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Abstract 
Motivation: Analyzing associations among multiple omic variables to infer mechanisms that meaningfully link them is a 

crucial step in systems biology. Gene Set Enrichment Analysis (GSEA) was conceived to pursue this aim in computational 

genomics, unveiling significant pathways associated to certain gene signatures under investigation. Lipidomics is a rapidly 

growing omic field, and absolute quantification of lipid abundance by shotgun mass spectrometry is generating high-

throughput datasets that depict lipid metabolism in a plethora of conditions and organisms. In addition, high-throughput 

lipidomics represents a new important ally to develop personalized medicine approaches, investigate the causes and 

predict effective biomarkers in metabolic diseases, and not only. 

Results: Here, we present Lipid Pathway Enrichment Analysis (LIPEA), a web-tool for over-representation analysis of 

lipid signatures and detection of the biological pathways in which they are enriched. LIPEA is a new valid resource for 

biologists and physicians to mine pathways significantly associated to a set of lipids, helping them to discover whether 

common and collective mechanisms are hidden behind those lipids. LIPEA was extensively tested and we provide two 

examples where our system gave successfully results related with Major Depression Disease (MDD) and insulin re-

sistance. 

Availability: The tool is available as web platform at https://lipea.biotec.tu-dresden.de. 

 

 

1 Introduction  

Many bioinformatics approaches in genomics and proteomics aims to de-

tect omic signatures (Ciucci et al., 2017), for instance the collection of 

genes that significantly change under a certain biological condition or that 

differ in case-control studies (Huang, Sherman, & Lempicki, 2009). Nor-

mally, such omic signatures need a secondary analysis in order to be un-

derstood in biological terms and linked to significant pathways (Chagoyen 

& Pazos, 2011). The methodology used in such cases is called functional 

enrichment analysis and, since it was originally proposed, a hundred of 

variations and different implementations have been developed. Nowa-

days, scientists in many omic fields make intensive use of enrichment 

analysis tools such as, to name a few, GSEA in genomics (Subramanian 

et al., 2005), MPEA (Kankainen, Gopalacharyulu, Holm, & Orešič, 2011) 

and MBRole (Chagoyen & Pazos, 2011) in metabolomics and, GeneTrail2 

(Stöckel et al., 2016) in multi-omics (transcriptomics, proteomics, 

miRNomics, genomics). 

Lipidomics is an emerging field that aims at the large scale identifica-

tion and quantification of diverse lipid repertoire in biologic systems that 

play critical roles in cellular functions (Gross & Holčapek, 2014; Sales et 

al., 2016). Although lipidomics is not the most developed omic field, its 

importance is increasing constantly over the years, particularly nowadays 

that absolute quantification methods by shotgun mass spectrometry are 

becoming widely available (Shevchenko & Simons, 2010). Therefore, we 

have developed and implemented a free and open web platform called 

LIPEA (Lipid Pathway Enrichment Analysis) that can automatically de-

tect the pathways and categories that are significantly associated to the 

multiple lipid signature provided by the user. 

LIPEA web platform is available at https://lipea.biotec.tu-dresden.de.  

During the development of LIPEA, a special attention was given to design 

a tool that is user-friendly and offers an advanced usability. Indeed, the 

user interface was built on modern and auto-adaptive (responsive) web 

technologies, allowing the free access from any device with Internet con-

nection. Moreover, the user does not need any programming knowledge 

in languages such as R, MATLAB, Python, etc., and the usage of the web 

tool is very intuitive and requires few trial to be easily managed. 

Here, we introduce LIPEA and its interface for functional analysis of 

lipid signatures at the system level. LIPEA works with ID of lipid com-

pounds contained in the Kyoto Encyclopedia of Genes and Genomes 

(KEGG Database; Ogata et al., 1999) and finds significantly perturbed 

pathways, applying statistical tests. LIPEA adopts the Fisher exact test, 

where the probability that the random event could happen is given by the 

hypergeometric distribution. It was extensively tested and below we pro-

vide two examples related with Major Depression Disease (MDD) and In-

sulin resistance. 

2 Methods 

The architecture of LIPEA was implemented adopting the model-view-

controller (MVC) pattern that has been pursued for a clear design which 

separates different responsibilities within an interactive application (Veit 

& Herrmann, 2003). To simplify the use of this approach, we built our 
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system using Symfony Framework, which is a stable and documented tool 

in this field (https://symfony.com/). Symfony allowed us to develop a 

modular platform, with a high degree of abstraction that provides a re-

markable scalability, allowing the addition of new modules and compo-

nents in the future. The idea behind this architecture is to identify specific 

altered pathways - provided by the KEGG Database - using exclusively 

lipid compounds. The approach used to this task is the Over Representa-

tion Analysis (ORA) (Church, Tavazoie, Hughes, Campbell, & Cho, 1999; 

Drǎghici, Khatri, Martins, Ostermeier, & Krawetz, 2003).  

2.1   Architecture 

The MVC pattern achieves independence by decoupling data access, data-

processing logic, data presentation and user interaction tasks into three 

distinct object classifications (Curry & Grace, 2008). These classifications 

are represented in different layers: Model layer (blue), Controller layer 

(orange) and View layer (green) respectively (Fig. 1). Moreover, Symfony 

facilitates the creation of highly flexible solutions and is prevalent in sys-

tems that must provide multiple views of the same data. 

The View layer contains all the web pages shown by LIPEA to the user. 

A current problem with many bioinformatics web tools is its design and 

usability. Many of them are not compatibles with small screen devices 

(such as smartphones, tables, etc.), hindering their usability and user-in-

teraction. To avoid this problem, we implement our interface on Twig, 

HTML5, Bootstrap and jQuery. Bootstrap is crucial in our design, because 

this tool implements an automatic screen adaptation, allowing access to 

our platform from any device, without losing its usability and interaction 

capabilities. Moreover, jQuery and its component AJAX allow asynchro-

nous queries to our server. This gives the possibility of carrying out mul-

tiple processes where, if there are running processes, a new process can be 

executed without having to wait for the previous ones to finish. 

Fig. 1.  LIPEA MVC architecture. The colored boxes represent the MVC layers (Model 

layer [blue], Controller layer [orange] and View layer [green]), while the grey boxes repre-

sent the connectors between layers. 

 

The logic of this platform is contained in the Controller layer. This layer 

encapsulates the interaction between the views and the model. An im-

portant task of this layer is to run the analysis using parallel processes. For 

this approach we created separated Python scripts to run ORA and the p-

value corrections; in this case with two alternatives: Benjamini (Benjamini 

& Hochberg, 1995) or Bonferroni-Holm correction (Holm, 1979). So, 

when the user submits the analysis request and the pathways recognition 

is initiated, in the next steps all the calculations are execute concurrently 

in multiple processes, in order to reduce considerably the execution time.  

This layer is also connected with the externals models where we obtained 

a universe of IDs from multiple related databases. For this task we created 

a mapping process, that generates a table containing the relationships of 

all the IDs from KEGG, Swiss Lipids (Aimo et al., 2015), Lipid Maps 

(Fahy, Sud, Cotter, & Subramaniam, 2007), ChEBI (Hastings et al., 2013) 

and HMDB (Wishart et al., 2007). Given these relationships, we can ex-

tract any ID from a particular database (e.g. Swiss Lipids, Lipid Maps, 

ChEBI or HMDB) to obtain the corresponding KEGG ID for identifying 

then the associated pathways (mapping process). 

Finally, the model is organized using MySQL 

(https://www.mysql.com/) as database system. However, we used Doc-

trine (http://www.doctrine-project.org/) as connector between the control-

ler layer and the model layer. This component lets a model have multiple 

controllers, which can be created and altered independently from the 

model. Moreover, we can generate changes in the database (alter tables, 

create tables, add attributes, etc.) or change the database from inside the 

system, without the need to modify the source code of the application. 

2.2   Workflow 

The analysis starts with a form separated in four steps (Fig. 3). Step 1) 

Lipids: here the users can paste (or upload) the list of lipids that compose 

the signature identified in their study, and for which they want now to 

perform a functional enrichment analysis. Step 2) Background: in this step 

the users can define the background list and the specific organism. The 

background list is the original list of lipids from which the tested lipid 

signature was derived. Step 3) Contact: this step is optional, here the users 

can give an email address for receiving a link with the results. Step 4) 

Submission: finally the users sends the information to the server to start 

the analysis. 

Fig. 2.  LIPEA workflow. Here two big areas are represented; 1) The user interface (left 

side) and 2) the server (right side). The yellow (and the orange one) boxes represent the 

web pages visualized by the user. The blue boxes correspond to variables, while the green 

ones are the procedures executed by the server. Finally, the grey rhombuses represent de-

cision nodes. (*) The contact information is optional. 

 

At the moment of the analysis submission, the server checks the inputs. 

If there are information not related with lipidomic data, the server will 

return an error (this verification is to avoid attacks to our server like SQL 

injection, among others). Instead, when the information is valid, the anal-

ysis starts and the lipid list and the background are transformed to KEGG 

IDs, using the internal mapping process (connected to Swiss Lipids, Lipid 

Maps, ChEBI, HMDB and KEGG databases via API REST). Once ob-

tained the KEGG IDs, the server searches the pathways for the selected 

organism. Then, the total lipid compounds from all the pathways are ex-

tracted and the Over Representation Analysis (ORA) starts in parallel for 

each pathway. When all the ORA analysis are completed, the server com-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/274969doi: bioRxiv preprint 

https://symfony.com/
https://doi.org/10.1101/274969
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Acevedo et al. 

putes the Benjamini and Bonferroni p-values corrections. Once this pro-

cess is finished, the server returns a list of enriched pathways sorted by p-

value. Finally, the results are shown in an interactive table, where the user 

can change the order, view the conversion history, among other features, 

and at the end download the list of pathways (Fig. 2). 

 

Fig. 3.  Screenshot of the LIPEA input interface. This interface is separated in four 

steps:  Step 1) Lipids, Step 2) Background, Step 3) Contact, and Step 4) Submission, as 

described in the main text.  

2.3   Over Representation Analysis (ORA) 

ORA starts with considering a list of annotated lipids (e.g. a lipid set re-

lated with a signature), then uses the Fisher exact test to verify if the an-

notations are over represented among a label (pathway) compared to the 

whole universe of lipids (background), which in our platform can be se-

lected as “predefined” for a specific organism (it means, LIPEA will take 

all the compounds from the pathways related with the selected organism) 

or be a custom list given by the user (because it was the original lipid list 

from which the tested signature was obtained).  

The steps of the algorithm used by LIPEA to implement the ORA are 

the following: (Step 1) Set an organism, collect the lipid list and the back-

ground. (Step 2) Select a pathway to start with. (Step 3) Tally the follow-

ing 4 numbers: m, N, k, and n, where m is the total number of lipids in the 

pathway, N is the total number of lipids from all the pathways related with 

the selected organism, k is the number of lipids of the intersection between 

the lipid list and a pathway, and n is the total number of lipids in the list. 

(Step 4) Perform a Fisher exact test, with the 4 numbers obtained in the 

preview step, as follows. 

 𝑓(𝑘;𝑁,𝑚, 𝑛) =
(𝑚
𝑘
)(𝑁−𝑚

𝑛−𝑘
)

(𝑁
𝑛
)

 (1) 

In (1) the f value is the probability that this random event could happen 

under the hypergeometric distribution. In this case, to obtain the p-value 

associated to each pathway detected by the algorithm, the following for-

mula is used. 

 𝑝 =∑𝑓(𝑙;𝑁,𝑚, 𝑛)

𝑛

𝑙=𝑘

 (2) 

(Step 5) Go to step 2 for another pathway of interest until all are tested 

(Kanehisa, 2013). (Step 6) Correct the p-values with Benjamini or Bon-

ferroni-Holm corrections. 

3 Results 

We tested our system with a list of potential lipid markers of major de-

pressive disorder (MDD) (Liu et al., 2016). The authors proposed a com-

binational lipid panel including LPE 20:4, PC 34:1, PI 40:4, SM 39:1,2, 

and TG 44:2 as potential diagnostic biomarkers for MDD. As inputs we 

used these potential biomarker as lipid list, together with a default back-

ground for Homo sapiens (Human), this means that all the lipids included 

in all the pathways for this organism were considered as initial lipid list 

from which the signature was derived. 

We obtained one significant pathway as results: glycerophospholipid 

metabolism (KEGG code: hsa00564) with Benjamini and Bonferroni cor-

rected p-value less than 0.05 (Fig. 4). This results have coincided with the 

discovery and validation of plasma biomarkers for MDD proposed by the 

same authors (Liu et al., 2015) where they revealed that some biomarker 

lipid classes related with the glycerophospholipid metabolism are in-

creased in MDD subjects. However, while LIPEA automatically detected 

the association with the glycerophospholipid metabolism and proved that 

is statistically significant, in order to arrive to the same conclusion Liu et 

al. had to perform an extensive expert-based evaluation of the literature 

and their conclusion was not supported by any statistical test that quanti-

fies the significance of the association between the lipid marker classes 

and the pathway. This example clarifies how LIPEA offers an automatic 

tool that emulates the ability of an expert to detect meaningful associations 

between lipid signatures and molecular mechanism, but with the ad-

vantage also to provide statistical significance to the proposed functional 

annotation, which is produced in few seconds or minutes (in relation with 

the query load).   

Finally, to provide a second example, we took as inputs a specific list 

(n = 23) of lipids all derived from the same lipid class (Triacylglycerides, 

TAG) and Rattus norvegicus (Rat) as default organism for the back-

ground. LIPEA identified as significant pathway insulin resistance 

(KEGG code: rno04931), and in agreement with this result we found stud-

ies where the authors proposed that an enhancing of triglycerides is related 

with the insulin sensibility in rats (Lee et al., 2006; Pinnamaneni, 

Southgate, Febbraio, & Watt, 2006; Schenk & Horowitz, 2007; Todd, 

Watt, Le, Hevener, & Turcotte, 2007). This second example clarifies how 

LIPEA could be used as tool not only for test but also for hypothesis gen-

eration. In fact, if - in absence of experiments - we make a theoretical hy-

pothesis on the relevance of a set of lipids for a certain molecular mecha-

nism, by means of LIPEA we can mine the support that our hypothesis can 

have according to the knowledge currently available in the databases. 
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4 Discussion 

Given as inputs three terms (the lipid signature of interest; the original 

background list of lipids; and the organism under investigation) LIPEA 

runs automatically in seconds the entire functional enrichment analysis, 

providing in output a list of pathways in which a sub-set of the tested lipids 

are over-represented. If the background list is not uploaded by the user, 

the list of all the available lipids (in the LIPEA’s database) for the selected 

organism is used instead. Finally, the updated list of pathways used in 

LIPEA for a selected organism can be downloaded by the user in case of 

necessity. LIPEA currently support all the organisms available in KEGG 

database. Moreover, our platform has an administration system where all 

the information about the organisms, pathways and compounds are up-

dated continuously.  

Currently LIPEA analyses can only be done at the class scale. Although 

there are some databases like Swiss Lipids, Lipid Maps, etc. that have in-

formation at the (sub)-species level, this information is not directly related 

with the pathways contained in KEGG. Moreover, the lipidomic field at 

the moment does not offer an adequate knowledge for pathways that is at 

the lipid species level, because the technology that analyzes samples at the 

species level in a robust and replicable manner is becoming largely avail-

able to the scientific community only recently (Han, Yang, & Gross, 2012; 

Shevchenko & Simons, 2010; Subramaniam et al., 2011; Yetukuri, 

Ekroos, Vidal-Puig, & Orešič, 2008). However, we would like to clarify 

that this is not a limitation of LIPEA itself but of the current data available 

on the public databases. 

Given the above, in the future we aim to develop the LIPEA project in 

order to integrate the new knowledge generated in lipidomics at the scale 

of species and sub-species. This will aim to perform a transversal enrich-

ment analysis identifying the significant pathways at multiscale level 

(classes, species, and sub-species).  
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