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Abstract 23 

Background: Ruminant livestock is a major source of the potent greenhouse gas methane (CH4), 24 

produced by the complex rumen microbiome. Using an integrated approach, combining quantitative 25 

metatranscriptomics with gas- and volatile fatty acid (VFA) profiling, we gained fundamental insights 26 

into temporal dynamics of the cow rumen microbiome during feed degradation.  27 

Results: The microbiome composition was highly individual and remarkably stable within each cow, 28 

despite similar gas emission and VFA profiles between cows. Gene expression profiles revealed a fast 29 

microbial growth response to feeding, reflected by drastic increases in microbial biomass, CH4 30 

emissions and VFA concentrations. Microbiome individuality was accompanied by high inter- and 31 

intra-domain functional redundancy among pro- and eukaryotic microbiome members in the key 32 

steps of anaerobic feed degradation. Methyl-reducing but not CO2-reducing methanogens were 33 

correlated with increased CH4 emissions during plant biomass degradation. 34 

Conclusions: The major response of the rumen microbiome to feed intake was a general growth of 35 

the whole community. The high functional redundancy of the cow-individual microbiomes was 36 

possibly linked to the robust performance of the anaerobic degradation process. Furthermore, the 37 

strong response of methylotrophic methanogens is suggesting that they might play a more important 38 

role in ruminant CH4 emissions than previously assumed, making them potential targets for CH4 39 

mitigation strategies. 40 

 41 

Keywords: metatranscriptomics, methane, rumen, microbiome, carbohydrate active enzymes, 42 

volatile fatty acids, methanogenesis, archaea, Methanomassiliicoccales   43 
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Background 44 

Ruminant animals are the dominant large herbivores on Earth. Their evolutionary success is partly 45 

due to their tight symbiotic associations with commensal microorganisms (their microbiome) that 46 

enables them to utilise otherwise indigestible plant biomass as food sources [1]. Since their 47 

domestication in the Holocene, ruminants, in particular cows, have provided humankind with various 48 

important goods. However, agricultural farming of cows is also a major source of the potent 49 

greenhouse gas (GHG) methane (CH4), having a global warming potential 28 times higher than carbon 50 

dioxide [2]. 51 

Cows possess a complex digestive system including a four-compartment stomach, with the largest 52 

compartment being the rumen [3], a big anaerobic fermentation chamber harbouring the complex 53 

microbiome responsible for the anaerobic degradation of ingested plant biomass. During microbial 54 

hydrolysis and fermentation of plant fibres volatile fatty acids (VFA) are produced, which serve as the 55 

main energy source of the animal [4]. A prominent end-product of microbial degradation is CH4, 56 

produced by methanogenic Archaea. Individual cows, respectively their symbiotic methanogens, 57 

produce up to 500 L of CH4 per day [5], making ruminant livestock one major anthropogenic CH4 58 

source [6]. Due to an increasing human world population, milk and meat demands are expected to 59 

double by 2050 [7], making the development of sustainable and productive animal farming systems a 60 

major challenge in agriculture [8]. CH4 mitigation strategies are not only of ecological, but also of 61 

economic importance as ruminant CH4 emissions represent an energy loss of 2 – 12 % for the animal 62 

[5, 8].  63 

Since the times of the pioneering work of Hungate and others [9, 10, 11, 12], microbiologists have 64 

made large efforts to understand the structure-function relationships in the complex rumen 65 

microbiome, identifying the microorganisms that participate in certain steps of the anaerobic 66 

degradation pathway. More recently, the application of cultivation-independent molecular 67 

techniques has helped to uncover the high diversity of bacteria, archaea and eukaryotes residing in 68 

the rumen and factors affecting community composition (e.g. [13]). In addition, the usage of meta-69 
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omics techniques has paved the way for a better understanding of the rumen ecosystem and the 70 

microbial metabolic potential and activity in the rumen (reviewed by [14]). These studies have 71 

revealed differences in rumen microbiome structure between low and high CH4 emitting cows (e.g. 72 

[15, 16]) and the effects of different diets on ruminant CH4 emissions (e.g. [17, 18, 19]). New insights 73 

were also gained by identification of new members of functional groups e.g. new fibrolytic and 74 

methanogenic community members [20, 21, 22, 23, 24]. Furthermore, the importance of diurnal 75 

microbiome dynamics for the understanding of VFA, H2 and CH4 production in the rumen was 76 

pointed out recently [25].  77 

Despite these major advances, a holistic understanding of the rumen microbiome is still lacking, 78 

including answers to rather simple questions such as "who is doing what and when during feed 79 

degradation?". Such a fundamental understanding of the rumen ecosystem, as it was proposed by 80 

Hungate already in the early 1960s [11], can help to specifically manipulate the rumen microbiome, 81 

to lower CH4 emissions, without hampering animal productivity, milk and meat quality or being 82 

harmful to the animal [14, 26]. 83 

To obtain a more comprehensive view on the activity of the rumen microbiome during plant biomass 84 

degradation, we performed a longitudinal metatranscriptomics study of microbiome dynamics in 85 

lactating cows. We aimed at identifying the active pro- and eukaryotic microbiome members and 86 

define their function in the key steps of anaerobic polysaccharide degradation and CH4 production. 87 

We hypothesized that the microbiome exhibits a defined successional pattern, reflecting a cascade of 88 

hydrolytic, fermentative and methanogenic steps, accompanied by distinct VFA and gas emission 89 

patterns. Based on a previous metatranscriptomic study from our lab [24] and work of others ([27] 90 

and references therein), we hypothesized that the recently discovered Methanomassiliicoccales are 91 

substantial contributors to ruminant CH4 emissions and will therefore show high activity after 92 

ruminant feed intake.   93 

Quantitative metatranscriptomics combined with gas- and VFA profiling enabled linking rumen 94 

microorganisms and their transcript profiles to processes. We show extensive inter- and intra-95 
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domain functional redundancy among microorganisms at several steps of the anaerobic degradation 96 

pathway. 97 

 98 

Results  99 

Temporal dynamics of feed digestion. To investigate the effect of feed intake on CH4 production by 100 

the rumen microbiome we conducted a diurnal feeding experiment over four days and measured 101 

CH4, CO2 and H2 emissions of four individual lactating Holstein cows on day four in open circuit 102 

respiration chambers (Fig. 1, Supplementary Table S1 and S2). Immediately after the morning 103 

feeding, CH4 and CO2 emissions approximately doubled (23.4 ± 2.2 L h
-1

 CH4 and 296.3 ± 11.0 L CO2 h
-

104 

1
) with all animals showing similar dynamics and magnitude of gas production (Fig. 1b). The emissions 105 

dropped to before-feeding levels four to six hours after feed intake. H2 was only detectable during 106 

the first hour after feeding started (Fig. 1b) indicative of highly active H2-producing primary and 107 

secondary fermenters providing excessive substrate for hydrogenotrophic methanogens. Similar 108 

dynamics in gas emissions were observed during afternoon feeding (Supplementary Figure S1).  109 

Likewise, the concentration of VFA in rumen fluid samples increased with peak concentrations 110 

measured three and two hours after start of the morning and the afternoon feeding, respectively 111 

(Fig. 1c), similar to [25]. However, compared to the gas emission profiles VFA pools were more 112 

variable in terms of magnitude and temporal dynamics between the four cows. The immediate 113 

accumulation of the fermentation products H2, CO2 (i.e. substrates for methanogenesis) and VFA 114 

after feeding indicated a fast physiological response of the rumen microbiome to feed intake, with 115 

enhanced fermentation rates leading to increased methanogenesis rates. Furthermore, a transient 116 

increase of RNA in the rumen fluid was observed, which we consider a proxy for active microbiome 117 

biomass. 34.1 ± 6.5, 69.2 ± 10.3, 70.0 ± 13.9 and 37.0 ± 6.3 µg RNA were extracted per gram rumen 118 

fluid at t0, t1, t3 and t5, respectively (Fig. 1d). Rumen fluids for VFA quantification and RNA 119 

extraction were sampled prior to gas measurements, as it was not possible to sample during 120 
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respiration chamber measurements. The similar patterns in gases, VFA and RNA profiles reflected a 121 

similar behaviour of the cows during the animal feeding trial (Supplementary Table S2). 122 

Taken together, GHG emissions, VFA production and RNA content indicated a consistent and fast 123 

growth response of the rumen microbiome and strong temporal dynamics on process level (Fig. 1b-d, 124 

Supplementary Figure S2) within each individual cow. 125 

Microbiome structure and dynamics. We generated metatranscriptomes from the rumen fluid RNA 126 

using deep Illumina HiSeq paired-end sequencing and analysed the rRNA and mRNA content (Fig. 1, 127 

Supplementary Table S3). By taxonomic classification of the small subunit (SSU) rRNA transcripts we 128 

investigated if the rumen process dynamics (i.e. gas emissions and VFA production) were reflected in 129 

the taxonomic composition of the microbiome. This primer- and PCR-independent approach enables 130 

the holistic detection and classification of Eukarya, Bacteria and Archaea, typically not possible via 131 

PCR/amplicon-based techniques [28, 29]. The obtained three-domain profiles revealed that all major 132 

taxonomic groups known from ruminants were present (Fig. 2a-c, Supplementary Table S4), with 133 

eukaryotic, bacterial and archaeal taxa accounting for 25.1 ± 10.5 %, 74.5 ± 10.5 % and 0.3 ± 0.1 % of 134 

the SSU rRNA transcripts, respectively. Among the eukaryotes, Ciliates were dominant, accounting 135 

for > 70 % of SSU rRNAs in 10 out of 16 metatranscriptomes. The presence of Entodinium spp., 136 

Epidinium spp. and Eudiplodinium maggii and the absence of Polyplastron multivesiculatum was 137 

indicative of a type B ciliate community as typically found in cattle [30]. Altogether, 155 different 138 

bacterial families were detected. Out of these, 32 families were detected in all metatranscriptomes, 139 

with the ten most abundant being Prevotellaceae, Succinivibrionaceae, Lachnospiraceae, 140 

Ruminococcaceae, Fibrobacteraceae, Spirochaetaceae, Erysipelotrichaceae, Veillonellaceae 141 

(Negativicutes), RF16 and Rikenellaceae, accounting on average for 93.6 % of all bacterial SSU rRNA 142 

reads assigned to family level (Fig. 2c), potentially representing the bovine core microbiome [13]. All 143 

archaeal transcripts belonged to methanogens, with Methanomassiliicoccales and 144 

Methanobacteriales being the dominant orders.  145 
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Although the same major eukaryotic, bacterial and archaeal taxa were present the rumen fluid 146 

microbiomes were highly individual in each cow (Fig. 2d, Supplementary Table S4). For example, the 147 

proportion of eukaryotes in the individual rumen fluids varied from 11.6 – 40.9 % of total SSU rRNA 148 

transcripts. The two most prominent bacterial families, the Prevotellaceae and the 149 

Succinivibrionaceae, ranged from 21.0 – 66.0 % and 1.6 – 34.4 % of the microbial community 150 

composition, respectively. In contrast, their taxonomic composition was remarkably stable over the 151 

time course of the experiment (Fig. 2d) and did not show any consistent shifts in the individual cows, 152 

as revealed by several methods. Differential gene expression analysis showed no prokaryotic and no 153 

eukaryotic SSU rRNAs as differentially expressed at any time, except for three eukaryotic SSU rRNAs 154 

(i.e. Epidinium, Eudiplodinium and unassigned Litostomata). The latter were significantly less 155 

abundant at t5 compared to t3. Indicator species analysis identified several bacterial and eukaryotic 156 

taxa as significantly more abundant at certain time points (Supplementary Figure S3). However, 157 

except for the Trichomonadidae (Parabasalia), a group of flagellated Protozoa, which were found to 158 

be significantly more abundant at t5, only low abundance eukaryotic taxa were found to be 159 

indicators of the later time points. Furthermore, cow identity explained 64% of the variation in 160 

community composition (PERMANOVA p = 0.001), while time did not explain a significant amount of 161 

variation (PERMANOVA p = 0.06). Therefore, the strong temporal dynamics in rumen processes could 162 

not be explained by a successional shift in the community composition but rather by the strong 163 

increase in biomass (as reflected by the RNA content, Fig. 1d).  164 

Analysis of mRNA gene expression profiles corroborated the notion that the observed process 165 

dynamics were an effect of overall increase in activities rather than due to an induction of specific 166 

microbial taxa or metabolisms. In two time course transitions (t3 vs. t1, t5 vs. t3), no significant 167 

differences were detected at all, while one hour after feeding less than 3 % of functional genes were 168 

significantly higher expressed (t1 vs. t0). The majority (65 %) fell into the subsystem protein 169 

biosynthesis (Fig. 3, Supplementary Table S5), namely transcripts of twelve SSU and 15 large subunit 170 

ribosomal proteins and the translation elongation factor G. Additionally, relative abundance of two 171 
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RNA polymerase subunit transcripts increased from t0 to t1. Only very few other transcripts, involved 172 

in respiration, LPS (Kdo2-Lipid A biosynthesis) and alanine biosynthesis, biosynthesis of branched-173 

chain amino acids, stress response, DNA repair and VFA production/consumption were significantly 174 

more abundant at t1 compared to t0 (Fig. 3, Supplementary Table S5). Our results suggest an 175 

immediate upregulation of the protein biosynthesis machinery as the major global response of the 176 

microbiome to feed intake.  177 

Quantitative metatranscriptomics. We analysed gene expression patterns of methanogens for 178 

successional changes during the experiment, which could explain the strong increase of CH4 179 

emissions. However, the relative abundance of the methanogenesis-specific mRNAs and SSU rRNA 180 

transcripts of methanogen decreased at the time points with highest CH4 production (Fig. 4a). This 181 

pointed to a well-known problem in (meta-)omics approaches [31] i.e. linking relative abundances of 182 

taxa or genes/transcripts with biogeochemical processes that are derived from heterogeneous data. 183 

We thus calculated transcript abundances per volume of rumen fluid (equation 1) by integrating 184 

relative transcript abundance with total RNA concentrations extracted from rumen fluid. Using this 185 

quantitative metatranscriptomics approach, the transcript patterns of methanogens mirrored the 186 

observed dynamics in ruminant CH4 emissions, with an increase of transcripts per g rumen fluid one 187 

to three hours (t1 and t3) and a decrease five hours after the feeding started (Fig. 4b). Similar effects 188 

were observed with gene expression patterns of other, broad cellular functions, e.g. DNA replication 189 

(Supplementary Figure S4).  190 

Major players in plant biomass degradation and CH4 production. 191 

Using this quantitative approach, we conducted a broad, integrative functional screening to identify 192 

the major microbial players in three key steps of anaerobic plant biomass degradation: (1) 193 

breakdown of complex plant polysaccharides, (2) carbohydrate fermentation to VFA and (3) 194 

methanogenesis. We used rumen fluid as proxy to analyse the complete anaerobic degradation 195 

cascade, although it has been shown that especially fibrolytic particle-associated communities can 196 

differ [32, 33].   197 
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Degradation of plant polysaccharides. A screening for transcripts of carbohydrate active enzymes 198 

(CAZymes) revealed that the four dominant CAZyme categories were cellulases, hemicellulases, 199 

starch degrading enzymes and oligosaccharide hydrolases, accounting for 77.5 ± 2.1 % 200 

(Supplementary Figure S5 & Table S6). We quantified and taxonomically classified these transcripts 201 

to reveal their distribution among the rumen microbiome (Fig. 5). Three higher-level bacterial and 202 

two eukaryotic taxa were identified as predominantly involved, namely Prevotellaceace 203 

(Bacteroidetes), Clostridiales (Firmicutes), Fibrobacter, Ciliophora and Fungi (Neocallimastigaceae). 204 

While some of the links were known, e.g. Fibrobacter as major producer of cellulases [34], others are 205 

providing new insights into the complexity of CAZyme production by rumen microorganisms. For 206 

instance, Ciliates produced substantial amounts of hemicellulase and cellulase transcripts, and 207 

surprisingly few transcripts encoding starch-degrading enzymes, although they have long been 208 

considered as starch degraders [35]. Furthermore, the anaerobic fungi Neocallimastigaceae, 209 

produced the largest share of cellulase transcripts of all microorganisms. The abundant share of 210 

cellulase and hemicellulase transcripts encoded by Clostridiales establishes them as another key fibre 211 

degrading bacterial group in the rumen [36]. The data also show that Prevotellaceae primarily 212 

expressed genes encoding oligosaccharide hydrolases, starch degrading enzymes and hemicellulases, 213 

but not cellulases. Firmicutes appeared to have the broadest capacity for polysaccharide 214 

degradation, with equal abundances of CAZyme transcripts in all four investigated categories. 215 

However, the Firmicutes (Clostridiales) comprised several different genera within the 216 

Ruminococcaceae and Lachnospiraceae, whereas Fibrobacteres and Bacteroidetes were dominated 217 

by a single genus, Fibrobacter and Prevotella, respectively.  218 

The taxonomic distribution of CAZymes displayed strong differences between the cows, pointing to 219 

the same individuality as observed in the taxonomic composition of the rumen microbiome; e.g. 220 

Eukaryotes dominated the cellulase transcript pools in cow 1 and cow 4, whereas in cow 2 and cow 3 221 

Fibrobacteres and Firmicutes cellulase transcripts were equally abundant to Ciliophora and Fungi 222 

cellulase transcripts. Thus, the expression of the different CAZyme categories by three to four 223 
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different taxa shows a high functional redundancy for polysaccharide degradation in the rumen 224 

microbiome, within and between different domains of life. 225 

VFA production. Acetate, propionate and butyrate were the major VFAs accounting for 60.4 ± 4.9 %, 226 

21.9 ± 3.4 % and 11.6 ± 2.7 % of total VFAs, respectively. VFA concentrations in the rumen fluid 227 

increased after feed intake, while the pH dropped (Fig. 1c, Supplementary Table S7). Although no 228 

VFA production or absorption rates were measured, it has been shown that VFA concentrations are 229 

suitable proxies for production rates [4]. Quantitative metatranscriptomics revealed the presence of 230 

transcripts for three complete acetate production pathways from pyruvate, i.e. directly (via 231 

pyruvate:ubiquinone oxidoreductase, poxB), via acetyl-CoA and via acetyl-CoA and acetyl-P 232 

(Supplementary Figure S6). The transcripts were assigned to Bacteroidetes (mainly Prevotella) and 233 

Firmicutes (i.e. Clostridiales and Negativicutes), with transcript levels of Prevotella exceeding 234 

Firmicutes up to 30-times in the acetyl-CoA and acetyl-P pathway (Supplementary Figure S7A and B). 235 

In general, poxB transcript abundances (direct conversion of pyruvate to acetate) were one to two 236 

orders of magnitude lower than abundances of the other pathways (Supplementary Figure S7C), with 237 

Clostridiales poxB transcripts dominating over those of Prevotella poxB in all samples (1.4 – 64 times). 238 

Together, these results suggest that Prevotella were the dominant acetate producers in this 239 

experiment.  240 

Transcript analysis revealed the presence of two distinct pathways for propionate production 241 

(Supplementary Figure S8), (1) from succinate (succinate pathway) and (2) from lactate (acrylate 242 

pathway). Transcript levels of Prevotella again exceeded Firmicutes (i.e. Clostridiales; up to 20-times), 243 

suggesting that Prevotella also dominated propionate production (Supplementary Figure S9A). 244 

Transcripts for two complete pathways possibly leading to butyrate production were detected within 245 

the Firmicutes, i.e. the butyrate kinase pathway within Clostridiales and the butyryl-CoA:acetate CoA-246 

transferase pathway within Negativicutes (Supplementary Figure S8 and S9B). These pathways only 247 

differ in the last step, i.e. the conversion of butyryl-CoA to butyrate, which is performed in two steps 248 

via butyryl-P by Clostridiales and directly by Negativicutes. In general, transcript abundances of VFA 249 
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production pathway enzymes mirrored the VFA concentration patterns, especially for acetate but to 250 

a lesser extend also for propionate and butyrate (Supplementary Figure S6 & S8), with a peak in 251 

transcript abundance at t1 or t3 and a subsequent decrease of transcripts at t5. Again, the transcript 252 

abundances and their taxonomic distribution showed marked differences between the individual 253 

cows. For instance, the abundance of transcripts for acetate production via acetyl-CoA and 254 

propionate production assigned to Bacteroidetes (mainly Prevotella) was much higher in cow 1 255 

compared to the other cows, reflecting the higher relative abundance of Prevotella within cow 1. 256 

Furthermore, Negativicutes (formerly Veillonellaceae) had a higher transcriptional activity for acetate 257 

production via acetyl-CoA and butyrate production than Clostridiales within cow 2 (Supplementary 258 

Figure S6 & S8) but not within the other cows.  259 

Methanogenesis. Methanomassiliicoccales and Methanobacteriales were the two dominant 260 

methanogenic orders, accounting for > 99 % of SSU rRNAs. All SSU rRNA transcripts assigned to the 261 

Methanomassiliicoccales belonged to the GIT clade [37] a sister lineage of 262 

Methanomassiliicoccaceae. Within the Methanobacteriales, the majority of the SSU rRNA transcripts 263 

belonged to the genus Methanobrevibacter, whereas Methanosphaera accounted for up to 13.3 % 264 

(mean 6.0 %). Between 2.7% and 24.4 % of Methanobacteriales SSU rRNA transcripts could not be 265 

assigned on a genus level (mean 15.2 %).  266 

The abundance of SSU rRNA transcripts of both groups followed the CH4 emission dynamics (Fig. 6a). 267 

However, only Methanomassiliicoccales showed a strong positive linear correlation (rs = 0.75, p < 268 

0.001) and only their SSU rRNAs showed significant differences over time similar to the CH4 emissions 269 

(Fig. 6a). Methyl coenzyme M reductase (Mcr), the enzyme catalysing the last step in 270 

methanogenesis is conserved in all methanogenic Archaea. The gene encoding the α-subunit of Mcr, 271 

mcrA, has thus been established as functional and phylogenetic marker for methanogens [38, 39]. No 272 

significant differences in mcrA transcript abundance were detected (Fig. 6b).  273 

The specific methanogenesis pathways differ fundamentally between Methanomassiliicoccales and 274 

Methanobacteriales (Methanobrevibacter and Methanosphaera). Methanomassiliicoccales are H2 275 
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dependent methylotrophic methanogens reducing methylamines and methanol to CH4 with H2 as 276 

electron donor [40, 41] In contrast, Methanobrevibacter produces CH4 mainly via the reduction of 277 

CO2 with H2 as electron donor. Methanosphaera in turn produces CH4 from methanol and H2 [42]. To 278 

identify temporal changes in the type of methanogenesis pathways actively used, we searched for 279 

transcripts of key-enzymes in these taxon-specific methanogenesis pathways: (1) Methylamine-280 

specific methyltransferases (mtMA), involved in methanogenesis from methylamines by 281 

Methanomassiliicoccales, (2) Methyl-H4MPT:HS-CoM methyltransferase (mtrA), involved in 282 

methanogenesis from H2 and CO2 by Methanobrevibacter and (3) Methanol-specific 283 

methyltransferase transcripts (mtaB) involved in methanogenesis from methanol by 284 

Methanosphaera and Methanomassiliicoccales. We observed the same pattern for 285 

Methanomassiliicoccales mtMA transcripts as for the SSU rRNA transcripts, i.e. a strong positive 286 

response to the feed intake (Fig. 6c). In contrast, no response of Methanobrevibacter mtrA transcript 287 

levels was observed. Immediately after feed intake, the abundance of mtaB transcripts of 288 

Methanosphaera increased, correlating positively with CH4 emissions (rs = 0.59, p < 0.05) (Fig. 6d), 289 

while Methanomassiliicoccales mtaB transcripts negatively correlated with CH4 emissions (rs = -0.63, 290 

p < 0.01). Taken together, these results indicate that only the methyl-reducing methanogens 291 

Methanosphaera and Methanomassiliicoccales responded to feed intake.  292 

 293 

Discussion 294 

In this study, we used an integrated approach, combining metatranscriptomics with targeted 295 

metabolomics (gas and VFA profiling) to holistically investigate the temporal rumen microbiome 296 

dynamics during plant biomass degradation in lactating cows. 297 

By integrating relative transcript abundances with RNA concentrations, we were able to establish the 298 

link between rumen microorganism and their activity to processes such as gas emissions and VFA 299 

production. Due to the fast growth response of the microbiome to ruminant feed intake relative 300 

transcript abundances, which are commonly used in (meta-)transcriptomics, were not sufficient to 301 
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establish this link. Few studies have already applied quantitative metatranscriptomics in marine 302 

ecosystems (e.g. [43, 44]), focussing on Bacteria and nutrient cycling. Our study is the first host-303 

associated study aiming to link process data to microbial taxa and functions. Furthermore, our 304 

approach is different as we apply total RNA concentrations instead of internal mRNA standards for 305 

sizing up metatranscriptomics. This quantitative approach allowed us to assess the temporal 306 

dynamics of major bacterial, eukaryotic and archaeal taxa involved in the three key steps of 307 

anaerobic plant biomass degradation in the cow rumen.  308 

Our results showed that the microbiome composition was surprisingly stable during feed digestion. 309 

The strong increase of ruminant CH4 emissions after feeding was not related to a microbial 310 

community shift as we had hypothesized but to a fast growth response of the whole rumen 311 

microbiome. This led to enhanced fermentation rates, reflected by the increase of CO2, H2 and VFA 312 

concentrations and an associated rise in methanogenesis rates. A similar dynamic of bacterial 313 

concentrations (SSU rRNA gene copies per mL rumen fluid) as a response to ruminant feed intake 314 

was reported recently [25].    315 

While the rumen microbiomes were stable over time, the individual microbiomes differed 316 

substantially between the four cows. Despite strong variation in abundance of bacterial and 317 

eukaryotic community members, these microbiomes exhibited similar fermentation characteristics, 318 

evidenced by gas output and VFA patterns. This points towards extensive functional redundancy 319 

among rumen microbiome members, where multiple microorganisms possess the same functional 320 

trait(s) and can replace each other [45, 13]. In fact, we could show high functional redundancy at all 321 

three key-steps of anaerobic carbohydrate degradation to CO2 and CH4.  322 

 323 

Remarkably, inter-domain functional redundancy was widespread among the fibrolytic community, 324 

where eukaryotes and bacteria contributed varying amounts of CAZyme transcripts within individual 325 

cows. For instance, most cellulase transcripts stemmed from two bacterial (Fibrobacter and 326 

Clostridiales) and two eukaryotic groups (Neocallimastigaceae and Ciliophora), with the eukaryotes 327 
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producing the largest share of cellulase transcripts in two out of the four cows. Inter-domain 328 

functional redundancy was also observed within hemicellulose, starch and oligosaccharide 329 

degradation, with marked differences between individual cows. Our results add to the growing 330 

notion that eukaryotic contribution to fibre degradation has been underestimated in the past. Very 331 

recent metatranscriptomic work with one individual sample also suggested ciliates and fungi as 332 

important for (hemi-)cellulose degradation [21].  333 

Host individuality and functional redundancy were also revealed in the second key step of anaerobic 334 

plant biomass degradation, i.e. the fermentation of carbohydrates to VFA. Three major, well known 335 

VFA producing taxa [46, 47] were identified and their contribution to transcript pools of enzymes 336 

involved in VFA production was cow dependent. These taxa, i.e. Bacteroidetes (Prevotella), 337 

Clostridiales and Negativicutes (Veillonellaceae) produced acetate, propionate and butyrate via 338 

different fermentative pathways, of which some where shared among taxa and others were taxon-339 

specific. Although Prevotella and Clostridiales in general dominated acetate/propionate and butyrate 340 

production, respectively, Negativicutes contributed substantially to acetate production via acetyl-341 

CoA and butyrate production via the butyryl-CoA:acetate CoA-transferase pathway in cow 2.  342 

 343 

The third and terminal step in anaerobic feed degradation is catalysed by methanogens. Also among 344 

these we observed functional redundancy. All detected groups (i.e. Methanomassiliicoccales, 345 

Methanobrevibacter and Methanosphaera) are characterised as hydrogenotrophic using H2 as 346 

electron donor [40, 41, 42]. The removal of H2 is important for the rumen ecosystem and the host 347 

because low concentrations of H2 ensure high fermentation rates and efficient feed digestion [48]. 348 

The longitudinal experimental setup revealed temporal dynamics in electron acceptor usage within 349 

the Methanomassiliicoccales, where the fraction of methanol-specific methyltransferase transcripts 350 

was much lower immediately after feeding, exhibiting an opposite expression pattern to the 351 

methylamine-specific methyltransferases. In turn, it appeared that Methanosphaera dominated 352 

methanol reduction at these time points, showing once more the redundancy among organisms of 353 
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the same functional guild. The root cause for this might be manifold, e.g. due to a higher substrate 354 

affinity of Methanomassiliicoccales for methylamines as compared to methanol or higher 355 

concentrations of methylamines. Alternatively, Methanosphaera could outcompete 356 

Methanomassiliicoccales for methanol under conditions of high H2 partial pressure. Taken together, 357 

the data suggest that the methyl-reducing Methanomassiliicoccales and Methanosphaera were 358 

responsible for the increase of CH4 emissions immediately after feed intake and not the CO2-reducing 359 

Methanobrevibacter. This is surprising, given that CO2 is a much more abundant methanogenesis 360 

substrate than methylamines and methanol. The sources of methylamines, i.e. glycine betaine (from 361 

beet) and choline (from plant membranes), and methanol (from the hydrolysis of methanolic side-362 

groups in plant polysaccharides) are well known [49], however the amount of these substrates might 363 

vary substantially with different diets.  Previous, less temporally resolved work suggested that 364 

Methanobrevibacter was associated with high CH4 emissions [14, 49]. However, a comparison of 365 

sheep rumen metagenomes and metatranscriptomes indicated that Methanomassiliicoccales are 366 

very active community members in both high and low CH4 “emitters”, with around 5 times higher 367 

abundances in the metatranscriptomes compared to the metagenomes [16]. Furthermore, their 368 

transcript abundances were significantly higher in high CH4 “emitters”. Also in cows, it was shown 369 

that Methanomassiliicoccales can represent the predominant active methanogens [24]. In fact, a 370 

need for more research on methyl-reducing methanogens in the rumen was pointed out recently 371 

[49], including quantifying their contribution to rumen methane production. Further studies on 372 

Methanomassiliicoccales and Methanosphaera physiology in vitro and metabolic interactions with 373 

the substrate-providing microorganisms in situ might identify novel targets for CH4 mitigation 374 

strategies, such as enzymes of the methyl-reducing pathway or the supply of methylated substrates. 375 

Such efforts might complement general methanogenesis inhibitors such as 3-nitrooxypropanol to 376 

achieve more efficient methane mitigation [50].  377 

 378 

Conclusions 379 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 27, 2018. ; https://doi.org/10.1101/254672doi: bioRxiv preprint 

https://doi.org/10.1101/254672


16 

 

To our knowledge, our study is the first longitudinal integrated meta-omics analysis of the rumen 380 

microbiome during plant biomass degradation. It is another step towards a comprehensive system-381 

level understanding of the dynamic rumen ecosystem, as envisioned by Hungate and coworkers 382 

already more than 50 years ago [11]. Applying a quantitative metatranscriptomics approach, it 383 

enabled the time-resolved link between microbiome structure and function and rumen processes. It 384 

revealed a rather simple response to feed intake, namely a general growth of the whole community, 385 

without the detection of distinct successional stages during degradation.  The cow-individual 386 

microbiomes exhibited a surprisingly high functional redundancy at several steps of anaerobic 387 

degradation pathway, which can be seen as example for the importance of multi-functional diversity 388 

for robustness of ecosystems, similar to what has been found in terrestrial biomes [51]. It 389 

furthermore points towards CH4 mitigation strategies that directly tackle the producers of CH4, since 390 

all other functional guilds show high organismic diversity with individual taxa being replaceable by 391 

others.   392 

 393 

Methods 394 

Animal feeding trial (Fig. 1a). The animal feeding trial was conducted at the Department of Animal 395 

Science, Aarhus University (Denmark). The animal experiments were approved by The Experimental 396 

Animal Inspectorate under The Danish Ministry of Justice (journal no. 2008/561-1500). Four rumen-397 

cannulated lactating Holstein dairy cows were fed a typical dairy cow diet containing mainly clover 398 

grass and corn silage (Supplementary Table S1 and S2) twice a day in a semi-restrictive way. The cows 399 

were in the second parity or later, they were 215 ± 112 (mean ± standard deviation) days in milk, had 400 

live weight at 602 ± 20 kg and had a milk yield at 33.5 ± 5.4 kg (Supplementary Table S8). Prior to the 401 

sampling, which was conducted over four days, the animals had been fed the respective diet 402 

continuously for more than two weeks. Day 1: Cows were fed ad libitum. Day 2: The feed was 403 

removed at 4 am, cows were allowed to eat from 7 am to 8 am, and again from 2 pm until 4 am the 404 

next day. Rumen fluid was sampled at time points 4 am, 7 am, 8 am and every second hour until 10 405 
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pm, and with a final sampling at 4 am on day 3. Rumen fluid was randomly sampled from different 406 

areas of the rumen, pooled and filtered through sterile filter bags with a pore size of 0.5 mm (Grade 407 

Blender Bags, VWR, Denmark). The pH of the rumen liquid samples was directly analysed with a 408 

digital pH meter (Meterlab PHM 220, Radiometer, Denmark) and subsamples were frozen at -20°C 409 

for VFA analysis and other chemical analysis, or flash-frozen in liquid nitrogen and stored at -80°C for 410 

nucleic acid extraction. Day 3: Animals were transferred to custom-built transparent polycarbonate 411 

open-circuit respiration chambers (1.45 x 3.90 x 2.45 m) and fed ad libitum. Day 4: The cows were 412 

fed like on day 2. CH4, CO2 and H2 were quantified continuously throughout the day.  413 

CH4, CO2, H2 and VFA quantification. The open-circuit indirect calorimetry based respiration 414 

chambers, kept at slight under pressure, measured gas exchange (CH4, CO2, O2, and H2; Columbus 415 

Instruments, Columbus, USA), air flow and feed intake continuously during the experiment as 416 

described in detail in [52] and in [53]. VFAs in the rumen liquid samples were quantified using a 417 

Hewlett Packard gas chromatograph (model 6890, Agilent Technologies Inc., Wilmington, DE, USA) 418 

with a flame ionization detector and a 30-m SGE BP1 column (Scientific Instrument Services, NJ, USA) 419 

as described in [54]. 420 

Nucleic acid extraction and linear RNA amplification (Fig. 1a). Nucleic acids were extracted based on 421 

the method of [55], and as described in [28]. Extraction buffer and phenol:chloroform (5:1, pH 4.5, 422 

ambion), 0.5 mL of each, were added to a lysing matrix E tube (MP Biomedicals) containing 423 

approximately 0.25 g of rumen fluid sample. Cells were mechanically lysed using a FastPrep machine 424 

(MP Biomedicals, speed 5.5, 30 sec) followed by nucleic acid precipitation with PEG 8000. All steps 425 

were performed on ice or at 4°C. Nucleic acids were re-suspended in 50 µL DEPC H2O and 1 µL of 426 

RNaseOUTTM (Thermo Fisher Scientific) was added. 10 µL of nucleic acid extracts were subject to 427 

DNase treatment (RQ1 DNase, Promega) and subsequent RNA purification (MEGAclearTM Kit, 428 

Ambion). Quantity and quality of RNA was assessed via agarose gel electrophoresis, NanoDrop® (ND 429 

1000, peqlab) and QubitTM (Thermo Fisher Scientific). Absence of DNA in the RNA preparations was 430 

verified by PCR assays targeting bacterial SSU rRNA genes and archaeal mcrA genes. MessageAmpTM 431 
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II-Bacterial Kit (ambion) was used according to the manufacturer´s manual to synthesise cDNA (via 432 

polyadenylation of template RNA and reverse transcription) and perform in vitro transcription on the 433 

cDNA to amplify total RNA.  434 

Sequencing and sequence data pre-processing. Illumina HiSeq 2500 paired-end (125 bp) sequencing 435 

was performed at the Next Generation Sequencing Facility of the Vienna Biocenter Core Facilities on 436 

cDNA. The template fragment size was adjusted that paired sequence reads could be overlapped. We 437 

used PRINSEQ lite v. 0.20.4 [56] to apply quality filters and trim the reads (parameters -min_len 180 -438 

min_qual_mean 25 -ns_max_n 5 -trim_tail_right 15 -trim_tail_left 15). SortMeRNA v. 2.0 [57] was 439 

used to separate sequence reads into SSU rRNA, LSU rRNA and putative mRNA reads. For more 440 

details and results of the initial data processing steps see supplementary Table S3.  All computations 441 

were performed using the CUBE computational resources, University of Vienna (Austria), or run on 442 

the HPC resource STALLO at the University of Tromsø (Norway). Raw sequence data have been 443 

submitted to the NCBI Sequence Read Archive (SRA) under the accession numbers SAMN07313968 - 444 

SAMN07313983.  445 

Taxonomic classification of SSU rRNA reads. We generated random SSU rRNA subsamples 446 

containing 50,000 reads out of all SSU rRNA reads with a length between 200 to 220 bp (45.8 ± 11.5 447 

% of total SSU rRNA reads). These subsamples were taxonomically classified with BLASTN against the 448 

SilvaMod rRNA reference database of CREST [58] and analysed with MEGAN [59] v. 5.11.3 449 

(parameters: minimum score 100, minimum support 1, top 2 %, 50 best blast hits). Three domain 450 

profiles were visualised with treemaps based on CREST taxonomy. Statistical analyses were done 451 

with R [60]; packages: edgeR [61], vegan [62], indicspecies [63], heatmap3 [64].   452 

Analysis of mRNA. All putative mRNA reads were compared against the GenBank nr database using 453 

DIAMOND ([65]; v0.7.11, database as of December 2015, CUBE).  454 

CAZzymes. Randomly selected subsamples of 2 million nucleotide reads per dataset were translated 455 

into open reading frames (ORFs) of 30 amino acids or longer. The ORFs were screened for protein 456 

families using HMMER and reference Hidden Markov Models (HMMER v3.0, against the Pfam 457 
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database v27; [66]). All database hits with e-values below a threshold of 10–4 were counted. Pfam 458 

annotations were screened for CAZymes using Pfam models of previously identified CAZymes [67] 459 

and additional rumen relevant CAZymes [22] as well as CAZymes added to the Pfam-A database after 460 

these publications and summarized into higher categories (Supplementary Table S6). Translated 461 

reads assigned to any Pfam model of one of the four most dominant categories i.e. cellulases, 462 

hemicellulases, starch degrading enzymes and oligosaccharide hydrolases (Supplementary Figure S5) 463 

were extracted and blastp was used to obtain taxonomic information (blastp against the monthly 464 

updated nr db 04.2016, CUBE). BLAST tables were imported in MEGAN (parameters: minimum score 465 

50, minimum support 1, top 5 %, 25 best blast hits) and further analysed. CAZymes were quantified 466 

as described below (equation 1). 467 

VFA. All mRNA reads assigned to any major taxa involved in the production of VFA, as identified by 468 

the SEED analyzer implemented in MEGAN, were subject to further analysis to reconstruct major VFA 469 

production (turnover) pathways. These metatranscriptomic libraries were screened for all enzymes 470 

(via their respective EC numbers) involved in the production/turnover of acetate, propionate and 471 

butyrate, by blastp searches (evalue threshold 1e
-10

) using the metatranscriptomic libraries as queries 472 

against the UniRef50 database (montly updated, 12.2016, CUBE). The respective enzyme names were 473 

derived from the KEGG reference pathways and literature [68, 69]. Heatmaps were constructed in R 474 

using quantified data (µg transcripts g
-1

 rumen fluid; equation 1) normalized by the sum of each 475 

transcripts over all time-points for each individual cow.   476 

Methanogenesis. Specific transcripts for methanogenesis were extracted from the DIAMOND 477 

annotation files via MEGAN and the implemented SEED analyzer. Assignments were critically 478 

manually evaluated and in case of uncertainty blastn was used to verify accuracy and origin of the 479 

methanogenesis transcripts as well as of the SSU rRNA transcripts (against the NCBI and Silva 480 

databases as of September 2016). Transcripts were quantified (equation 1). Pearson’s product-481 

moment correlations and spearman rank correlation coefficients (rho = rs) between methanogen 482 

specific transcripts (pathway specific key transcripts and SSU rRNA transcripts) were calculated and 483 
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paired t-test was used to assess temporal differences in transcript abundance (R functions: 484 

shapiro.test, cor.test, t.test).  485 

Differential gene expression analysis. mRNA. DIAMOND annotations were imported in MEGAN 486 

(parameters: minimum score 40, minimum support 1, top 10 %) and relative abundances of mRNA 487 

reads assigned to a SEED function were subject to differential gene expression analysis using edgeR 488 

(function: glmFit). Low expressed genes were filtered out and the default TMM method was used to 489 

normalize the data. To account for the cow differences a design matrix was constructed prior to the 490 

analysis to account for our experimental design and correct for batch effects (cow differences). rRNA. 491 

Taxon tables, as described above were subject to differential gene expression analysis following the 492 

same workflow as described for the SEED functions.  493 

Quantification of mRNA and rRNA transcripts per gram rumen fluid. We quantified mRNA and rRNA 494 

transcripts per gram rumen fluid as follows: 495 

 496 

transcriptA = totalRNA ×
xRNAr

xRNAr + yRNA
r

×
transcript Ar

xRNAsubsample
r

×
NA

M�Nt�× transcript A
length

         (1) 

 497 

where totalRNA is the amount of RNA [µg] extracted per gram rumen fluid, xRNAr, yRNAr and 498 

xRNAsubsampler are the number of reads of m/rRNA, r/mRNA and m/rRNA subsample used for 499 

functional annotation or taxonomic classification, respectively. transcriptAr and transcriptAlength are 500 

the number of reads assigned to a certain transcript and the length of the particular transcript. NA is 501 

the Avogadro constant and M(Nt) is the average molecular weight of a ssDNA nucleotide (330 x 10
6
 502 

µg mol
-1

). For the transcript lengths we used average values of 1000 and 1500/1900 503 

(prokaryotes/eukaryotes) nucleotides for mRNA and rRNA transcripts, respectively. As previously 504 

observed [70] the polyadenylation during cDNA synthesis is moderately enriching mRNA, therefore a 505 

ratio of mRNA:totalRNA reads of 1:25 was used to calculate transcript numbers per gram rumen 506 

fluid, as this ratio was observed in a previous study on the rumen microbiome of cows from the same 507 
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breed, housed at the same facility, fed a diet containing similar amounts of neutral detergent fibre, 508 

crude protein and fat [24].  509 
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 700 

Supplementary Information 701 

Supplementary Information is provided in the PDF document “Supplementary_Figures_Tables.pdf”. 702 

This Supplementary Information contains Figures and Tables supplementing the main manuscript. 703 

Figure legends 704 

Figure 1. Ruminant gas emissions and volatile fatty acid (VFA) production. (a) Overview of the 705 

animal feeding trial during twelve hours (4 am - 4 pm) of sampling; for more details see Methods 706 

section. (b) Carbon dioxide (CO2), methane (CH4) and hydrogen (H2) emissions measured using open-707 

circuit respiration chambers. (c), (d) Total VFA concentrations and total RNA content quantified per 708 

gram rumen fluid (RF). Colour code indicates the four rumen-cannulated Holstein dairy cows.   709 
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Figure 2. Rumen microbiome community composition and temporal dynamics. Three domain 711 

profiles showing the overall rumen microbial community composition on phylum (a), class (b) and 712 

family (c) level. Tile sizes are reflecting the average relative abundance of eukaryotic (green), 713 

bacterial (blue) and archaeal (orange) taxa observed in the 16 rumen metatranscriptomes. (d) shows 714 

the highly individual microbial communities within each cow over time. Taxa which could not be 715 

assigned on family level and/or showed relative abundance ≤ 0.01 % level are shown on higher 716 

taxonomic levels. All taxa detected in the rumen microbiomes and their relative abundances are 717 

listed in Supplementary Table S4. 718 

 719 

Figure 3. Global functional response of rumen microbiome to ruminant feed intake. Boxes showing 720 

the mean relative abundance of SEED subsystem level 1 (a), SEED subsystem level 2 (b), SEED 721 

subsystem level 3 (c) and SEED functions (c, small tiles) of eight rumen metatranscriptomes (t0 and t1 722 

metatranscriptomes). Colour code indicates SEED subsystems containing functions that were 723 

identified by differential gene expression analysis to be significantly higher expressed one hour after 724 

the feeding (t1) compared to before the feeding (t0). The particular upregulated functions are 725 

coloured in orange. All functions that were subject to differential gene expression analysis (1659 726 

SEED functions) are depicted, low abundant transcripts were excluded. For more details on the 727 

significantly higher expressed functions (e.g. functional assignment of the numbered tiles) see 728 

Supplementary Table S5.   729 

Figure 4. Comparison of relative and quantified transcript abundance of methanogens. Relative and 730 

quantified transcript abundance of methanogenesis specific mRNA (upper boxplots) and SSU rRNA of 731 

methanogens (lower boxplots) are depicted in (a) and (b), respectively. Data: mRNA reads assigned 732 

to the SEED subsystem Methanogenesis and SSU rRNA reads assigned to methanogens were 733 

summarized. For details on the quantification see Methods section and equation 1; x-axis: before 734 

feeding (t0), one, three, five hours after feeding started (t1, t3, t5).  735 

 736 
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Figure 5. Dynamics and distribution of carbohydrate active enzymes (CAZymes) among the rumen 737 

microbiome. Circles depict the quantified numbers of CAZyme transcripts (g-1 rumen fluid), 738 

summarized in respective to their activity (cellulases, hemicellulases, starch degrading enzymes and 739 

oligosaccharide hydrolases), separated for the major Bacteria and Eukarya involved in the breakdown 740 

of complex plant material (on phylum level and lowest common dominant taxon). Colour code 741 

indicate the different cows and the different time points (grey scale of the columns); before feeding 742 

(t0), one, three, five hours after feeding started (t1, t3, t5).  743 

 744 

Figure 6. Methane and methanogen transcript dynamics during plant biomass degradation. (a) 745 

Methane emissions and quantified SSU rRNA transcripts of the two methanogen orders present in 746 

the rumen metatranscriptomes, Methanomassiliicoccales and Methanobacteriales (i.e. 747 

Methanobrevibacter and Methanosphaera), before feeding (t0) and one (t1), three (t3) and five (t5) 748 

hours after the feeding started. (b) Quantified mcrA (functional marker for all methanogens) 749 

transcripts. (c) Quantified mtMA (methylamine-specific methyltransferases) and mtrA transcripts 750 

(methyl-H4MPT:HS-CoM methyltransferase, alpha subunit), key transcripts in 751 

Methanomassiliicoccales and Methanobrevibacter specific methanogenesis, respectively. mtMA 752 

summarizes mono-, di- and trimethylamine-specific methyltransferase (mtmB, mtbB and mttB) 753 

transcripts, whereas mttB transcripts constitute to > 70 % of the mtMA transcripts. (d) Quantified 754 

mtaB (methanol-specific methyltransferase) transcripts. Methanomassiliicoccales and 755 

Methanosphaera mtaB transcripts are negatively and positively correlating with CH4 emissions, 756 

respectively. Mean of the four cows is shown for each time-point, error bars depict standard error of 757 

the mean (SEM). Asterisk indicate significant differences between the respective time-points and the 758 

previous one (* p < 0.5, ** p < 0.01).  759 
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