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ABSTRACT 
The composition of the gut microbiome in industrialized populations differs from those living traditional 
lifestyles. However, it has been difficult to separate the contributions of human genetic and geographic factors 
from lifestyle/modernization. Here, we characterize the stool bacterial composition of four Himalayan 
populations to investigate how the gut community changes in response to shifts in human lifestyles. These 
groups led seminomadic hunting-gathering lifestyles until transitioning to varying dependence upon farming. 
The Tharu began farming 250-300 years ago, the Raute and Raji transitioned 30-40 years ago, and the Chepang 
retain many aspects of a foraging lifestyle. We assess the contributions of dietary and environmental factors on 
their gut microbiota and find that the gut microbiome composition is significantly associated with lifestyle. The 
Chepang foragers harbor elevated abundance of taxa associated with foragers around the world. Conversely, the 
gut microbiomes of populations that have transitioned to farming are more similar to those of Americans, with 
agricultural dependence and several associated lifestyle and environmental factors correlating with the extent of 
microbiome divergence from the foraging population. For example, our results show that drinking water source 
and solid cooking fuel are significantly associated with the gut microbiome. Despite the pronounced differences 
in gut bacterial composition across populations, we found little differences in alpha diversity across populations. 
These findings in genetically similar populations living in the same geographical region establish the key role of 
lifestyle in determining human gut microbiome composition and point to the next challenging steps of isolating 
dietary effects from other factors that change during modernization. 
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dfgjLo k]6df w]/} k|sf/sf ;'Id hLjf0f'x?n] af; u/]sf x'G5g\ . oL hLjf0f'x?sf] pkl:ylt 
dflg;sf] :jf:Yosf nflu lgSs} dxTjk"0f{ x'G5 eGg] j}1flgs dfGotf 5 . cf}Bf]lus /fi6«df 
a;f]af; ug]{ dflg;sf] k]6df /x]sf hLjf0f'x?sf] /rgf kf/Dkfl/s hLjgz}nL JotLt ug{] dfgjx?sf] 
eGbf w]/} leGg x'G5 . t/ oL leGgtfx?df ef}uf]lns / hLjgz}nLsf] s] s:tf] of]ubfg x'G5 eGg] 
yfxf kfpg ;lsPsf] 5}g . To;}n] xfdLn] yf?, /fp6], /fhL / r]kfª hfltsf dflg;sf k]67df s] 
s:tf hLjf0f' x'G5g eGg] af/]df cWoog u/]sf 5f}+ . pgLx?sf] k]6df x'g] z'Id hLjf0f'x?sf] cWoog 
u/L dfgj hLjgz}nLsf] kl/jt{gn] s;/L k]6sf ;'Id hLjf0f'x?sf] /rgfdf leGgtfsf] >[hgf u5{ 
eGg] s'/fsf] vf]h of] cWoogdf ;d]l6Psf] 5 . oL rf/ lxdfnL ;d'bfox? s[lif k]zdf lge{/ 
x'g'eGbfcl3 cw{e|d0flzn hLjgz}nL Joltt ub{} h+undf lzsf/ / ;+sng ub{y] . yf?x? @%)–
#)) jif{cl3, /fp6] / /fhLx? #)–$) jif{cl3 s[lif k]zfdf ;+nUg x'g yfn]sf x'g eg] r]kfªux? 
cem} klg cfkm\gf] k/Dk/fut hLjg z}nLsf w]/} kIfx?df lge{/ /x]sf 5g\ . xfdLn] cfxf/ tyf 
ko{fj/0fsf ljleGg sf/0fx?n] s;/L pgLx?sf k]6sf hLj0f'x?nfO{ c;/ u5{g\ eGg] s'/fsf] 
d'Nofªsg ubf{ k]6sf hLj0f'x?sf] /rgfnfO{ hLjg z}lnn] lgSs} k|efj kf5{ eGg] kQf nufPsf 5f}+ . 
lxdfnodf j;f]jf; ub{} cfPsf r]kfªx?df ;+;f/sf cGo k/Dk/fut lzsf/L hLjg z}nL Joltt ug{] 
dfgj ;d'bfodf kfOg] h:tf hLjf0f'x? clwsdfqfdf kfOPsf] 5 . ljk/LttM s[lif k]zfdf kl/jlt{t 
;d'bfox?sf hLjf0f'x?sf] /rgf eg] cf}Bf]lus /fi6« cd]l/sfdf a:g] dfgj ;d'bfox?;Fu a9L 
ldNbf]h'Nbf] kfOPsf] 5 . o;/L hLjf0f'x?sf] /rgfdf k/Dk/fut cj:yfaf6 larng x'g'sf] xb 
s[lifdflysf] lge{/tf tyf s[lif;Fu ;DalGwt hLjgz}nL / ko{fj/0fsf sf/sx?dfly lge{/ ePsf] 
kfOPsf] 5 . pbfx/0fsf nflu, lkpg] kfgLsf] >f]t / vfgf ksfpg] OGwg / k]6sf hLjf0f'x? lar 
ulx/f] ;DaGw x'g ;Sg] ;Defjgf 5 . o;/L hLjf0f'x?sf] /rgfdf :ki6 leGgtf b]lvP klg 
hLjf0f'x? leqsf] k|hftLo ljljwtfdf eg] oL rf/ lxdfnL hghfltx? lar w]/} leGgtf 5}g, cyf{t 
hLjf0f'x? leqsf] k|hftLo ljljwtf hLjgz}nL;Fu geO{ ef}uf]lns sf/sx?;Fu cfjl4t x'g ;Sg] 
;Defjgf 5 . Pp6} ef}uf]lns If]qdf p:t} p:t} lsl;dsf] k/Dk/fut hLjgz}nL JotLt ub{} cfPsf 
dfgjx?df ul/Psf] of] cWoogsf] lgisif{n] k]6sf] hLjf0f'x?sf] /rgfdf hLjgz}nLsf] dxTjk"0f{ 
e"ldsf /x]sf] 5 eGg] lgw{f/0f u/]sf] 5 .  ;fy} eljiodf k]6sf hLjf0f'x?nfO{ k|efj kfg{] w]/} 
k|sf/sf sf/sx?dWo] cfxf/;DalGwt sf/sx?sf c;/ 7Dofpg' kg{] r'gf}ltk"0f{ sbdx¿k|lt hf]8 
lbPsf] 5 . 
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INTRODUCTION 
The human gut is comprised of a diverse community of bacteria, the microbiome or microbiota, that influences 
several aspects of human physiology including nutrient metabolism, immune responses, and resistance to 
infectious pathogens [1–3]. This highly malleable microbial component of human biology exhibits rapid, and in 
some cases, irreversible changes in response to dietary and environmental factors [4–11]. Modern humans 
experienced diverse environments since expanding out of Africa ~100,000 years ago, and over the past ~10,000 
years hunting and gathering has largely yielded to different forms of agriculturally supported lifestyles. Dietary 
changes combined with a variety of other factors associated with the industrial revolution have been credited as 
contributing to the alterations in the gut microbiome in industrialized populations [12]. However interpretation 
of the current data is clouded by potential contributions of human genetic variation, environment, and 
geographical factors [5,7,13]. The potential connection between the gut ecosystem and several chronic diseases 
necessitates a better understanding of the extent to which modernization has contributed to population-wide 
community changes during industrialization [14,15]. 
 
Comparisons of the gut microbiomes of traditional human populations in Africa and South America with those 
of the industrialized Western populations from Europe and USA reveal that the human gut microbiome varies 
across geography and lifestyles [16–30]. One universal trend from these studies is the higher diversity of gut 
bacteria in unindustrialized traditional populations. However, most of the traditional societies investigated thus 
far live within tropical latitudes [31]. Hence, whether difference in alpha diversity is due to contrasting 
lifestyles, residence in the tropics, or other factors remains unclear. Moreover, most studies to date compare the 
gut microbiomes between populations that reside in geographically distinct regions, represent extreme modes of 
human subsistence, and are genetically and culturally distinct [16,17,19–21,25,27]. Although some studies have 
attempted to mitigate these differences by comparing human populations that reside in close geographical 
proximities [23,24,28], these populations have been separated for tens of thousands of years, a period of time 
sufficient for genetic and cultural differences to arise [32]. Since gut microbiome can be influenced by genetic, 
environmental, and cultural factors [23,28,33], these variables make it difficult to determine the impact of 
lifestyle changes in the gut microbiome in such distinct populations. Hence, understanding how transitions in 
human lifestyles lead to changes in the gut microbiomes would be greatly aided by studying populations that 
have undergone recent changes in culture, lifestyle, and diet. 
 
In order to explore how the gut microbiota changes as human populations transition from traditional to more 
urban lifestyles, we have analyzed the gut microbiomes from four rural Himalayan populations and compared 
them to those of Americans with European ancestry. The Himalayan populations include the Chepang – a 
foraging population, the Raute and Raji – two foraging communities that are currently transitioning to 
subsistence farming, and the Tharu – former jungle dwellers that have completely transitioned to farming within 
the last two centuries. We assessed contributions of lifestyle, diet, and environment on the gut microbial 
variation in the rural Himalayan populations. Our results show that gut microbiome composition mirrors the 
transitions from traditional to westernized lifestyle in Himalaya. In addition to the dietary gradient across these 
populations, intra- and inter-population variability in lifestyle elucidated additional environmental and lifestyle 
associations that may contribute to microbiota change. 
 
 
RESULTS 
Description of populations: Our participants included 54 individuals from four Himalayan groups, including 
Chepang (N=14), Raji (N=9), Raute (N=11), and Tharu (N=20) with median age of 40 years (SD ± 14 years) 
from rural villages in Nepal (Figure 1, Supplementary Table 1). These four populations are long-term 
residents of the Himalayan foothills (altitude less than 1000 m) and contain various degrees of East Asian 
ancestries [34–36]. Although all four of the Himalayan populations in this study were forest dwellers until 
recently [37–40], habitat loss due to rapid deforestation, population expansions of non-native groups, 
establishment of new settlements, and construction of modern highways led to settlement of these groups at 
various time points in the last 300 years.  
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Figure 1: Sampling locations and habitats of the Himalayan populations in Nepal. (A) Map displaying the geographical locations 
of sampled villages in southern Nepal (altitudes<1000 meters above the sea level; latitude 26.97-29.15). The Tharu are geographically 
most distant from the Raute and Raji and reside closer to the Chepang. (B) Individuals representing each population. From top-left in 
clockwise direction: a Chepang female, a Raute male, a Tharu male, and a Raji female. (C) Habitats of each population. From top-left 
in clockwise direction: the remote Chepang village, Raute village, Tharu harvesting rice, and Raji village. 
 
 
Historical records indicate that the Tharu gradually transitioned into agrarian lifestyles beginning in the late 
eighteenth century (250-300 years ago) [40]. They have fully transitioned into farming and are virtually 
completely disengaged from foraging practices. Historically, the Raute, Raji, and Chepang were semi-nomadic 
foragers and their diets included native tubers, greens and fruits from the jungle, wild honey, fish, and 
occasional game [38,39,41]. The Raute and Raji abandoned their foraging lifestyles in the 1980s [37,38]. While 
the Raute have settled in the remote hills in Far-Western Nepal, the Raji have settled in the Terai plains, which 
is relatively more urbanized. The Chepang were fully nomadic at least until 1848 [42] and began supplementing 
their foraging practices with subsistence agriculture less than a century ago [39]. The Chepang in this study 
currently inhabit a remote village that is devoid of modernity, including electricity, running water, irrigation, 
fertilizers, modern machines, and marketplaces. They still practice slash and burn agriculture and are 
completely dependent on rainwater for farming. Because yields from such traditional farming are low, their 
daily diet consists of wild plants such as sisnu (nettles) that are foraged from the forests. 
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Lifestyle gradients in the Himalayan populations: We conducted surveys to assess how lifestyle changed as 
these seminomadic populations transitioned to farming in the last few hundred years. The survey questionnaire 
included questions pertaining to current dietary practices, traditional and modern medicines, and several 
environmental factors, including sources of drinking water, alcohol use, and tobacco consumption (N=53, 

Figure 2: Correspondence Analysis based on 
survey questionnaires and parasite assessment 
in the Himalayan populations. First two 
dimensions of the correspondence analysis and the 
amount of variation explained are shown. (A) 
Each circle represents an individual and colors 
represent the populations. (B) Distribution of 
populations along the primary CA1 axis shows 
patterns of separation by lifestyles. Chepang 
foragers (red) and Tharu farmers (blue) are on two 
extreme ends of CA1. In between the two are the 
Raute (yellow) and Raji (cyan), the two 
communities that are transitioning from foraging 
to farming. (C) Factors in gold are those that have 
more than expected eigenvalues and thus 
contribute most to the top two dimensions in the 
Correspondence Analysis. 
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Supplementary Table 2). Combustion of solid biomass fuel such as firewood or animal dungs produces 
environmental particulate matters increasing indoor air pollution [43]. Prolonged exposure to environmental 
pollutants has the potential to alter gut microbiome [44]. Hence, we assessed the fuel types used for cooking and 
location of kitchen in our Himalayan participants. We also surveyed presence of parasites in our participants 
microscopically. 
 
Supervised learning using a Random Forest classifier (RFC) model on the survey data (including intestinal 
parasite load) assigned the individuals to their respective populations with high accuracies (100% accuracy for 
the Chepang and Tharu, 90% for the Raute and Raji, OOB error = 3.5%, Supplementary Table 3A), indicating 
these populations have distinct lifestyles. A correspondence analysis (CA) of the survey data (including 
intestinal parasite load) also revealed lifestyle differences between these populations (Figure 2A). The first CA 
dimension (CA1) explained 15.8% variation in the data and was strongly correlated with lifestyle gradients. 
Along CA1, samples progressed from the Chepang foragers at one extreme, to the Raute and Raji transitioning 
populations, and then to the Tharu farmers at the opposite extreme (Figure 2B). Despite the geographical 
distance between them, the Raji lifestyle appears to be more similar to that of the Tharu farmers, consistent with 
the Raji settlement occurring in a more urbanized setting compared to the Raute. Similarly, the Raute reside in 
geographical proximity to the Raji, although their lifestyle partitions between the Raji and the Chepang, 
indicating geographical proximity is not driving the lifestyle differences.  
 
A total of 10 variables contributed highly to the first two CA dimensions and most of them are strongly 
associated with dietary differences and modernity (Figure 2C). These differences are described in details in 
Supplementary Figure 1. Briefly, foraged plants such as sisnu (nettles) and jaand, a slushy alcoholic beverage 
made from fermenting millet or corn, are staples of the Chepang diet. In contrast, sisnu and jaand consumption 
was minimal among the Raute, Raji, and Tharu. Also, perceived food scarcity was higher in the Chepang and 
Raute relative to Raji and Tharu. Although meat consumption was low across all four populations, the Tharu 
consumed animal products such as yogurt more frequently than the other three populations. Furthermore, the 
Tharu and Raji also showed increased signs of modernity. For example, they have installed tube wells at their 
homes, enabling access to underground water for drinking. In contrast, the Chepang and Raute still fetch 
drinking waters from rivers and streams. Also, use of solid biomass fuel was lower in Tharu and Raji while 
Chepang and Raute are still completely dependent on burning firewood for cooking. Although we detected low 
overall levels of intestinal parasites across the participants, Ascaris, Entamoeba, Trichuris, Hymenolepis, and 
Coccidia were detected in some, and most of the infected were the Chepang. Together, the diet and lifestyle 
assessments provide unbiased support that the four populations represent a gradient from traditional to 
increasingly agrarian and urban lifestyles.  
 
 
Gut microbiome composition varies by lifestyles: In order to assess whether the gut microbiome varies across 
lifestyles, we characterized the gut bacterial composition of these populations using the Illumina MiSeq to 
sequence the V4 region of 16S ribosomal RNA (rRNA) gene obtained from a total of 79 stool samples 
(including technical replicates) with an average of 11,570 (±4653) high quality reads/sample (Supplementary 
Figure 2, Supplementary Table 4). Since flash freezing of the samples was not possible in the remote 
sampling areas in the Himalaya, we used commercially available DNAgenotek OMNIgene kits to collect stool 
samples from the four populations (N=54). We also collected stool samples from 10 Americans of European 
descent using OMNIgene kits and compared them with freshly frozen samples to evaluate whether preservation 
method affected microbiome profile. The 16S rRNA profiles of the same samples stored by flash freezing or by 
OMNIgene were remarkably similar, with reproducible differences in minor taxa (Euryarcheota and 
Cyanobacteria), demonstrating the reliable preservation of microbiome composition with the OMNIgene kits 
(Supplementary Figure 3). Due to the reproducible, albeit minor, differences between the two collection 
methods, we used the OMNIgene data from the Americans for consistency in subsequent comparative analyses. 
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Comparison of the community structure in the five study populations using unweighted UniFrac distances, a 
measure of compositional similarity that includes the phylogenetic relatedness between microbiomes, showed 
that the gut microbial composition varied across populations (P< 2.2 X 10-16, Kruskal-Wallis test). The four 
Himalayan populations exhibited much larger distances when compared to the Americans than when compared 
to one another (Supplementary Table 5). The Chepang were the most distant from the Americans followed by 
the Raute, while the Raji and Tharu were equally close to the Americans. Within Himalaya, the Chepang were 
more distant from the Tharu and Raji relative to the Raute while the Raute, Raji and Tharu were equally distant 
from one another. Similar results were also observed with weighted UniFrac and Bray-Curtis distances, both of 
which take the taxa abundance into account (Supplementary Table 5).  
 

Figure 3: Gut microbiome compositions 
show gradients in lifestyles. (A) PCoA of 
the unweighted UniFrac distances colored 
by populations. Each dot represents an 
individual and colors indicate the 
populations. Chepang foragers (red), Raute 
(yellow) and Raji (cyan) communities that 
are transitioning from foraging to farming, 
Tharu farmers (blue), and Americans 
(orange). (B) Distributions of populations 
along the PCoA1 axis show patterns of 
separation by lifestyles. (C) Gut microbial 
composition of the Himalayan populations 
represented by the primary dimension of 
the unweighted UniFrac distance (PCoA1) 
strongly correlates with lifestyle 
differences represented by the top 
dimension of the corresponding analysis 
performed on the survey data (CA1, 
Spearman’s rho = 0.44 and P-value = 
0.001). Correlation between CA2 and 
PCoA1 was not statistically significant. 
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Visualization of these distances using a Principal Coordinates Analysis (PCoA) revealed separation of 
populations along the top two dimensions (P=1 X 10-5, PERMANOVA, Figure 3A). Furthermore, gradients in 
lifestyles were reflected by the distribution of populations along the primary axis (PCoA1, Figure 3B). These 
distributions remained consistent when using Bray-Curtis and weighted UniFrac distances as well (P=1 X 10-5 

for both, PERMANOVA, Supplementary Figure 4 and 5). When American microbiomes were eliminated from 
the principal coordinate analyses, the gradient between the Himalayan populations remained pronounced (P=1 
X 10-5, PERMANOVA, Supplementary Figure 6). Among the four Himalayan populations, the strongest 
separation was observed between the Chepang foragers and the Tharu farmers. 
 
A random forest classifier based on the 16S rRNA-defined read sequence variant (16S RSV) data assigned the 
Chepang, Tharu, and American individuals to their respective source populations with 86%, 100%, 100% 
accuracies (OOB error=32%, Supplementary Table 3B). The classification accuracy for the Raute and Raji, 
the two populations that recently transitioned from foraging to farming, were relatively poor (<10%). While 
some of the individuals from these groups were classified as the Chepang, others were classified as the Tharu. 
However, none of the Himalayan individuals were classified as American. These results collectively show that 
the gut microbiome compositions of the Himalayan populations are distinct from those of the Americans. They 
also indicate that within Himalaya, the gut microbiome of the Chepang foragers differs from that of the Tharu 
farmers while that of the Raute and Raji reflect their transitional state in their lifestyles. 
 
To formally evaluate whether variation in gut microbiota reflects lifestyle differences within Himalaya, we 
assessed associations between the respective primary dimensions from the lifestyle questionnaire and parasite 
analysis (CA1) and gut microbial composition analysis (PCoA1) (Figure 3C and Supplementary Figure 4). 
We found that the CA1 was strongly correlated with the PCoA1 obtained from all of the three distance matrices 
(Spearman’s rho = 0.47, 0.44, and 0.28 for Bray-Curtis, unweighted UniFrac, and weighted UniFrac distances, 
respectively, P-value < 0.05 for all three, correlation test). The CA1 was also correlated with PCoA2 of all three 
distance matrices (Spearman’s rho = 0.26, 0.44, and 0.39; P-value = 0.06, 0.001, and 0.004 for Bray-Curtis, 
unweighted UniFrac, and weighted UniFrac distances, correlation test). Conversely, no significant correlations 
were detected between CA2 and either of the PCoA axes from all three distances (P-value < 0.05, correlation 
test). Notably, CA1 but not CA2 is associated with lifestyle gradient (Figure 2). Strong and consistent 
correlations between CA1 and PCoA axes indicate that gut microbiome compositions of the Himalayan 
populations mirror their lifestyles.  
 
 
Gut bacterial diversity (alpha diversity) does not vary across lifestyles: Previous studies have suggested that 
elevated species diversity in gut microbiome is a hallmark of traditional populations [19,28]. We assessed the 
alpha diversity in the five study populations using four measures, namely species richness, Fisher’s alpha, 
Shannon’s H, and Simpson’s D at various rarefaction depths ranging from 500-3000 reads (Figure 4). Species 
richness and Fisher’s alpha were not significantly different between any of the five populations (Bonferroni 
adjusted P>0.05, Kruskal-Wallis test). We did find marginally significant differences in Shannon and Simpson 
indices between these populations (Bonferroni adjusted P<0.05, Kruskal-Wallis test). A post-hoc pairwise 
comparison of all five populations showed that only the alpha diversity in the Tharu was slightly lower than that 
in the Americans (Bonferroni adjusted P = 0.02 and 0.03 respectively, Dunn’s test) and none of the of the four 
diversity measures showed significant differences in alpha diversity between the Chepang, Raute, Raji, and the 
Americans. Moreover, correlations between each of the four alpha diversity measures and lifestyle differences 
within Himalaya measured using the CA1 were not statistically significant (P>0.05, correlation test). These 
results indicate that lifestyle differences among the Himalayan populations or between these populations and 
Americans have little effect on the alpha diversity of the gut microbiome.  
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Bacterial taxa are associated with lifestyle transitions: Although lifestyle differences have little effect on the 
alpha diversity, gut microbiome compositions of the Himalayan populations reflected the gradients in their 
lifestyles. To identify taxa driving the differentiation of the gut microbiomes across lifestyles we compared the 
differences in abundance of individual phylum across the five populations using a negative binomial 
generalized linear model (GLM) as implemented in DESeq2 [45]. Differential abundances were detected for 6 
out of 10 phyla (FDR adjusted P-value <0.05, GLM, Supplementary Table 6) and four of the six phyla reflect 
a traditional-western lifestyle gradient. The Himalayan populations were characterized by higher abundance of 
Proteobacteria, while abundances of Actinobacteria, Firmicutes, and Verrucomicrobia were highest in the 
Americans, intermediate in the farmers (Tharu, Raji, and Raute), and lowest in the Chepang foragers (Figure 
5A). Higher levels of Proteobacteria and lower levels of Actinobacteria and Verrucomicrobia are common 
features of many traditional human gut microbiomes across the world [19,24,28,30]. 

Figure 4: Alpha diversity in the 
study populations. Alpha 
diversity calculated at a 
rarefaction depth of 3000 reads 
per sample. No significant 
differences in species richness (A) 
and Fisher’s alpha (B) were 
detected between the five study 
populations. Shannon’s H (C) and 
Simpson’s D (D) were 
significantly lower in the Tharu 
relative to the Americans. No 
differences in any of these four 
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Figure 5: Distinctions in the gut microbiome across lifestyles. (A) Phyla with most significant differences in abundances between 
the five populations. Abundances of Firmicutes, Verrucomicrobia, and Actinobacteria reflect gradients of traditional-western 
lifestyles. Proteobacteria distinguishes rural Himalayan populations from the Americans. (B) Heatmap displaying 52 genera with 
significantly different abundance across the five populations. Bars on the top represent the grouping of individuals in the heatmap 
columns by their populations or lifestyles. Genera labels in rows are colored by their phylum. Purple: Actinobacteria, dark blue: 
Bacteroidetes, light red: Elusimicrobia, orange: Firmicutes, light blue: Proteobacteria, magenta: Spirochaetes, light pink: Tenericutes, 
brown: Verrucomicrobia. Heat map colors reflect relative abundances of each genus.  
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To characterize the taxonomic differences between populations at a finer level, we repeated the above analysis 
at the genus level and identified 52 out of 116 genera that showed significant differences in abundance across 
the five populations (FDR adjusted P-value <0.05, Figure 5B, Supplementary Table 7). Consistent with the 
differences observed at the phylum level, the rural populations were enriched for several members of 
Proteobacteria, including Ruminobacter, Campylobacter, Succinivibrio, and Escherichia/Shigella 
(Supplementary Figure 7). Among the rural populations, the Chepang foragers were enriched for 
Ruminobacter, Campylobacter, and Treponema. Although we did not detect significant differences in 
abundances of Bacteroidetes across these populations, several members of this phylum distinguished the rural 
and western populations. The rural Himalayan communities were enriched for Prevotella, Alloprevotella, and 
Anaerophaga and significantly depleted in Bacteroides, Alistipes, Butyricimonas, Odoribacter, and Barnesiella. 
29 genera belonging to Firmicutes differed significantly across the five populations and their distribution was 
complex across these populations (Supplementary Figure 8). Traditional populations were enriched for 
Clostridium sensu stricto, Catenibacterium, Lactobacillus, Bulleidia, Sarcina, Enterococcus, Eubacterium, 
Oribacterium, Mogibacterium, Mitsuokella, Allisonella, Weissella, Papilbacter and two unknown genera of 
Erysipelotrichaceae and Veillonellaceae families. Alternatively, abundances of several Clostridium genera, 
Oscillibacter, Blautia, Butyriciococcus, Anaerostipes, and Flavonifractor were elevated in the Americans. The 
Americans also showed highest abundances of Bifidobacterium (Actinobacteria) and Akkermansia 
(Verrucomicrobia), both of which were extremely low in the Chepang foragers. Elevated abundances of 
Treponema and Prevotella with reduction of Bacteroides and Bifidobacterium is a characteristic feature of gut 
microbiomes of foraging communities [19,24,28,30]. 
 
To evaluate whether these taxa reflect lifestyle gradients, we measured the correlations of genus abundances 
with the coordinates from the PCoA1 axis obtained from the unweighted UniFrac analysis and found strong 
correlations for 33 of the 52 differentially abundant genera (Spearman’s rho >0.29, q-value <0.05, correlation 
test). Bacteroides showed the strongest positive correlation with the PCoA1 (rho=0.78, q-value = 1.9 X 10-12, 
correlation.test) while Ruminobacter, Treponema, Bulleidia, and Catenibacterium showed strong negative 
correlations (Figure 6), consistent with multiple genera varying with lifestyle differentiation across the five 
populations. 
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Figure 6: Genera strongly associated with lifestyle gradients. Each of these genera is strongly correlated with the principal axis 
(PCoA1) of the unweighted UniFrac distances. Violin plots are color coded by populations. 
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Factors affecting gut microbiome composition in the Himalaya: We next assessed whether any of the ten 
dietary and environmental factors that differentiate the Himalayan populations (from Figure 2) correspond to 
the variation in gut microbiome composition. A canonical correspondence analysis (CCA) revealed that the ten 
factors collectively explain 38% of the gut microbiome variation within Himalaya while 62% of the variation 
remained unexplained. Of the ten variables, the source of drinking water and use of solid biomass fuel were 
significantly associated with the gut microbiome composition in the Himalayan populations (P-value = 0.009 
and 0.028 respectively, ANOVA), indicating that environmental factors can affect the gut microbiome. Both of 
these factors contributed most to the first CCA axis (CCA1), which distinguished the Chepang and Raute 
individuals who drink river water and exclusively burn solid biomass fuel for cooking from the Raji and Tharu 
who drink underground water and use biogas for cooking (Figure 7). Individuals who drank river water had 
higher abundances of Treponema and those who drank underground water had elevated levels of Fusobacterium 
(q-value<0.05 for both, Kruskal-Wallis test). Although cooking fuel was significantly associated at the 
compositional level, none of the genera reached statistical significance after correcting for multiple testing. 
 
 

 
 
Figure 7: Environmental factors associated with the gut microbiome composition in Himalaya. The two primary CCA axes and 
the proportion of constrained variance they explain are shown. Triangles represent individuals and circles represent genus. Individuals 
and genera are color coded by their respective populations and phyla. Drinking water and cooking fuel contributed most to CCA1 and 
sisnu (nettles) contributed most to CCA2. Genera labeled in grey contribute to the top two CCA axes. Among these, Fusobacterium 
and Treponema were significantly associated with drinking water.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 27, 2018. ; https://doi.org/10.1101/253450doi: bioRxiv preprint 

https://doi.org/10.1101/253450
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

DISCUSSION 
Several previous reports show that gut microbiomes of traditional populations vary from those of westerners 
[16,17,19–22,24,25,27–29]. These studies have emphasized that gut bacterial composition differs between 
traditional and westernized populations, alpha diversity is higher in traditional populations, and diet may be the 
primary driver of variation in the human gut microbiome. However, because these studies compare human 
populations that diverged tens of thousands of years ago, it has been difficult to separate the effect of geography 
and lifestyle on gut microbiome. In this study, we compared the gut microbiome from four rural Himalayan 
populations with shared ancestries that led nomadic lifestyles until recently and transitioned to farming at 
various time points in the last three hundred years. Although the individuals in our study have historically 
cohabited a geographically small region (less than 150K sq. km) in the Himalayan foothills and shared similar 
diets until recently, their current diets and lifestyles vary. Our results indicate that their gut microbiota strongly 
mirrors their lifestyles, indicating that the human gut microbiome can undergo pronounced changes within a 
short time (decades) of departure from foraging (as seen in the Raute and Raji). As dependences on agriculture 
increases, these changes become more pronounced (as seen in the Tharu). Since these populations have shared 
ancestries and they cohabit comparable latitudinal regions, such changes in gut microbiota are unlikely to be 
ascribable to host genetic differences or confounded by geography. 
 
The variations in gut microbiome in the Himalayan populations are consistent with the general patterns 
observed in many traditional human populations. More importantly, our results suggest certain genera represent 
conserved gut microbiota markers of human subsistence states (Figure 8). Previous studies of the industrialized 
microbiota have demonstrated that gut microbiome composition associates with and can be driven by 
differences in host diet [4–6,8,15,16,22,26,30]. Several genera Ruminobacter and Treponema that are associated 
with metabolizing uncultivated plant products and are enriched in the Chepang foragers in this study are also 
elevated in hunter-gatherers across the world [19,28,30,33]. Moreover, Prevotella and Eubacterium, which have 
been previously associated with vegetarian diet in the westerners [5] were enriched in all Himalayan 
populations relative to Americans. In contrast, taxa associated with animal proteins in diet such as Bacteroides 
and Blautia [5,46] were enriched in the Americans relative to Himalayan populations. This is consistent with 
low animal protein content in diet across Nepal [47].  
 
In addition to diet, environmental factors may also influence the human gut microbiome [7,23,44]. Consistent 
with these findings, we found that differences in sources of drinking water may exert a detectable effect on the 
gut microbiota. Differences in mineral and microbial content in drinking water in Nepal has been previously 
reported [48–51], which may be affecting gut microbiome in our Himalayan participants. Moreover, prolonged 
exposure to air pollutants have been shown to alter gut microbiome in mice [44]. Whether direct or indirect, 
breathing polluted air containing higher levels of particulate matters due to solid biomass cooking fuel is linked 
to gut microbiome composition in our study. In addition, intestinal parasite load has been shown to alter gut 
microbiota [23]. The association between gut microbiome and parasite load approached significance in our 
participants as well (P=0.075, ANOVA), although it did not reach significance likely due to lower parasite 
abundance in our participants.  
 
Despite noticeable differences in the gut microbiome composition, we did not observe significant differences in 
gut bacterial diversity (alpha diversity) across lifestyles in the study populations. Comparisons of populations 
that reside in similar geographical areas but practice different subsistence strategies such as the BaAka hunter- 
gatherers and Bantu farmers [28] as well as Matses hunter-gatherers and Tunapuco farmers [33] also showed 
little differences in alpha diversity. However, these and other traditional populations such as the Hadza [19] 
have elevated gut bacterial diversity relative to westerners. We did not observe higher alpha diversity in the 
traditional Himalayan populations relative to the Americans. One possible explanation for this discrepancy 
could be that latitude is the primary factor that influences gut bacterial diversity. The traditional populations 
included in previous studies reside in the tropical climate zones, which have higher biodiversity likely affecting 
both diet and environmental microbial exposures.  
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Figure 8: Proposed dynamics of gut microbiome in lifestyle transitions. We propose fluctuations in individual taxa in the gut 
microbiota show complex patterns as humans transition from one lifestyle to another. A few examples of bacterial taxa and their 
consistent patterns of changes in human populations across the world are shown. Certain genera such as Treponema and Ruminobacter 
that are characteristic of hunter-gatherers rapidly decline in agrarians and industrialists. In contrast, taxa such as Alistipes and 
Akkermansia rapidly increase in non-foragers. Genera such as Bacteroides show a gradual increase from foragers to industrialists and 
Bulleidia show an opposite trend. Higher abundances of taxa such as Prevotella and Succinivibrio are characteristics of traditional 
lifestyles and are virtually absent in industrialists. Both dietary and environmental factors are likely to influence the gut microbiome. 
In this study, source of drinking water was strongly associated with gut microbiome composition. Other environmental factors such as 
parasite load and antibiotic usage also influence the gut microbiota. 
 
 
In conclusion, our results emphasize the need to study additional traditional populations to understand how 
geography, climate, diet, and environment affect the gut microbiome. By comparing human populations that 
reside in a relatively small geographical area, shared a common diet and lifestyle until recently, and are 
currently practicing different subsistence strategies, we show that human gut microbiome undergoes marked 
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changes within decades of increasing urbanization. Indeed, the extent to which the numerous factors associated 
with urbanization contribute to gut microbiome change remain to be determined, although gut microbiome 
extinction events have been shown in experimental models to result from western diet, antibiotics, and chemical 
laxatives [5–7].  However, the global trends of bacterial taxa within the gut that undergo depletion or 
enrichment upon lifestyle transitions are striking. The functional consequence of these changes, both in terms of 
the intrinsic microbial ecology of the gut and the impact on human biology, are critical questions for the field to 
address.  Future work should incorporate metagenomics to characterize the gut microbial variation at finer 
scales, metabolomics and strain culturing to assess functional differences, and immune and metabolic profiling 
of these populations. Pursuit of mechanisms by which the gut microbiome interacts with the ecosystems of 
these populations may reveal conserved connections between microbial and human biology with large 
implications for industrialized humans who lack these microbes.  
 
 
MATERIALS AND METHODS 
Study sites, participating individuals, and sample collection: Stool samples were collected with informed 
consent from 56 adult participants (over 18 years old) from four indigenous Himalayan populations from Nepal 
and 10 adult Americans of European descent. Indigenous populations from Nepal included Chepang (N=14), 
Raji (N=10), Raute (N=12), and Tharu (N=20) inhabiting in Chitwan, Bardia, Dadeldhura, and Sarlahi districts 
respectively. The samples were collected in winter of 2016 (March and April) with consent from all 
participants. This work was approved by Ethical Review Board of the Nepal Health Research Council (NHRC) 
as well as by the Stanford University Institutional Review Board (IRB). 
 
In addition to collecting the fecal samples, we also obtained ethno-linguistic, demographic, environmental, and 
dietary data from the participants using a survey questionnaire specifically designed for this study. The survey 
questionnaire assessed participant’s age, gender, diet, health status, use of medication, and behavioral practices 
such as tobacco and alcohol consumption along with several environmental variables (Supplementary Table 
2). In addition, we also visually inspected the stool samples of each individual under the microscope for the 
presence of intestinal parasites (triplicate slides per individual). Participants’ responses to survey data 
questionnaires are included in Supplementary Table 4. 
 
DNA extractions: Freshly produced stool samples from the Himalayan participants were collected on a clean 
OMNIgene gut accessory collection paper (OM-AC1). About 500mg of the stool samples was transferred to the 
OMNIgene gut kit collection tube containing the stabilizing buffer using the clean spatula provided with the kit. 
The tubes were shaken hard in a back and forth motion until the fecal samples were completely homogenized. 
Tubes were transported at room temperature within 48-72 hours of collection to Tribhuvan University Institute 
of Medicine, Kathmandu, Nepal where they were transferred to -80°C until DNA extraction. DNA was 
extracted using MolBio Power Soil Kit according to the manufacturer's protocol. Extracted DNA was shipped 
to Stanford University on dry ice and stored at -20°C until sequencing. Samples from Americans were collected 
from volunteers at Stanford University in a 15ml centrifuge tubes and transported to the laboratory on ice. Half 
of each sample was immediately frozen at -80°C. From the other half, 500mg stool was transferred to 
OMNIgene collection tubes and kept at room temperature for 48-72 hours after which they were stored at -
80°C. DNA was extracted from both sets of samples simultaneously using MolBio Power Soil Kit according to 
the manufacturer's protocol and stored at -20°C until sequencing. 
 
16S sequencing and analyses: The V4 region of the 16S rRNA gene was PCR amplified using the primers and 
protocols described previously [52]. The amplified DNA fragments were multiplexed and subjected to paired-
end sequencing using Illumina MiSeq. Of the 66 samples, one yielded very low levels of DNA and another 
failed the paired end sequencing. After discarding these two samples, the final dataset included 64 individuals 
(14 Chepang, 9 Raji, 11 Raute, 20 Tharu, and 10 Americans). The amplification primers and barcodes used for 
multiplexing are described in Supplementary Table 4. 
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Paired-end reads were processed using DADA2 [53] and subsequently analyzed in R using phyloseq [54]. In 
order to identify high quality sequences, reads were trimmed to 150 bp. Sequences with N nucleotides and/or >2 
expected errors were discarded (maxN=0, maxEE=2, truncQ=2) and sequence variants were inferred by pooling 
reads from all samples (pool=TRUE). Sequence tables were then created by merging paired-end reads. A naïve 
Bayesian classifier method [55] implemented in DADA2 algorithm was used to assign taxonomy using the RDP 
v14 training set [56]. Multiple alignment was conducted using DECIPHER [57] package in R and a maximum 
likelihood phylogenetic tree was constructed using phangorn [58] with a neighbor-joining tree as the starting 
point. 
 
A total of 1,183,760 merged reads passed quality control and 1630 taxa were initially identified. After removing 
chimeric sequences, which constituted 22% of the reads, 921,345 merged reads remained. Further elimination 
of low abundance phyla – Synergistetes and Deferribacteres – that were observed only once across all samples 
resulted in 883 taxa in the dataset. After quality control, mean (±SD) sequencing depth per sample was 11570 
(±4653). We performed three technical replicates of the frozen sample for one individual and a total of five 
replicates for two additional individuals for the OMNI samples. Since we did not observe marked differences in 
the technical replicates (Supplementary Figure 3), we retained the sample with highest coverage for these 
individuals. After removing the replicate samples, 64 individuals and 875 taxa remained in the final dataset.  
 
Random forest classifier model: One hundred random forest classifiers (RFC) with 50 to 5000 trees were 
constructed using all 35 variables (Supplementary Table 3) from the survey data using ‘randomForest’ R 
package [59]. We also repeated this analysis on the 16S data and reported the RFC with smallest out of bag 
error rate for both analyses. 
 
Statistical analyses: Correspondence analysis of the survey data was performed using FactoMineR package in R 
[60]. Canonical correspondence analysis was performed at the genus level (taxa collapsed based on genus 
names) by calling functions from vegan package via phyloseq. Phylogenetic diversity was computed by 
rarefying the samples to various depths starting from 500-3000 sequences per sample. Alpha diversity was 
measured using species richness, Shannon’s H, Simpson’s D, and Fisher’s alpha, calculated as the mean values 
from 100 iterations at each depth. Kruskal-Wallis tests were used to assess the significance of differences in 
each of the alpha diversity metrics between populations at each rarefaction depth. Differences in rarefaction 
depth did not alter significance of the observed differences. Hence, we chose to report results from rarefaction 
depth of 3000, which was the maximum depth that allowed inclusion of all of the samples. Beta diversity was 
assessed using Bray-Curtis as well as unweighted and weighted UniFrac distances calculated by log 
transformation of the non-rarefied 16S count data. Permutational multivariate analysis of variance 
(PERMANOVA) was performed using the vegan package in R [61]. For all PERMANOVA analyses, 10000 
randomizations were performed to assess the statistical significance. In order to identify differentially abundant 
taxa at the phylum and genus levels, we first agglomerated the taxa abundance (counts) at each taxonomic level 
respectively. The differences in taxa abundance (counts) were then assessed using the DESeq2 package [45]. 
Multiple testing corrections were performed by computing false discovery rates (FDR) using Benjamini-
Hochenberg method and adjusted p-values < 0.05 were considered statistically significant.  
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SUPPORTING INFORMATION 
Supplementary Figure 1: Dietary and environmental factors associated with lifestyle gradients in the 
Himalaya. Several dietary factors distinguished the four Himalayan populations included in this study. Foraged 
plants such as sisnu (nettles) and jaand, a slushy alcoholic beverage made from fermenting millet or corn, are 
staples of the Chepang diet. Although not recorded in the survey data, our Chepang participants reported that 
due to lack of irrigation, they are unable to grow rice and are limited to growing crops that require less water 
such as buckwheat, millet, and corn and forage for tubers (gittha vyakur) in the forest. In contrast, alcohol use 
was minimal among the Raute, Raji, and Tharu. Moreover, perceived food scarcity was higher in the Chepang 
and Raute, both of which reside in remote villages relative to the Raji and Tharu. Although meat consumption 
was low across all four populations, the Tharu consumed animal products such as yogurt most frequently. 
According to our Tharu participants, ghonghi (snails) are staples in their diet, although this dietary parameter 
was not included in our survey. In addition to diet, several environmental factors also differed across the 
Himalayan populations. The Chepang and Raute who reside in remote villages still fetch their drinking water 
from rivers and streams. Conversely, Raji and Tharu who reside in more urbanized areas have installed tube 
wells in their homes enabling access to underground water for drinking. The use of solid biomass fuel (SBM) 
was lower in the Tharu and Raji as they frequently used non-solid biomass fuel (NSBM) such as biogas. 
Conversely, the Chepang and Raute are still completely dependent on burning firewood for cooking. Although, 
we detect low overall levels of intestinal parasites in our participants Ascaris, Entamoeba, Trichuris, 
Hymenolepis, and Coccidia appear in some individuals. Parasite infection was highest in the Chepang, 
intermediate in the Raute and Raji, and lowest in the Tharu. Smoking and tobacco consumption was higher in 
the Tharu and Chepang relative to Raji and Raute. 
 
Supplementary Figure 2: 16S sequencing and quality filtering. (A) Sequencing depth for each taxa and each 
sample before filtering. Over 1600 read sequence variants (RSVs) were initially identified but many were 
chimeric and detected by a single read. (B) Removal of chimera did not reduce sequencing depth for the taxa or 
for the samples. (C) Abundance of the phyla in the dataset. Deferribacteres and Synergistes were detected in 
only a few individuals and were lowly abundant (read count < 4) and were removed. (D) After quality filtering 
of chimera and low abundance taxa, twelve phyla and a total of 883 taxa remained in the dataset. 
 
Supplementary Figure 3: Comparison of frozen and OMNIgene samples. Since flash freezing of the 
samples was not possible in the remote sampling areas, we used commercially available DNAgenotek 
OMNIgene kits to collect stool samples from the four Himalayan populations. We also collected stool samples 
from 10 Americans of European descent from Palo Alto. We divided these samples into two sets, the first set 
was trasferred into OMNIgene kits and the second set was frozen at -80C. The OMNIgene kits containing the 
stool samples were kept at room temperatures for 24-72 hours then they were frozen at -80C. DNA extraction, 
16S amplification (V4), and sequencing was performed simultaneously for both sets of samples. This allowed 
us to determine whether the kit collections in the field could faithfully reproduce expected microbiome profiles 
as well as freshly frozen stool. (A) Analysis of gut bacterial community using Principal Coordinate Analysis 
(PCoA) of unweighted and weighted UniFrac distances showed no significant differences between the sampling 
methods (P>0.05 for both distances, PERMANOVA). Replicate samples from the same individual also tended to 
be in close proximity of one another in both analyses. (B) Alpha diversity assessed using species richness, 
Fisher index, and Shannon index was not significantly different between the two methods (P>0.05, Kruskal-
Wallis test). (C) Although comparison of frozen and OMNI samples showed little differences, abundance of 
Euryarcheota and Cyanobacteria/chroloplast were lower and higher in OMNI samples, respectively. Both 
constituted negligible fractions of gut bacteria and were removed from further analyses. (D) Comparison of 
differences in taxa abundances at the genus level using a negative binomial generalized linear model for 
differential abundance analysis as implemented in DESeq2 demonstrated that none of the genera differed 
significantly between the sampling methods (FDR adjusted P-values >0.05). Hence, these results collectively 
demonstrate that sampling using OMNIgene kits did not introduce major biases in our data. 
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Supplementary Figure 4: Differences in gut microbiome compositions across lifestyles. (A) Visualization 
using a PCoA of the Bray-Curtis (left) and weighted UniFrac distances (right). Each dot represents an 
individual and colors indicate the populations. In both analyses, PCoA1 explains most variation in the dataset 
(21.5% and 34.5% of the Bray-Curtis and weighted UniFrac distances respectively). (B) Distribution of 
populations along the PCoA1 axis show patterns of separation by lifestyles. Chepang foragers (red), Raute 
(yellow) and Raji (cyan), Tharu farmers (blue), and Americans (orange). (C) In both cases, PCoA1 was strongly 
correlated with CA1 obtained from the analysis of the survey data. Spearman’s rho for Bray-Curtis and 
weighted UniFrac were 0.47 and 0.28 respectively (P<0.05 for both, correlation test). Correlations between 
CA2 and PCoA1 were insignificant (P>0.05 for both distances, correlation test). 
 
Supplementary Figure 5: Visualization of distinctions in gut microbial communities across population 
using PCoA. PCoA of the unweighted and weighted UniFrac distances (top and middle respectively) and Bray-
Curtis distance (bottom). All four plots on each row differ only in coloring of the dots to help visualize the 
distribution of individuals in each population. 
 
Supplementary Figure 6: Variation in gut microbiota within Himalaya. Columns show PCoA of the three 
distance matrices of the four Himalayan populations after removing Americans from the analysis. Top row 
shows the top two PCoA axes and variance explained. Significant differences in gut microbiome composition 
within Himalaya was observed for all three distances (P<0.05, PERMANOVA). Bottom row shows the 
distribution of the Himalayan populations along the PCoA 1 axis. The separation between Chepang foragers 
(red) and Tharu farmers (blue) is the strongest within Himalaya with the two transitioning Raute and Raji 
populations as intermediates. 
 
Supplementary Figure 7: Abundances of differentially abundant genera across populations. Each subplot 
shows abundance of an individual taxa in the five populations. Differentially abundant genera from 
Bacteroidetes (A), Proteobacteria (B), Verrucomicrobia (C), Spirocheates (D), Actinobacteria (E), 
Elusimicrobia (F), and Tenericutes (G). Labels with “c__unk” and “f__unk” indicate taxa with unknown Class 
and Family respectively. 
 
Supplementary Figure 8: Complex patterns of differential abundances of Firmicutes across populations. 
Several genera are significantly enriched in the rural Himalayan populations and others are depleted. Labels 
with “g__unk” and “o__unk” indicate taxa with unknown genus and order respectively. 
 
Supplementary Table 1: Populations, their subsistence strategies, and sample sizes: For the 10 Americans 
we compared frozen samples to those collected using OMNIgene collection kits. We also performed 3 technical 
replicate sequencing for 2 Americans. Although we attempted to balance the numbers of males and females 
from each population there were slightly higher representation of females than males in this study. 
 
Supplementary Table 2: Survey questionnaire: Survey data were collected for the 53 of the 54 individuals 
from the four Himalayan populations. One individual consented to donating samples but was not interested in 
participating in the survey. We included the sample and removed this individual from the survey data analyses. 
Prolonged exposure to pollutants generated during combustion of solid biomass fuel such as firewood or animal 
dungs due to indoor cooking has the potential to alter gut microbiome. Hence, we assessed the fuel types used 
for cooking and location of kitchen in our Himalayan participants. We also inquired about the sources of 
drinking water among our participants. None of the participants filtered or purified water before drinking. Thus 
this variable was excluded from analysis. We surveyed three replicates from each the stool samples under a 
microscope to identify parasites Ascaris, Entamoeba, Trichuris, Hymenolepis, and Coccidia. If any of these 
parasites were present, the individuals were labeled positive. Frequency of plant and animal products in diet 
were also recorded. Binary responses were coded as 0 and 3, frequency variables were coded as 0,1,2,3 for least 
frequent to most frequent.  
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 27, 2018. ; https://doi.org/10.1101/253450doi: bioRxiv preprint 

https://doi.org/10.1101/253450
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Supplementary Table 3: Random forest classifications: Summary of random forest classification using 
survey data (A) and 16S OTU table (B). Lowest out of bag error (3%) for the survey data was obtained with 
2750 trees and lowest out of bag error (32%) for the 16S data was obtained with 1950 trees. 
 
Supplementary Table 4: Primers, sequencing depth, and survey data: Amplification primers, barcodes used 
for multiplexing and sequencing depth for samples in this study along with survey data collected from 
participants. “NA” indicates missing data. 
 
Supplementary Table 5: Mean distances within and between populations: Average pairwise distances 
between individuals within and between populations computed using Bray-Curtis, unweighted UniFrac, and 
weighted UniFrac matrices. 
 
Supplementary Table 6: Significantly different phyla across populations: Summary table of differential 
abundance of phyla (taxa collapsed based on phylum names) across the five populations. Statistical significance 
was assessed using a negative binomial generalized linear model as implemented in DESeq2. Multiple testing 
corrections were performed by computing false discovery rates (FDR) using Benjamini-Hochenberg method 
and multiple testing adjusted P-values < 0.05 were considered statistically significant. 
 
Supplementary Table 7: Significantly different genera across populations: Summary table of differential 
abundance of genera (taxa collapsed based on genus names) across the five populations. Statistical significance 
was assessed using a negative binomial generalized linear model as implemented in DESeq2. Multiple testing 
corrections were performed by computing false discovery rates (FDR) using Benjamini-Hochenberg method 
and multiple testing adjusted P-values < 0.05 were considered statistically significant. 
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