-test, p<0.0001). Additionally, we challenged the 

model prediction of impaired triacylglyceride production capacity in HCC cells (Fig. 5D) by 

analyzing the intracellular amount of triacylglycerides of cells without and after 

supplementation of the culture medium with oleic acid. Triacylglycerides were readily 

detectable in primary hepatocytes and their amount was increased by providing oleic acid. In 

contrast, no triacylglycerides were detectable in ASV-B cells regardless of the presence or 

absence of oleic acid (Fig. 5E). One key function of the liver is the intracellular storage of 

glycogen which was predicted to be completely abolished in HCC tumors (Fig. 6A). By 

performing Periodic acid–Schiff (PAS) staining for glycogen detection on sections from 

normal and ASV-B liver we in fact saw diminished staining in murine HCC tumors (Fig. 6B). 

 

Model-based predictions and functional validation of tumor-specific metabolic 

vulnerabilities 

We hypothesized that the reduced capacity of oxidative phosphorylation in HCC can be 

exploited for cancer therapy by serving as a metabolic target to selectively impair HCC 

metabolism while leaving healthy liver intact. This was further strengthened by modeling the 

oxygen consumption as a function of mitochondrial complex I activity, demonstrating a 

greater sensitivity of tumor compared to control liver (Fig. 7A). The antidiabetic drug 

metformin has been shown to inhibit neoplastic growth by multiple mechanisms (Coyle et al., 
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2016), one of them being complex I inhibition (Wheaton et al., 2014). In addidtion, it was 

shown that metformin acts as non-competitive inhibitor of mitochondrial glycerophosphate 

dehydrogenase (Mgpdh), explaining its antidiabetic properties (Madiraju et al., 2014). Using 

the reported inhibition constants of metformin of 0.5 mM for complex I (Wheaton et al., 2014) 

and 0.055 mM for Mgpdh (Madiraju et al., 2014), we simulated the effect of metformin on 

HCC and healthy liver. We put the external conditions to their mean value over one day and 

varied the metformin concentration from 0 to 1 mM. Figure 7B depicts the mitochondrial 

membrane potential of healthy liver and murine HCC as a function of the metformin 

concentration. As mitochondria induce apoptosis in response to energy depletion (once the 

mitochondrial membrane potential falls below ~-80 mV), the simulations predict damage to 

the liver tumors already at 0.27 mM metformin, while healthy hepatocytes remain viable up to 

metformin concentrations of 0.7 mM. We functionally validated these results by treating 

PCLS with 0.5 mM metformin. According to our model’s predictions, exposure to metformin 

did not affect healthy liver tissue (Fig. 7C), but resulted in a significant increase of HCC cells 

undergoing cell death (Fig. 7D; t-test, p<0.05). 

 

Discussion 

The fundamental metabolic reprogramming processes that tumor cells undergo to support 

growth and survival have received widespread attention in recent years and are now 

considered as an emerging hallmark of cancer (Hanahan and Weinberg, 2011; Pavlova and 

Thompson, 2016). However, exploitation of metabolic vulnerabilities to identify effective and 

specific anti-cancer agents remains challenging. The advancement of analytical technologies 

like shotgun proteomics opened the way for global snapshots of the molecular makeup of 

healthy tissues and tumors (Uhlén et al., 2015; Yu et al., 2016). The increased sensitivity of 

these technologies together with improved data reproducibility enable for the first time to map 

the biochemical network in its totality. However, due to (i) enormous plasticity and dynamics, 

(ii) multi-level regulatory mechanisms and (iii) a highly complex network of reactions, cellular 

metabolic processes are difficult to study. Mathematical models are useful tools to unravel 
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this complexity, and various tools have been established already to simulate metabolism and 

to predict metabolic activities of cells (Berndt and Holzhutter, 2016). Naturally, mathematical 

models are always simplifications of multi-level biological phenomena; however, hitherto 

published metabolic models of liver metabolism specifically lack important regulatory 

aspects, e.g. hormonal influences and allosteric parameters. In addition, they are very often 

not based on data that have been established experimentally but on information solely 

extracted from published literature. 

 

Here, we used a comprehensive kinetic model of the central carbon and lipid metabolism of 

hepatocytes that incorporates not only the metabolic reaction network but also enzyme 

regulation by allosteric effectors and by reversible phosphorylation due to changing insulin 

and glucagon signaling (Berndt et al., under review). The influence of fluctuating nutrient (like 

glucose and glutamine) and oxygen concentrations within a physiological range are also 

taken into account. As demonstrated by us earlier, these parameters are at least equally 

important for modelling the metabolic performance as the changes in enzyme abundance 

(Bulik et al., 2016). Applying the model to the central metabolism of HCC, we took advantage 

of the fact that HCC tumors originate from hepatocytes (Mu et al., 2015), i.e. metabolic 

enzymes in normal and malignant cells only differ in their expression level. This enabled us 

to re-parameterize the hepatocyte model by scaling the enzyme activities between HCC and 

normal hepatocytes according to the observed changes of protein abundances that we 

assessed by comprehensive mass spectrometry. Our study proofs that this approach is able 

to transform mass spectrometry protein data into biologically and clinically meaningful 

metabolic predictions about the HCC tissue turn-over activity of glucose, lactate, pyruvate, 

glycogen, fatty acids, ammonia, urea, amino acids and oxygen, to mention only some. 

Comparison of simulated normal and HCC liver metabolic performance reveals fundamental 

differences. We validated several of the calculated model output parameters successfully 

using different experimental approaches. Glycolytic and respiratory activity were determined 

by measuring the extracellular acidification and oxygen consumption rates, confirming that 
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HCC cells show increased glycolytic and reduced mitochondrial activity. These findings are 

well in line with earlier reports using transcriptomics, metabolomics or enzyme activity 

measurements on different murine HCC models (Bard-Chapeau et al., 2014; Dolezal et al., 

2017; Fan et al., 2017). Increased glycolytic activity is consistently found in independent 

analyses of human HCC tissue with different omics approaches and non-invasive imaging 

(NMR spectroscopy), pointing towards the Warburg effect as a metabolic hallmark of human 

liver cancer (Beyoglu et al., 2013; Budhu et al., 2013; Yang et al., 2007). 

 

The kinetic model predicted HCC-specific alterations of urea and triacylglyceride synthesis 

as well as glycogen storage, all of which represent key functions of normal liver. The 

functionality of the urea cycle in HCC tissue has been under debate for quite some time. It 

had been established rather early on that HepG2 cells, one of the most widely used human 

HCC cell lines, harbor a defective urea cycle and it was later shown that this is due to  

ornithine transcarbamylase and arginase I deficiency (Mavri-Damelin et al., 2007). On the 

other hand, arginase I and carbamoyl phosphate synthetase (CPS) were found 

overexpressed in human HCC and their detection via immunohistochemistry was 

demonstrated to improve the histopathological diagnosis of HCC (Butler et al., 2008; Yan et 

al., 2010). Our approach now reveals -for the first time- reduced urea cycle activity in a 

murine HCC model, nicely confirming that systematic integration of protein expression data is 

a prerequisite to comprehend metabolic pathway activity (Berndt and Holzhutter, 2016). The 

analysis of HCC-specific changes of lipid metabolism has received a lot of attention recently 

(over 20 studies using human samples and different omics approaches were published in the 

last 10 years (Beyoglu and Idle, 2013)). The reported results are very heterogeneous, 

precluding the identification of a HCC-specific lipid metabolism pattern. If anything, activation 

of fatty acid catabolism (most importantly β-oxidation) could be considered a hallmark of 

HCC-specific lipid metabolism as it was reported by the majority of publications (Beyoglu and 

Idle, 2013). Of note, the activity of anabolic lipid metabolism pathways in HCC has received 

significantly less attention. Our approach of combining quantitative proteomics with 
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mathematical modeling predicted reduced activity of several anabolic lipid pathways in HCC, 

e.g. synthesis of triacylglycerides, cholesterol and fatty acids as well as VLDL secretion 

(Figure 3). We were able to functionally validate the calculated reduction of triacylglyceride 

synthesis, underscoring the eligibility of the comprehensive kinetic model to forecast 

alterations of lipid metabolism in HCC. While our results predicted and validated reduced 

glycogen storage in murine HCC, none of the above mentioned omics analyses of human 

HCC reported reduced glycogen concentrations (Beyoglu and Idle, 2013). This is especially 

intriguing as it has been known for quite some time that human HCCs differ with respect to 

the extent of the Periodic acid-Schiff (PAS) reaction, the routine histochemical detection 

method for glycogen (and other complex carbohydrates) (Kitamura et al., 1993). These 

differences are clinically relevant as the survival of patients with PAS-negative HCCs was 

significantly shorter than that of PAS-positive ones (Kitamura et al., 1993). Whether this 

observation is functionally linked to altered glycogen metabolism has not been addressed 

thus far. One could hypothesize that glycogen storage and the Warburg effect are inversely 

correlated in HCC. With rising malignancy, all available glucose is needed for the Warburg 

effect (to enable neoplastic proliferation (Pavlova and Thompson, 2016)), resulting in a 

functional loss of glycogen storage. This, in turn, would translate into reduced ability of the 

tumor cells to secrete glucose and hence to participate in glucose homeostasis, another key 

function of the normal liver. As can be seen in figure 3, our kinetic model predicts a complete 

loss of glucose secretion by murine HCC tissue, supporting the above outlined hypothesis. In 

summary, the results of all validation experiments show striking consistency with the 

calculated model simulations indicating that our kinetic model is indeed a powerful tool to 

reproduce HCC metabolism in a reliable manner.  

 

The feasibility of the translational application of our kinetic model to estimate and evaluate 

the performance of therapeutic agents with prediction of possible adverse effects is 

demonstrated by calculating the outcome of metformin treatment on HCC viability. The anti-

diabetic drug metformin received a lot of attention in recent years after it was reported to 
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reduce cancer risk and mortality in diabetic patients (Evans et al., 2005). Metformin was 

subsequently shown to exert antitumor effects against established human HCC cell lines and 

in HCC xenografts in nude mice (Miyoshi et al., 2014). Our results confirm the cell line data 

reported by Miyoshi et al. and furthermore show that primary hepatocytes are not affected by 

metformin at the doses found to inhibit HCC cells. These results demonstrate the versatility 

of our kinetic model as –in addition to depicting metabolic activities- it is able to predict 

metabolic vulnerabilities that can potentially be exploited for cancer therapy. 

 

In the future, intensive effort has to be invested into the advancement of comprehensive 

kinetic model systems in order to further approximate to the essential processes in 

pathologic tissues and to increase the quantity of accomplishable model calculations. Since 

the metabolism of cells and tissues is embedded in and influenced by a large network of 

additional interconnected reactions which can be studied by comprehensive proteomics 

analyses, the expansion of the included model framework by parameters other than 

metabolic ones is certainly required in order to generate a global scale mathematical model 

characterizing a respective tissue. In this way the prospective utilization of kinetic models in 

personalized medical care in which every patient receives a treatment whose effects and 

unwanted side effects have been simulated and consequently evaluated beforehand will 

transform into a conceivable and concrete vision. 
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Figure legends 

 

Figure 1. Detected metabolic enzymes in normal and HCC mouse liver and data quality 

control. (A) Principal Component Analysis (first two components, 53.57% + 12.4% of 

variance). Control (blue) and tumor (red) samples are well separated on the first component. 

(B) Clustering of the complete cases of proteomic samples. Control and tumor samples 

cluster together, respectively. (C) Volcano plot showing the log2 fold changes of proteins 

(tumor/control) with respect to the -log of FDR. Left side correspond to proteins that are 

down-regulated in tumor, while right side correspond to proteins that are up-regulated in 

tumor. (D) Bubble plot showing the relations between the different protein sets considered in 

the study. Out of the 16.853 reviewed proteins present in the SwissProt database (of which 

8.786 are associated with metabolism), 4.415 were identified by mass spectrometry. 

Significance of the fold changes between tumor and control could be estimated for 1.886 

proteins, of which 1.018 passed the threshold of 5% FDR. (E) Histomap showing the highly 

significant fold changes of 145 proteins (FDR ≤ 0.0001) associated with 6 significantly down-

regulated metabolic pathways (FDR ≤ 0.05, protein sampling). 

 

Figure 2. Central carbon metabolism pathways covered by the kinetic model. Glycogen, 

fructose, galactose metabolism (1, 2, 3), glycolysis (4), gluconeogenesis (5), oxidative and 

non-oxidative pentose phosphate pathway (6, 7), fatty acid and triglyceride synthesis (8, 9), 

synthesis and degradation of lipid droplets (10), cholesterol synthesis (11), TCA cycle (12), 

respiratory chain and oxidative phosphorylation (13), β-oxidation (14), urea cycle (15), 

ethanol metabolism (16), ketone body synthesis (17), glutaminolysis and glutamine synthesis 

(18), serine and alanine utilization (19, 20). 
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Figure 3. Input and output parameters of the metabolic model. Experimentally validated 

model predictions are highlighted in green. 

 

Figure 4. Experimental verification of predicted elevated glycolytic activity and 

reduced oxygen consumption in murine HCC. (A) Simulating the glucose exchange flux 

shows complete impairment of glucose secretion and higher glucose uptake by tumors 

compared to control liver. (B) Basal and post-respiratory chain complex inhibition 

extracellular acidification rates (ECAR) of isolated HCC cells and primary hepatocytes were 

measured. (n = 10). (C) Varying media glucose concentrations affect the proliferation of 

isolated HCC cells. (n = 3). (D) In vivo pSIRM experiments reveal higher 13C incorporation 

into lactate in tumors after i.p. injection of 13C-glucose. (E) Kinetic model calculations and 

metabolic flux analysis on isolated cells (F) show a lowered oxygen consumption rate of HCC 

cells. (G) The number of mitochondria per cell was quantified by electron microscopy. (*, p < 

0.05, **, p < 0.005; ***, p < 0.0001).  

 

Figure 5. Experimental validation of urea production and intracellular triacylglyceride. 

(A) Model calculations predict the inability of HCC tumors to produce urea. (B) Determining 

the urea concentration in the supernatant of isolated hepatocytes and ASV-B cells and (C) 

PCLS. (D) Model simulations show a reduced capacity of HCC tumors to synthesize 

triacylglyceride. (F) Measurement of intracellular triacylglyceride in primary hepatocytes and 

isolated HCC cells without and after addition of oleic acid into the culture medium. (*, p < 

0.05; ***, p < 0.0001). 

 

Figure 6. ASV-B HCC tumor cells produce and store less intracellular glycogen. (A) 

According to the model prediction, HCC tumors do not store any glycogen. (B) PAS staining 

for intracellular glycogen of normal and ASV-B liver sections. 
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Figure 7. Mathematical sensitivity analysis identifies complex I inhibition as an 

effective anti-proliferative treatment for murine HCC. (A) Oxygen consumption rate of 

control and HCC tumor liver under the condition of complex I inhibition and (B) calculated 

mitochondrial membrane potential. (C, D) Analysis of LDH release into the supernatant after 

metformin treatment of PCLS from normal and ASV-B mice (*, p < 0.05). 

 

 

Materials and Methods 

Transgenic HCC Model and tissue preparation  

The murine HCC model (termed ASV-B) was established and initially characterized by 

Dubois and co-workers (Dubois et al., 1991). Briefly, male ASV-B mice express the early 

region of the SV40 large T (SV40lT) oncogene under control of the mouse antithrombin III 

promoter. ASV-B mice show time-dependent liver tumor development with first evidence of 

dysplasia at 8 weeks, adenomas at 12 weeks and hepatocellular carcinoma (HCC) at 16 

weeks of age. All mice were maintained under standard conditions at the animal facilities in 

Berlin (Charité) and Aachen (Institut für Versuchstierkunde, University Hospital Aachen). 

Animal procedures were performed in accordance to approved protocols (Landesamt für 

Gesundheit und Soziales Berlin (0024/12) and Landesamt für Natur, Umwelt und 

Verbraucherschutz Düsseldorf (84-02.04.2015.A344, AZ84-02.04.2016.A018 and 84-

02.04.2015.A216)) and followed recommendations for proper care and use of laboratory 

animals. For tissue preparation, 16 weeks old ASV-B or tumor-free male control mice 

(C57Bl/6J, Harlan Laboratories) were sacrificed by cervical dislocation and liver tissue 

samples were snap-frozen in liquid nitrogen for further analysis. 

 

Proteome analysis 

Murine liver samples were immediately frozen in liquid nitrogen and resuspended in a urea 

buffer (8 M urea, 100 mM TrisHCl, pH 8.25) containing 100 µl of zirconium beads for protein 

extraction. Samples were homogenized on a Precellys 24 device (Bertin Technologies) for 
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two cycles, 10 seconds at 6,000 rpm. After centrifugation to remove beads and tissue debris, 

protein concentration was measured by Bradford colorimetric assay and 100 µg were taken 

for protein digestion. Leftover samples were frozen at -80°C. The disulfide bridges of proteins 

were reduced in DTT 2 mM for 30 minutes at 25°C and successively free cysteines alkylated 

in iodoacetamide 11 mM for 20 minutes at room temperature in the dark. LysC digestion was 

then performed by adding 5 µg of LysC (Wako Chemicals) to the sample and incubating it for 

18 hours under gentle shaking at 30°C. After LysC digestion, the samples were diluted 3 

times with 50 mM ammonium bicarbonate solution, 7 µl of immobilized trypsin (Applied 

Biosystems) were added and samples were incubated 4 hours under rotation at 30°C. 18 µg 

of the resulting peptide mixtures were desalted on STAGE Tips (Rappsilber et al., 2003) and 

the eluates dried and reconstituted to 20 µl of 0.5 % acetic acid in water. 

 

LC-MS/MS analysis 

5 µl were injected in duplicate on a UPLC system (Eksigent Technologies, USA), using a 240 

minutes gradient ranging from 5% to 45% of solvent B (80% acetonitrile, 0.1 % formic acid; 

solvent A = 5 % acetonitrile, 0.1 % formic acid). For the chromatographic separation 30 cm 

long capillary (75 µm inner diameter) was packed with 1.9 µm C18 beads (Reprosil-AQ, Dr. 

Maisch HPLC, Germany). On one end of the capillary nanospray tip was generated using a 

laser puller, allowing fretless packing. The nanospray source was operated with a spay 

voltage of 2.1 kV and an ion transfer tube temperature of 260°C. Data were acquired in data 

dependent mode, with one survey MS scan in the Orbitrap mass analyzer (60,000 resolution 

at 400 m/z) followed by up to 20 MS/MS scans in the ion trap on the most intense ions. Once 

selected for fragmentation, ions were excluded from further selection for 30 seconds, in order 

to increase new sequencing events. 

 

In vivo pulsed stable isotope resolved metabolomics 

Frozen liver tissue was grounded using mortar and pestle and the powdered tissue was 

directly resolved in pre-cooled extraction buffer (-20°C, chloroform/methanol/water (2:5:1 
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vol/vol/vol). 50 mg tissue were resolved in 1 ml extraction buffer including the internal 

standard cinnamic acid (Sigma-Aldrich) 2 µg/ml. Samples were shaken for 1 hour at 4°C, 

subsequently 500 µl water were added, samples shaken for 30 minutes at 4°C, centrifuged 

for 10 minutes at 10,000g and polar and lipid phase collected and dried overnight in a speed 

vac. 

 

Metabolomics measurements and data analysis 

Dried polar extracts were resolved in 20 µl pyridine including 40 mg/ml Methoxamine 

hydrochloride (Sigma-Aldrich) and shaken for 1 hour at 30°C. Subsequently, 80 µl Methyl-N-

(trimethylsilyl) trifluoroacetamide (MSTFA, Fluka) was added and samples were shaken for 

90 min at 37°C. Samples were centrifuged (10 min at 10,000g) and transferred into glass 

vials (Chromacol). 1 µl of the samples was injected into an Agilent gas chromatograph 6890 

equipped with a temperature controlled injection system (ALEX, Gerstel). Data were acquired 

using a GC-ToF-MS (Pegasus III, Leco), processed using the vendor software Chromatof 

(Leco) and analyzed using the MetMax software (Kempa et al. 2009 (PMID: 19206143)). 

Identification of metabolites was performed using pure chemicals (Sigma-Aldrich), 

quantification of metabolites and calculation of isotope incorporation were performed as 

described (Pietzke et al., 2014). 

 

Metabolic model 

We have recently developed a comprehensive kinetic model of the central metabolism of 

hepatocytes (Berndt et al., manuscript under review). The model was used to simulate the 

impact of nutrient supply (including oxygen), hormonal stimuli and protein abundance of 

metabolic enzymes on the functional output of the liver. The model comprises the central 

hepatic metabolic pathways of glycolysis, gluconeogenesis, glycogen synthesis, 

glycogenolysis, fructose metabolism, galactose metabolism, the creatine-phosphate/ATP 

shuttle system, the pentose phosphate cycle composed of the oxidative and non-oxidative 

branch, the citric acid cycle, the malate aspartate redox shuttle, the glycerol-3-phosphate 
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redox shuttle, the mitochondrial respiratory chain, the beta-oxidation of fatty acids, fatty acid 

synthesis, ketone body synthesis, cholesterol synthesis, triglyceride synthesis and 

degradation, the synthesis and hydrolysis of triglycerides, the synthesis and export of the 

very-low density lipoprotein (VLDL), the urea cycle, the metabolism of the amino acids 

serine, alanine, glutamate, glutamine, aspartate and ethanol metabolism. The model 

contains the key electrophysiological process of the inner mitochondrial membrane including 

the mitochondrial membrane potential, mitochondrial ion homeostasis and the generation 

and utilization of the proton motive force. The modeled reactions and transport processes are 

depicted in figure 2. The metabolic model is coupled to a phenomenological model of 

hormonal signaling by glucagon and insulin affecting the short-term regulation of metabolic 

enzymes by reversible phosphorylation (see below). The model describes the uptake, 

metabolization and generation of glucose, fructose, galactose, pyruvate, lactate, glycerol, 

ammonia, serine, alanine, glutamate, glutamine, fatty acids, ethanol, acetate, urea, 

acetoacetate, β-hydroxybutyrate, oxygen and VLDL particles. 

 

Short-Term Regulation of Liver Metabolism by Hormones  

The metabolism of the liver is strongly controlled by hormones, in particular insulin and 

glucagon (Ohno and Maier, 1994). Glycolysis and gluconeogenesis as well as fatty acid 

synthesis and β-oxidation are inversely regulated by glucagon and insulin signaling via 

phosphorylation and de-phosphorylation of key regulatory enzymes. In the model, the 

plasma concentration of insulin and glucagon is directly translated into the phosphorylation 

state of interconvertible enzymes by a phenomenological sigmoid function (γ-function) also 

used in (Bulik et al., 2016). Moreover, we used phenomenological transfer functions (Fig. 2) 

to compute the plasma concentrations of insulin and glucagon and of non-esterified fatty 

acids (NEFA) directly from the plasma level of glucose. This setting rests on the assumption 

that the release of insulin and glucagon from pancreatic islet cells is mainly controlled by the 

plasma glucose level and that high concentrations of glucagon and epinephrine stimulate the 
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hormone-sensitive lipase (HSL) in adipose tissues, thus creating an inverse relationship 

between the plasma level of glucose and NEFA. 

 

Isolation and culture of primary murine hepatocytes and establishment of ASV-B cell 

lines 

Primary hepatocytes from C57Bl/6J were isolated as described earlier (Hesse et al., 2012) 

and maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine 

serum and 1% penicillin-streptomycin (Life Technologies) in collagen-coated flasks. All 

experiments were conducted within five days after primary cell isolation. HCC cells were 

isolated from 16 weeks old ASV-B mice and cultivated in the medium described above. After 

an initial adaptation period of one to two months they started to proliferate and grow stably 

under cell culture conditions. 

 

Cellular metabolic rate measurements 

Primary hepatocytes and ASV-B cells were seeded 24 hours ahead of analysis (7,000 cells 

per well in collagen-coated XF96 cell culture plates, Seahorse Bioscience) in standard 

medium. One hour before experimental start the cells were supplied with XF Base medium 

(Seahorse Bioscience) supplemented with 2 mM glutamine and 10 mM glucose. Oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) were measured using the 

XFe96 Extracellular Flux Analyzer (Seahorse Bioscience) according to the manufacturer’s 

instructions. 

 

Preparation and treatment of precision cut liver slices 

Precision cut liver slices (200 µm thickness) were prepared from both normal and tumor-

bearing murine livers based on a published protocol (de Graaf et al., 2010) with slight 

modifications. Mouse livers were perfused with ice-cold University of Wisconsin organ 

preservation solution (UW) before removal, submerged in UW and kept on ice. Cylindrical 

cores with a diameter of 5 mm were prepared using a manual biopsy punch (Kai Medical 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 5, 2018. ; https://doi.org/10.1101/275040doi: bioRxiv preprint 

https://doi.org/10.1101/275040


24 
 

Europe) and placed in a Krumdieck tissue slicer (model MD6000, Alabama research and 

development) containing ice-cold oxygenated Krebs-Henseleit buffer (KHB, Sigma-Aldrich). 

William’s E Medium (WME, ThermoFisher Scientific) supplemented with 2.75 mg/ml D-

glucose and 50 µg/ml gentamycin (Sigma-Aldrich) was used as the standard culture medium. 

To assess urea synthesis under stimulated conditions, DMEM with additional urea cycle 

substrates (2 µM ornithine [Sigma-Aldrich] and 10 µM NH4Cl [Sigma-Aldrich]) was used. To 

determine the effect of complex I inhibition, PCLS were cultured in DMEM with or without 0.5 

mM metformin. Slices were incubated in a 6-well culture plate containing 3 slices per well 

and 3.5 ml medium. After 1 hour of pre-incubation, slices were transferred to fresh medium 

and incubated for 24 hours. Culture medium was collected and stored at -80°C for later 

analysis of urea production or LDH activity. Viability of the cultured tissue was confirmed by 

analysis of ATP and total protein content. 

 

Urea quantification 

For the analysis of urea synthesis, 500.000 ASV-B cells or primary hepatocytes were seeded 

in 6-well plates with 2 ml of growth medium (DMEM, 10% FCS and 1% 

penicillin/streptomycin). The medium was replaced 18h later and the cells were incubated for 

further 24h. 1.5 ml supernatant was collected and centrifuged at 1.000 x g for 5 minutes to 

separate cells and debris. The remaining supernatant (1.2 ml) was transferred to a new tube 

and the samples were stored at -80°C until further use. Urea measurements were conducted 

by the University Hospital RWTH Aachen Central laboratories applying standard diagnostic 

procedures. 

 

Intracellular triglyceride measurement 

Intracellular triglycerides in ASV-B cells and primary hepatocytes were determined using the 

Triglycerides liquicolormono assay (HUMAN Diagnostics, Wiesbaden, Germany). Briefly, 4x105 

cells/well were seeded in 1 ml DMEM medium with 10% FCS and 1% penicillin/streptomycin 

in 6 well plates and left for 4 hours to attach. Subsequently, the medium was replaced by 
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DMEM supplemented with 0.5% FBS for 16 hours to starve the cells. Then the cells were 

either left untreated or stimulated with 300 µM oleic acid-albumin (Sigma-Aldrich) for 24 

hours. The next day, the cells were washed with PBS once and harvested in 100 µl 

homogenization buffer (10 mM Tris, 2 mM EDTA, 250 mM sucrose at pH 7.5). 

Homogenization was conducted by sonification (6 impulses with 10% intensity by 

sonification, Sonoplus Type UW3100, Bandelin electronic). Cell debris was separated by 

centrifugation. The assay was conducted according to the manufacturer’s instructions. 

 

Histochemistry 

PAS staining was performed according to routine histochemistry protocols. 

 

Transmission electron microscopy (TEM) 

TEM was performed by the Core Facility for Electron Microscopy of the Charité Berlin as 

outlined in detail before (Theilig et al., 2001). 

 

Data analysis 

Proteomics raw data were analyzed using the MaxQuant proteomics pipeline v1.4.1.2 and 

the built in the Andromeda search engine (Cox and Mann, 2008, 2011) with the mouse 

Uniprot database. Carbamidomethylation of cysteines was chosen as fixed modification, 

oxidation of methionine and acetylation of N-terminus were chosen as variable modifications. 

Two missed cleavage sites were allowed and peptide tolerance was set to 7 ppm. The 

search engine peptide assignments were filtered at 1% FDR at both the peptide and protein 

level. The ‘match between runs’ feature was not enabled, ‘second peptide’ feature was 

enabled, while other parameters were left as default. Before comprehensive data analysis, 

data quality was evaluated using the in-house developed quality control software PTXQC 

(Bielow et al., 2016). 

 

Gene set analysis pipeline 
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In total, 28 proteomic samples were analyzed, coming for 14 mouse livers, with 7 healthy and 

7 tumorous livers. Hence, the dataset comprised 7 biological replicates for each condition, 

with 2 technical replicates per mice liver. For each protein, technical replicates were 

averaged, while ignoring missing values. Box and density plots were generated to assess the 

homogeneity of the sample distributions. Clustering was performed over complete cases of 

proteomics samples using the complete method and Euclidean distance (see pheatmap and 

hclust R packages) as well as principal component analysis. Differential analysis was 

performed using the Limma R package (Ritchie et al., 2015). This package assesses the 

significance of fold changes using parallel linear models sharing variance parameters. This 

method was originally developed for micro array data but turns out to be particularly suited 

for shotgun proteomics as it alleviates the scarcity of the measurement matrix by sharing the 

variance between proteins. Out of 4415 detected proteins, 1886 were tested for significance 

of their fold changes. 1018 proteins were found to have significant fold changes (FDR 0,05). 

The list of reviewed proteins associated with metabolic pathways was obtained from Uniprot 

DB using the gene ontology annotation “metabolic process”. Metabolically relevant pathways 

for mouse were obtained from the GSKB R package (Bares, 2015). The Piano package 

(Varemo et al., 2013) was used to estimate the significance of the directional regulation of 

the pathways. The methods used to generate a consensual p-value in piano were: mean, 

median, sum, maxmean, stouffer, fisher, reporter, tailStrength, wilcoxon and PAGE. The 

FDR and t-values yielded by the Limma package were used as gene level statistic. The 

scripts and data can be accessed here: https://github.com/adugourd/thorsten_liver_model. 

 

Statistical analysis 

All data are presented as mean ± SEM. Statistical analysis was performed by two-tailed 

Students t test using the GraphPad Prism 5.0 software (GraphPad Software). Differences 

were considered statistically significant at p<0.05. 
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