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Abstract. Hundreds of thousands of human whole genome sequencing (WGS) datasets will be 

generated over the next few years to interrogate a broad range of traits, across diverse populations. 

These data are more valuable in aggregate: joint analysis of genomes from many sources increases 

sample size and statistical power for trait mapping, and will enable studies of genome biology, 

population genetics and genome function at unprecedented scale. A central challenge for joint analysis 

is that different WGS data processing and analysis pipelines cause substantial batch effects in 

combined datasets, necessitating computationally expensive reprocessing and harmonization prior to 

variant calling. This approach is no longer tenable given the scale of current studies and data volumes. 

Here, in a collaboration across multiple genome centers and NIH programs, we define WGS data 

processing standards that allow different groups to produce "functionally equivalent" (FE) results 

suitable for joint variant calling with minimal batch effects. Our approach promotes broad harmonization 

of upstream data processing steps, while allowing for diverse variant callers. Importantly, it allows each 

group to continue innovating on data processing pipelines, as long as results remain compatible. We 

present initial FE pipelines developed at five genome centers and show that they yield similar variant 

calling results – including single nucleotide (SNV), insertion/deletion (indel) and structural variation (SV) 

– and produce significantly less variability than sequencing replicates. Residual inter-pipeline variability 

is concentrated at low quality sites and repetitive genomic regions prone to stochastic effects. This work 

alleviates a key technical bottleneck for genome aggregation and helps lay the foundation for broad 

data sharing and community-wide "big-data" human genetics studies. 

 

Main text 

Over the past few years, a wave of large-scale WGS-based human genetics studies have been 

launched by various institutes and funding programs worldwide, aimed at elucidating the genetic basis 

of a variety of human traits. These projects will generate hundreds of thousands of publicly available 

deep (>20x) WGS datasets from diverse human populations. Indeed, at the time of writing, >150,000 

human genomes have already been sequenced by three NIH programs: NHGRI Centers for Common 

Disease Genomics1 (CCDG), NHLBI Trans-Omics for Precision Medicine2 (TOPMed), and NIMH Whole 

Genome Sequencing in Psychiatric Disorders3 (WGSPD). Systematic aggregation and co-analysis of 

these (and other) genomic datasets will enable increasingly well-powered studies of human traits, 

population history and genome evolution, and will provide population-scale reference databases that 

expand upon the groundbreaking efforts of the 1000 Genomes Project4,5, Haplotype Reference 

Consortium6, ExAC7 and GnomAD8. 

 Our ability as a field to harness these collective data to their full analytic potential depends on 

the availability of high quality variant calls from large populations of individuals. Accurate population-

scale variant calling in turn requires joint analysis of all constituent raw data, where different batches 
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have been aligned and processed systematically using compatible methods. Genome aggregation 

efforts are stymied by the distributed nature of human genetics research, where different groups 

routinely employ different alignment, data processing and variant calling methods. These methods often 

have comparable overall quality, but exhibit trivial incompatibilities that produce batch effects, limiting 

the utility of combined datasets. Prior exome/genome aggregation efforts have therefore been forced to 

obtain raw sequence data and re-perform upstream read alignment and data processing steps prior to 

joint variant calling7,8. These upstream steps are computationally expensive – representing as much as 

~80% of the overall cost of WGS data analysis – and having to rerun them is inefficient. This 

computational burden will be increasingly difficult to bear as data volumes grow over coming years.  

 To help alleviate this burden and enable future genome aggregation efforts, we have forged a 

collaboration of major U.S. genome sequencing centers and NIH programs, and collaboratively defined 

data processing and file format standards to guide ongoing and future sequencing studies. Our 

approach focuses on the harmonization of upstream steps prior to variant calling, thus reducing trivial 

variability in core pipeline components while promoting the application of diverse and complementary 

variant calling methods – an area of much ongoing innovation. The guiding principle is the concept of 

"functional equivalence" (FE). We define FE to be a shared property of two pipelines that can be run 

independently on the same raw WGS data to produce two output files that, upon analysis by the same 

variant caller(s), produce virtually indistinguishable genome variation maps. A key question, of course, 

is where to draw the FE threshold. There is no one answer; at minimum, we advise that data 

processing pipelines should introduce much less variability in a single DNA sample than independent 

WGS replicates of DNA from the same individual.  

 Towards this goal, we defined a set of required and optional data processing steps and file 

format standards (Fig. 1; see GitHub page9 for details). We focus here on WGS data analysis, but 

these guidelines are equally suitable for exome sequencing. These standards are founded in extensive 

prior work in the area of read alignment10, sequence data analysis5,11-17 and compression11,18, and more 

broadly in WGS analysis best practices employed at our collective institutes, and worldwide. Notable 

features of the data processing standard include alignment with BWA-MEM10, adoption of a standard 

GRCh38 reference genome with alternate loci4,19,20, and improved duplicate marking. File format 

standards include a 4-bin base quality scheme, CRAM compression18 and restricted tag usage, which 

in combination reduced file size >3-fold (from 54 to 17 Gb for a 30X WGS and from 38 to 12 Gb for a 

20X WGS). This in turn reduces data storage costs and increases transfer speeds, facilitating data 

access and sharing.  

 We implemented initial versions of these pipelines at each of the five participating centers, 

including the four CCDGs as well as the TOPMed Informatics Resource Core, and serially tested and 

modified them based on alignment statistics (Supplementary Table 1) and variant calling results from 
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a 14-genome test set, using GATK21 for single nucleotide variants (SNVs) and small insertion/deletion 

(indel) variants, and LUMPY22 for structural variants (SVs), with data contributed from each center (see 

Methods). These 14 datasets have diverse ancestry and are composed of well-studied samples from 

the 1000 Genomes Project4, including 4 independently-sequenced replicates of NA12878 (CEPH) and 

2 replicates of NA19238 (Yoruban). We tested pairwise variability in SNV, indel and SV callsets 

generated separately from each of the five pipelines, before and after harmonization, as compared to 

variability between WGS data replicates (Fig. 2). As expected, pipelines used by centers prior to 

harmonization effort exhibit strong levels of variability, especially among SV callsets. Most importantly, 

variability between harmonized pipelines (mean 0.4%, 1.8%, and 1.1% discordant for SNVs, indels, and 

SVs, respectively) is an order of magnitude lower than between replicate WGS datasets (mean 7.1%, 

24.0%, and 39.9% discordant). Note that absolute levels of discordance are somewhat high in this 

analysis because we performed per-sample variant calling and included all genomic regions, with 

minimal variant filtering. All pipelines show similar levels of sensitivity and accuracy based on Genome 

in a Bottle (GiaB) calls for NA1287823 (Supplementary Fig. 1). 

 We next applied the final pipeline versions to an independent set of 100 genomes comprising 8 

trios from the 1000 Genomes Project4,5 and 19 quads from the Simons Simplex Collection24, and 

generated separate 100-genome GATK and LUMPY callsets using data from each of the five pipelines. 

Considering all five callsets in aggregate, the vast majority of GATK variants (97.2%) are identified in 

data from all five pipelines, with only 1.74% unique to a single pipeline and 1.02% in various minor 

subsets. Mean pairwise SNV concordance rates are in the range of 99.0-99.9% over all sites and 

comparisons, and Mendelian error rates are ~0.3% at concordant sites, and ~22-24% at discordant 

sites (Fig. 3). Indel and SV concordance rates are lower – as expected given that these variants are 

more difficult to map and genotype precisely. Pairwise SNV concordance rates are substantially higher 

in GiaB high confidence genomic regions comprised predominantly of unique sequence (SNV 

concordance: 99.7-99.9%; 72% of genome) than in difficult-to-assess regions laden with segmental 

duplications and high copy repeats (SNV concordance: 92-99%; 8.5% of genome; see Methods). 

Indeed, 58% of discordant SNV calls are found in the 8.5% most difficult to analyze subset of the 

genome. Furthermore, the mean quality score of discordant SNV sites are only 0.5% as high as the 

mean score of concordant SNV sites (16.4% for indels and 90.0% for SVs) (Supplementary Fig. 2). 

This suggests that many discordant sites are either false positive calls or represent sites that are 

difficult to measure robustly with current methods. Differences between pipelines are roughly 

symmetric, with all pipelines achieving similarly low levels of performance at discordant sites, as based 

on pairwise discordance rates and Mendelian error rates (Supplementary Fig. 3), further suggesting 

that most discordant calls are due to stochastic effects at sites with borderline levels of evidence. We 

note that there are some center-specific sources of variability due to residual differences in BQSR 

models and alignment filtering methods, but that these affect only a trivial fraction of variant calls.  
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 Here, we have described a simple yet effective approach for harmonizing data processing 

pipelines through the concept of "functional equivalence". This work resolves a key source of batch 

effects in sequencing data from different genome centers, and thus alleviates a bottleneck for data 

sharing and collaborative analysis within and among large-scale human genetics studies. Our approach 

also facilitates accurate comparison to variant databases; researchers that want to analyze their 

sample(s) against major datasets such as gnomAD, TOPMed, or CCDG should adopt these standards 

in order to avoid artifacts caused by non-FE sample processing. Of course, other challenges remain, 

such as batch effects from library preparation and sequencing, and persistent regulatory hurdles. 

Nevertheless, we envision that it will be possible to robustly generate increasingly large genome 

variation maps and shared annotation resources from these and other programs over the next few 

years, from diverse groups and analysis methods. Ultimately, we hope that international efforts such as 

Global Alliance for Genomics & Health (GA4GH) will adopt and extend these guidelines to help 

integrate research and medical genomes worldwide.  
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Figure 1. We defined a series of required and allowed processing steps that provide flexibility in 

pipeline implementation while keeping variation between pipelines at a minimum. Reads must be 

aligned to a specific reference genome using a minimum version of the BWA-MEM aligner. Algorithms 

for marking duplicates and recalibrating base quality scores are more flexible and vary somewhat 

between centers. Compression of quality scores into four bins saves storage and file transfer costs, 

while maintaining acceptable accuracy and sensitivity. 
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Figure 2. Pairwise variant discordance rates were calculated between pipelines from each of five 

centers (pre-harmonization and post-harmonization) as well as between independent sequencing 

replicates of the same individuals processed by the same pipeline (data replicates). From left, single 

nucleotide (SNV) and small insertion/deletion (indel) variants were detected with GATK, and structural 

variants (SV) with LUMPY. The pre- and post-harmonization comparisons include 14 independently 

sequenced samples. The data replicate comparisons include four replicates of NA12878 and two 

replicates of NA19238. Note that the extremely high levels of discordance for SVs pre-harmonization 

are largely due to variable use of “decoy” sequences in the reference genomes used by the different 

centers.  
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Figure 3. Variant concordance and Mendelian error (ME) rates for different variant classes and 

genomic regions using 100 samples, including 8 trios from the 1000 Genomes Project and 19 quads 

from the Simons Simplex Collection. (a) Variant concordance rates were calculated from pairwise 

comparisons across five pipelines for 100 samples. (b) Mendelian error rates were calculated using 

informative sites in 44 parent-offspring trios, for variants classified as concordant and discordant in 

pairwise comparisons between five pipelines.  
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Supplementary Figure 1. Sensitivity and precision to the GiaB gold standard variants were very 

similar across pipelines for all four NA12878 replicates. 

Sensitivity Precision
S

N
V

indel

0.995

0.996

0.997

0.998

0.95

0.96

0.97

0.98

pipeline

va
lu

e

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2018. ; https://doi.org/10.1101/269316doi: bioRxiv preprint 

https://doi.org/10.1101/269316
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Figure 2. The median variant quality score (QUAL field from the GATK VCF; MSQ 

INFO field from the LUMPY SV VCF) was calculated for each sample, with variants partitioned by their 

status in each pairwise pipeline comparison. 
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Supplementary Figure 3. The rate of Mendelian error for each of 44 parent-offspring trios was 

calculated for variants shared between two pipelines as well as variants unique to one pipeline. The 

error rate was determined using informative sites only. In most variant types and genomic regions, 

variants unique to each pipeline show similar error rates, indicating that no pipeline is introducing 

variant calling errors or improvements in a biased way. The exception is SVs, where unique variants 

from one pipeline have a higher error rate than other pipelines; but, note that this is caused by a tiny 

number of discordant calls. 
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Supplementary Table 1. Select alignment statistics for NA19431, post-harmonization.   

Center Center 1 Center 2 Center 3 Center 4 Center 5 

## Alignment Statistics  
     

Yield_Reads 841,563,833 841,496,939 841,496,939 841,496,939 841,496,939 

Unmapped_Reads 14,505,992 12,605,618 12,605,618 12,605,618 12,605,618 

Duplicate_Reads_PCT 6.02 6.02 6.02 6.02 6.02 

Q20_Bases_PCT 96.24 96.22 96.22 96.39 96.22 

Mismatched_Bases_PCT 0.72 0.73 0.73 0.73 0.73 

Median_Insert_Size 492 492 492 492 492 

Percent Bases >20x 98.02 98.04 98.04 98.04 98.04 

Average Coverage 39.56 39.61 39.61 39.61 39.61 

Chimeric_Rate 2.51 2.6 2.6 2.6 2.6 
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Methods 

 

Dataset selection 

For initial testing, we selected 14 whole genome sequencing datasets based on the following criteria: 

(1) they include samples of diverse ancestry, including CEPH (NA12878, NA12891, NA12892), 

Yoruban (NA19238), Luhya (NA19431), and Mexican (NA19648); (2) they were sequenced at multiple 

different genome centers to deep coverage (>20X) using Illumina HiSeq X technology; (3) they include 

replicates of multiple samples, including 2 of NA19238 (Yoruban) and 4 of NA12878 (CEPH); (4) they 

include the extremely well-studied NA12878 genome, for which much ancillary data exists, and (5) they 

were open access, readily accessible and shareable among the consortium sites. For subsequent 

characterization of the finalized pipelines, we selected an independent set of 100 samples composed of 

8 open-access trios of diverse ancestry from the 1000 Genomes project – including CEPH (NA12878, 

NA12891, NA12892), Yoruban (NA19238, NA19239, NA19240), Southern Han Chinese (HG00512, 

HG00513, HG00514), Puerto Rican (HG00731, HG00732, HG00733), Colombian (HG01350, 

HG01351, HG01352), Vietnamese (HG02059, HG02060, HG02061), Gambian (HG02816, HG02817, 

HG02818), and Caucasian (NA24143, NA24149, NA24385) – and 19 quads from the Simons Simplex 

Collection24.  

 

Downsampling data replicates 

To eliminate coverage differences as a contributor to variation between sequencing replicates of the 

same sample (4 replicates of NA12878 and 2 replicates of NA19238), the data replicates were 

downsampled to match the lowest coverage sample. To obtain initial coverage, all replicates were 

aligned to a build 37 reference using speedseq14 (v 0.1.0). Mean coverage for each BAM file was 

calculated using the Picard CollectWgsMetrics tool (v2.4.1)12. For each sample, a downsampling ratio 

was calculated using the lowest coverage as the numerator and the sample’s coverage as the 

denominator. This ratio was used as the PROBABILITY parameter for the Picard DownsampleSam 

tool, along with RANDOM_SEED=1 and STRATEGY=ConstantMemory. The resulting BAM was 

converted to FASTQ using the script bamtofastq.py from the speedseq repository. 

 

Alignment and data processing pipelines - WashU, pre- and post-harmonization 

The pre-harmonization pipeline aligns reads to the GRCh37-lite reference using speedseq (v0.1.0)14. 

This includes alignment using bwa (v0.7.10-r789)10, duplicate marking using samblaster (v0.1.22)13, 

and sorting using sambamba (v0.5.4)16. 
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 The post-harmonization pipeline aligns each read group separately to the GRCh38 reference 

using bwa-mem (v0.7.15-r1140) with the parameters `-K 100000000 -p -Y`. MC and MQ tags are added 

using samblaster (v0.1.24) with the parameters `-a --addMateTags`. Read group BAM files are merged 

together with `samtools merge` (v1.3.1-2). The resulting file is name-sorted with `sambamba sort -n` 

(v0.6.4). Duplicates are marked using Picard MarkDuplicates (v2.4.1) with the parameter 

`ASSUME_SORT_ORDER=queryname`, then the results are coordinate sorted using `sambamba 

sort`. A base quality recalibration table is generated using GATK BaseRecalibrator (v3.6) with 

knownSites files (dbSNP138, Mills and 1kg indels, and known indels) from the GATK resource bundle 

(https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0) and 

parameters `--preserve_qscores_less_than 6 -dfrac .1 -nct 4 -L chr1 -L chr2 -L chr3 -L chr4 -L chr5 -L 

chr6 -L chr7 -L chr8 -L chr9 -L chr10 -L chr11 -L chr12 -L chr13 -L chr14 -L chr15 -L chr16 -L chr17 -L 

chr18 -L chr19 -L chr20 -L chr21 -L chr22`. The base recalibration table is applied using GATK 

PrintReads with the parameters `-preserveQ 6 -BQSR "${bqsrt}" -SQQ 10 -SQQ 20 -SQQ 30 --

disable_indel_quals`. Finally, the output is converted to CRAM using `samtools view`. 

 

Alignment and data processing pipelines – Broad, pre- and post-harmonization 

Pre harmonization: 

-Align with bwa-mem v0.7.7-r441: bwa mem –M –t 10 –p GRCh37.fasta 

-Merge aligned bam with the original unaligned bam and sort with Picard 2.8.3: MergeBamAlignment 

ADD_MATE_CIGAR=true ALIGNER_PROPER_PAIR=false UNMAP_CONTAMINANT_READS=false 

SORT_ORDER=coordinate 

- Mark duplicates with Picard 2.8.3: MarkDuplicates 

- Find target indels to fix with GATK 3.4-g3c929b0: CreateRealignerTargets  –known 

dbSnp.138.vcf –known mills.vcf –known 1000genome.vcf 

-Fix indel alignments with GATK 3.4-g3c929b0: –known dbSnp.138.vcf –known mills.vcf –known 

1000genome.vcf 

- Create recalibration table using GATK 3.4-g3c929b0: RecalibrateBaseQuality –knownSites 

dbSnp.138.vcf using –known dbSnp.138.vcf –known mills.vcf –known 1000genome.vcf 

- Apply base recalibration using GATK 3.4-g3c929b0: PrintReads –disable_indel_quals –

emit_original_quals 

 

Post harmonization: 

- Align with bwa-mem 0.7.15.r1140: bwa mem -K 100000000 -p -v 3 -t 16 –Y GRCh38.fasta 
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- Merge aligned bam with the original unaligned bam with Picard 2.16.0: MergeBamAlignment 

EXPECTED_ORIENTATIONS=FR ATTRIBUTES_TO_RETAIN=X0 ATTRIBUTES_TO_REMOVE=NM 

ATTRIBUTES_TO_REMOVE=MD REFERENCE_SEQUENCE=${ref_fasta} PAIRED_RUN=true 

SORT_ORDER="unsorted CLIP_ADAPTERS=false MAX_INSERTIONS_OR_DELETIONS=-1 

PRIMARY_ALIGNMENT_STRATEGY=MostDistant UNMAPPED_READ_STRATEGY=COPY_TO_TAG 

ALIGNER_PROPER_PAIR_FLAGS=true UNMAP_CONTAMINANT_READS=true 

ADD_PG_TAG_TO_READS=false  

- Mark duplicates with Picard 2.16.0: MarkDuplicates ASSUME_SORT_ORDER="queryname" 

- Sort with Picard 2.16.0: SortSam SortOrder=coordinate 

- Create BQSR table using GATK 4.beta.5: BaseRecalibrator 

 –knownSites dbSnp.138.vcf using –known dbSnp.138.vcf –known mills.vcf –known 

1000genome.vcf 

- Apply recalibration using GATK 4.beta.5: 

 ApplyBQSR -SQQ 10 -SQQ 20 -SQQ 30 

- Convert output to cram with SamTools v 1.3.1: samtools view -C -T GRCh38.fasta 

 

Alignment and data processing pipelines – Baylor, pre & post harmonization 

In the HGSC pre-harmonized WGS protocol (https://github.com/HGSC-

NGSI/HgV_Protocol_Descriptions/blob/master/hgv_resequencing.md), reads are mapped to the 

GRCh37d reference with bwa-mem (v0.7.12), samtools (v1.3) fixmate, sorting and duplicate marking 

with sambamba (v0.5.9), base recalibration and realignment with GATK (v3.4.0), and the quality scores 

are binned and tags removed with bamUtil squeeze (v1.0.13). Multiplexed samples follow the same 

steps up through sorting and duplicate marking, resulting in sequencing-event BAMs. The BAMs are 

merged and duplicates marked using sambamba (v0.5.9), followed by the recalibration, realignment 

and binning described above.  

 The HGSC harmonized WGS protocol (https://github.com/HGSC-

NGSI/HgV_Protocol_Descriptions/blob/master/hgv_ccdg_resequencing.md) aligns each read group to 

the GRCh38 reference using bwa-mem (0.7.15) with the parameters `-K 100000000 -Y`. MC and MQ 

tags are added using samblaster (v0.1.24) with the parameters `-a --addMateTags`. The resulting file is 

name-sorted with `sambamba sort -n` (v0.6.4). Duplicates are marked using Picard MarkDuplicates 

(v2.4.1) with the parameter `ASSUME_SORT_ORDER=queryname`, then the results are coordinate-

sorted using `sambamba sort`. For multiplexed samples, these sequence-event BAMs are then merged 

with sambamba (v0.6.4) merge, name sorted, duplicate marked and coordinate-sorted with the same 

tools as above. A base quality recalibration table is generated using GATK BaseRecalibrator (v3.6) with 

knownSites files (dbSNP138, Mills and 1kg indels, and known indels) from the GATK resource bundle 
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(https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0) and 

parameters `--preserve_qscores_less_than 6 -dfrac .1 -nct 4 -L chr1 -L chr2 -L chr3 -L chr4 -L chr5 -L 

chr6 -L chr7 -L chr8 -L chr9 -L chr10 -L chr11 -L chr12 -L chr13 -L chr14 -L chr15 -L chr16 -L chr17 -L 

chr18 -L chr19 -L chr20 -L chr21 -L chr22`. The base recalibration table is applied using GATK 

PrintReads with the parameters `-preserveQ 6 -BQSR "${bqsrt}" -SQQ 10 -SQQ 20 -SQQ 30 --

disable_indel_quals`. Finally, the output is converted to CRAM using `samtools view`. 

 

Alignment and data processing pipelines – NYGC, pre- and post-harmonization  

 

 

Alignment and data processing pipelines – Michigan, pre- and post-harmonization 

The pre-harmonization pipeline aligns reads using default options in the GotCloud alignment pipeline15 

available at https://github.com/statgen/gotcloud. It aligns the sequence reads to GRCh37 reference with 

decoy sequences used in 1000 Genomes. The raw sequence was aligned using bwa mem (v0.7.13-

r1126)10, and sorted by samtools (v1.3.1). The duplicate marking and base quality recalibration were 

performed jointly using bamUtil dedup [ref – same as GotCloud] (v1.0.14). 

 The post-harmonization pipeline procedure (described in https://github.com/statgen/docker-

alignment) first aligns each read group to the GRCh38 reference using bwa-mem (v0.7.15-r1140) with 

the parameters `-K 100000000 -Y -R [read_group_id]`. To add MC and MQ tags, samblaster (v0.1.24) 

was used with the parameters `-a --addMateTags`. Each BAM file corresponding to a read group is 

sorted by genomic coordinate using `samtools sort` (v1.3.1), and merged together using `samtools 

merge` (v1.3.1). Duplicate marking and base quality recalibration were performed jointly using bamUtil 

dedup_lowmem (v1.0.14). with  and parameters `--allReadNames –binCustom –binQualS 

0:2,3:3,4:4,5:5,6:6,7:10,13:20,23:30,33:40 --recab --refFile [reference_fasta_file] --dbsnp 

CCDG Pipline NYGC b37 Pipeline

Reference Reference human_g1k_v37.fasta

Program Version Options Program Version Options Diffs and Comments

bwa 0.7.15 mem -Y -K 100000000 bwa 0.7.8 mem -M CCDG pipeline adds options to remove secondary 

alignments and fix chunk size for alignments (for 

reproducibility)

picard 2.4.1 FixMateInformation 
ADD_MATE_CIGAR=True

FixMateInformation added in CCDG pipeline for SV 

callers

picard 2.4.1 MergeSamFiles 
SORT_ORDER=queryname

picard 1.83 MergeSamFiles.jar CCDG pipeline sorts in query order to meet duplicate 

marking requirements

picard 2.4.1 MarkDuplicates picard 1.83 MarkDuplicates.jar CCDG pipline marks first instance as unique and all 

supplementary alignments the same as the primary. 

Build 37 pipeline marks highest quality read/pair as 

unique but does not mark supplementary alignments.

picard 2.4.1 SortSam 
SORT_ORDER=coordinate

CCDG pipeline does coordinate sort after duplicate 

marking

GATK 3.4-0 RealignerTargetCreator

GATK 3.4-0 IndelRealigner

GATK 3.5 BaseRecalibrator --
preserve_qscores_less_than 
6 -L 
grch38_autosomes.intervals

GATK 3.4-0 BaseRecalibrator The known sites files differ with the build, with the 

CCDG pipeline using the FE standards as shown in main 

Fig. 1. CCDG pipeline also only uses autosomes to build 

the recalibration model (but recalibrates on all 

sequences).

GATK 3.5 PrintReads --
preserve_qscores_less_than 
6 -SQQ 10 -SQQ 20 -SQQ 30

GATK 3.4-0 PrintReads CCDG pipeline bins all recalibrated quality scores above 

6 by rounding to the nearest multiple of 10 (max 30) in 

error probability space.

samtools 1.3.1 view -C CCDG pipeline uses samtools to convert BAM to CRAM.

CCDG pipeline does not realign around indels. This step 

is now inherent in Haplotype Caller but does not modify 

the BAM alignments.

GRCh38_full_analysis_set_plus_dec
oy_hla.fa
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[dbsnp_b142_vcf_file] --in [input_bam] –out -.ubam` and the piped output (in uncompressed BAM 

format) is convered into s a CRAM file using samtools view. 

 

Calculation of Alignment Statistics 

A total of 184 alignment statistics were generated for all standardized CRAM files from each center with 

AlignStats software. Results include metrics for both the entire CRAM file and for the subset of read-

pairs with at least one read mapping to the autosome or sex chromosomes. We examined all metrics 

across the five CRAMs for each of the 15 samples to ensure that any differences were consistent with 

the various options allowed in the functional equivalence specification. Supplementary Table 1 provides 

examples of these metrics, and full description of all metrics can be found online 

(https://github.com/jfarek/alignstats). 

 

Variant calling for the 14-sample analysis 

SNPs and indels were called for each center’s CRAM/BAM files using GATK21 version 3.5-0-g36282e4 

HaplotypeCaller with the following parameters: 

-rf BadCigar 

--genotyping_mode DISCOVERY 

--standard_min_confidence_threshold_for_calling 30 

--standard_min_confidence_threshold_for_emitting 0 

For the pre-standardization files, the 1000 genomes phase 3 reference sequence from the GATK 

reference bundle 

ftp://ftp.broadinstitute.org/pub/svtoolkit/reference_metadata_bundles/1000G_phase3_25Jan2015.tar.gz 

was used. For the post-standardization files, the 1000 Genomes Project version of GRCh38DH 

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/) was used. 

 Structural variants (SVs) were called for each center’s CRAM/BAM files using lumpy22 and 

svtools (https://github.com/hall-lab/svtools). First, split reads and reads with discordant insert sizes or 

orientations were extracted from the CRAM/BAM files using extract-sv-reads in the docker image 

halllab/extract-sv-

reads@sha256:192090f72afaeaaafa104d50890b2fc23935c8dc98988a9b5c80ddf4ec50f70c using the 

following parameters: 

 --input-threads 4 -e –r 

 Next, SV calls were made using lumpyexpress (https://github.com/arq5x/lumpy-sv) from the 

docker image 

halllab/lumpy@sha256:59ce7551307a54087e57d5cec89b17511d910d1fe9fa3651c12357f0594dcb07 
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with the -P parameter as well as -x to exclude regions contained in the BED file 

exclude.cnvnator_100bp.GRCh38.20170403.bed (exclude.cnvnator_100bp.112015.bed for pre-

standardization samples).  Both exclude files are available in https://github.com/hall-

lab/speedseq/tree/master/annotations 

 Finally, the SV calls were genotyped using svtyper [https://github.com/hall-

lab/svtools/tree/master/svtools/bin/svtyper] from the docker image 

halllab/svtyper@sha256:21d757e77dfc52fddeab94acd66b09a561771a7803f9581b8cca3467ab7ff94a 

 

Defining "easy", "medium" and "hard" genomic regions 

The reference genome sequence is not uniformly amenable to analysis – some regions with high 

amounts of repetitive sequence are difficult to align and prone to misleading analyses, while other 

regions comprised of mostly unique sequence can be more confidently interpreted. To gain a better 

understanding of how pipeline concordance differs by region, we divided the reference sequence into 

three broad categories. The “easy” genomic regions consist of the GiaB gold standard high confidence 

regions, lifted over to build 38. The “hard” regions consist of centromeres 

(https://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/data/38/Modeled_regions_for_GR

Ch38.tsv), microsatellite repeats (satellite entries from 

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.out.gz), low complexity regions 

(https://github.com/lh3/varcmp/raw/master/scripts/LCR-hs38.bed.gz), and windows determined to have 

high copy number (more than 12 copies per genome across 409 samples). Any regions overlapping 

GiaB high confidence regions are removed from the set of hard regions. All remaining regions are 

classified as “medium”. 

 

Cross-center variant comparisons for the 14-sample analysis 

The VCF files produced by GATK for both the pre- and post-standardization experiments were 

compared using hap.py[https://github.com/Illumina/hap.py] from the docker image 

pkrusche/hap.py:v0.3.9 using the --preprocess-truth parameter. 

The four data replicates of NA12878 were compared to the NA12878 gold standards (ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/ 

NISTv2.19/NISTIntegratedCalls_14datasets_131103_allcall_UGHapMerge_HetHomVarPASS_VQS

Rv2.19_2mindatasets_5minYesNoRatio_all_nouncert_excludesimplerep_excludesegdups_excl

udedecoy_excludeRepSeqSTRs_noCNVs.vcf.gz in the regions defined by ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/ 

NISTv2.19/union13callableMQonlymerged_addcert_nouncert_excludesimplerep_excludesegdu

ps_excludedecoy_excludeRepSeqSTRs_noCNVs_v2.19_2mindatasets_5minYesNoRatio.bed.gz) to 

obtain sensitivity and precision measurements. The post-standardization VCFs were first lifted over to 
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GRCh37 using the Picard LiftoverVcf tool (v2.9.0) and the chain files hg38ToHg19.over.chain.gz and 

hg19ToGRCh37.over.chain.gz downloaded from here: 

http://crossmap.sourceforge.net/#chain-file. To reduce artifacts from the liftover that 

negatively impacted sensitivity, the gold standard files were lifted over to the build 38 reference and 

back to build 37, excluding any variants that didn’t lift over in both directions. 

Values for sensitivity (METRIC.Recall) and precision (METRIC.Precision) were parsed out of 

the *.summary.csv file produced by hap.py for each comparison, using only variants with the PASS 

filter value set. 

The downsampled data replicates of NA12878 and NA19238 aligned by the same center were 

compared to each other in a pairwise fashion. Pairwise comparisons between centers were performed 

for each non-downsampled aligned file. The variant discordance rates between pairs were calculated 

using the true positive, true negative, and false positive counts from the *.extended.csv output file from 

hap.py (TRUTH.FN + QUERY.FP)/(TRUTH.TP + TRUTH.FN + QUERY.FP). The rates reported are 

only for PASS variants but across the whole genome. 

 The VCF files of SVs produced by lumpy and svtyper were converted to BEDPE using the 

command `svtools vcftobedpe` from the docker container 

halllab/svtools@sha256:f2f3f9c788beb613bc26c858f897694cd6eaab450880c370bf0ef81d85bf8d45 

The coordinates are padded with 1 bp on each side to be compatible with bedtools pairtopair. The 

pairwise comparisons are performed using the bedtools pairtopair command (version 2.23.0), then 

summarized using a python script (compare_single_sample_based_on_strand.py in 

https://github.com/CCDG/Pipeline-Standardization). The variant discordance rates between pairs are 

calculated with the following formula: (discordant + 0-only + 1-only + 

discordant_discordant_type)/(match + discordant + match_discordant_type + 

discordant_discordant_type + 0-only + 1-only). 

 

Variant calling for 100-sample analysis 

SNPs and indels were called using the GATK best practices pipeline, including per-sample 

variant discovery using HaplotypeCaller with the following parameters:  

`-ERC GVCF -GQB 5 -GQB 20 -GQB 60 -variant_index_type LINEAR -variant_index_parameter 

128000`. Next, GVCFs from all 100 samples were merged with GATK CombineGVCFs. Genotypes 

were refined with GATK GenotypeGVCFs with the following parameters: `-stand_call_conf 30 -

stand_emit_conf 0`. Variants with no genotyped allele in any sample are removed with the GATK 

command SelectVariants and the parameter `--removeUnusedAlternates`, and variant lines where the 

only remaining allele is a symbolic deletion (*:DEL) are also removed using grep. 
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 SVs were called using the svtools best practices pipeline (https://github.com/hall-

lab/svtools/blob/master/Tutorial.md). First, per-sample SV calls were generated with extract-sv-reads, 

lumpyexpress, and svtyper using the same versions and parameters as the 14 sample analysis. Next, 

the calls were merged into 100-sample callsets for each pipeline using the following sequence of 

commands and parameters from the docker container 

halllab/svtools@sha256:f2f3f9c788beb613bc26c858f897694cd6eaab450880c370bf0ef81d85bf8

d45 

`svtools lsort` 

`svtools lmerge -f 20` 

`create_coordinates`  

The merged calls were then re-genotyped for each sample using the previous svtyper command. Copy 

number histograms were generated for each sample using the command cnvnator_wrapper.py with 

window size 100 (-w 100) in the docker container 

halllab/cnvnator@sha256:c41e9ce51183fc388ef39484cbb218f7ec2351876e5eda18b709d82b7e8af3a2

. Each SV call was annotated with its copy number from the histogram file using the command `svtools 

copynumber` in that same docker container with the parameters `-w 100 -c coordinates`. Finally, the 

per-sample genotyped and annotated VCFs were merged back together and refined with the following 

sequence of commands in the svtools docker container: 

svtools vcfpaste 

svtools afreq 

svtools vcftobedpe 

svtools bedpesort 

svtools prune -s -d 100 -e "AF" 

svtools bedpetovcf 

svtools classify -a 

repeatMasker.recent.lt200millidiv.LINE_SINE_SVA.GRCh38.sorted.bed.gz -m large_sample 

 

Cross-center variant comparisons for the 100-sample analysis 

The VCF of SNPs and indels was split into per-sample VCFs using the command `bcftools view` 

with the following parameters: `-a -c 1:nref`. Additionally, any remaining variant lines with only the 

symbolic allele (*) remaining were removed. Pairwise comparisons between the same sample 

processed by different pipelines were performed using hap.py using the same commands as the 14 

sample analysis. Variant concordance rates per sample were calculated using results from the 

extended.csv output file produced by hap.py the following formula: TRUTH.TP/(TRUTH.TP + 

TRUTH.FN + QUERY.FP). The reported statistics were calculated using all variants genome-wide 
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except those that were marked LowQual by GATK. No VQSR-based filtering was used. Fig 3a reports 

the mean rates across all 100 samples for each pairwise comparison of pipelines. 

 The per-pipeline SV VCFs were converted to BEDPE using the command `svtools vcftobedpe` 

in the docker container 

halllab/svtools@sha256:f2f3f9c788beb613bc26c858f897694cd6eaab450880c370bf0ef81d85bf8d45. 

The variants were compared using bedtools pairtopair as in the 14 sample analysis. Next they were 

classified into “hard”, “medium”, and “easy” genomic regions by intersecting each breakpoint with BED 

files describing the regions using `bedtools pairtobed`. Variants were classified by the most difficult 

region that either of their breakpoints overlapped (see compare_round3_by_region.sh in 

https://github.com/CCDG/Pipeline-Standardization). Then, the variants were extracted and annotated in 

per-sample BEDPE files with the script compare_based_on_strand_output_bedpe.py (in 

https://github.com/CCDG/Pipeline-Standardization). The BEDPE files were converted to VCF using 

`svtools bedpetovcf` and sorted using `svtools vcfsort`. The number of shared and pipeline-unique 

variants were counted using `bcftools query` (version 1.6) to extract the genomic region and 

concordance status of each variant, then summarized with `bedtools groupby` (v2.23.0). The rates of 

shared variants per sample were calculated using the output of this file with the following formula: 

match/(match + 0-only + 1-only). 

 

Mendelian error (ME) rate calculation 

SNPs and indels that were classified by hap.py into categories (shared between pipelines, or unique to 

one pipeline) were further characterized by looking at the ME rate for each of the offspring in the 

trios/quads. For each offspring in the sample set, the parents and offspring sample VCFs output by 

hap.py were merged together using `bcftools merge --force-samples` (v1.3), and the genotypes from 

the first pipeline in the pair were extracted. Any variants with missing genotypes or uniformly 

homozygous genotypes were excluded using `bcftools view -g ^miss` and `bcftools view -g het`. A 

custom python script (classify_mie.py in https://github.com/CCDG/Pipeline-Standardization) was used 

to classify each variant as uninformative, informative with no Mendelian error, or informative with 

Mendelian error. Total informative error and non-error sites in each genomic region were counted for 

shared sites and unique sites separately, and ME rate was calculated by dividing the number of ME 

sites by the total number of informative sites. A similar calculation was performed for the per-sample SV 

VCFs produced by the SV concordance calculations. Figs 3b and S3 report the mean ME rate across 

44 offspring-parent trios for each pairwise pipeline comparison. 

 

 

Variant quality evaluation 
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To evaluate possible causes of remaining differences between pipelines, we extracted variant quality 

scores for each variant type and summarized them by concordance status in each pairwise pipeline 

comparison across 100 samples. For SNPs and indels, the QUAL field was extracted along with the 

concordance annotation from the per-sample hap.py comparison VCFs using `bcftools query` (version 

1.6). The median QUAL score for each category was reported using `bedtools groupby`. For SVs, MSQ 

(mean sample quality) is a more informative measure of variant quality, so this field was extracted and 

summarized in a similar way. 
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