
	 1	

The	evolutionary	origin	of	the	universal	distribution	of	fitness	effect		1	

	2	

Ayuna	Barlukova,	Gabriele	Pedruzzi,	and	Igor	M.	Rouzine*	3	

	4	

Sorbonne	Université,	Institute	de	Biologie	Paris-Seine	5	

Laboratoire	de	Biologie	Computationnelle	et	Quantitative,	LCQB,	F-75004	Paris,	France	6	

	7	

*Correspondence	to:	igor.rouzine@sorbonne-universite.fr	8	

	9	

Abstract 10	

An intriguing fact long defying explanation is the observation of a universal exponential distribution of 11	

beneficial mutations in fitness effect for different microorganisms. Here we use a general and 12	

straightforward analytic model to demonstrate that, regardless of the inherent distribution of mutation 13	

fitness effect across genomic sites, an observed exponential distribution of fitness effects emerges 14	

naturally, as a consequence of the evolutionary process. Using this result, we develop a technique to 15	

measure the mutation fitness effects for specific genomic sites from a single-time sequence set and apply 16	

it to influenza A H1N1 hemagglutinin protein. Our results demonstrate the difference between the 17	

distribution of fitness effects experimentally observed for naturally occurring mutations and the inherent 18	

distribution obtained in directed-mutagenesis experiments. The technique will enable researchers to 19	

measure fitness effects of mutations across the genome from a single DNA sample, which is important 20	

for predicting the evolution of a population.  21	

	22	

Introduction 23	

 24	

Evolutionary	dynamics	of	 a	population	of	nucleic	 acid	 sequences	 is	 controlled	by	 several	 acting	25	

forces,	 including	 random	 mutation,	 natural	 selection,	 genetic	 drift,	 and	 linkage	 decreased	 by	26	

recombination.	Of	central	interest	is	the	adaptation	of	an	organism	to	a	new	environment,	which	27	

occurs	due	to	fixation	in	a	population	of	rare	mutations	that	confer	a	benefit	to	the	fitness	of	the	28	

organism	(Imhof	and	Schlotterer	2001;	Kassen	and	Bataillon	2006;	Acevedo,	et	al.	2014;	Stern,	et	29	
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al.	 2014;	Wrenbeck,	 et	 al.	 2017).	The	 advantage	of	 each	 favorable	mutation	 is	measured	by	 the	30	

relative	 change	 it	 causes	 in	 genome	 fitness	 (average	 progeny	 number).	 Thus,	 the	 knowledge	 of	31	

fitness	 effects	 for	 different	mutations	 is	 essential	 for	 predicting	 the	 evolutionary	 trajectory	 of	 a	32	

population,	 such	 as	 occurs,	 for	 example,	 during	 the	development	 of	 resistance	 of	 a	 pathogen	 to	33	

treatment	or	the	immune	response.		34	

	 Recent	 advancements	 in	 theoretical	 population	 genetics	 provide	 accurate	 and	 general	35	

expressions	 for	 the	speed	of	adaptation	of	an	asexual	population,	 its	genetic	diversity,	mutation	36	

fixation	 probability,	 and	 phylogenetic	 properties	 within	 the	 framework	 of	 the	 traveling	 wave	37	

theory	 (Tsimring,	 et	 al.	 1996;	 Rouzine,	 et	 al.	 2003;	 Rouzine	 and	 Coffin	 2005;	 Desai	 and	 Fisher	38	

2007;	 Rouzine	 and	 Coffin	 2007;	 Brunet,	 et	 al.	 2008;	 Rouzine,	 et	 al.	 2008;	 Neher,	 et	 al.	 2010;	39	

Rouzine	 and	 Coffin	 2010;	Hallatschek	 2011;	 Good,	 et	 al.	 2012;	Walczak,	 et	 al.	 2012;	Neher	 and	40	

Hallatschek	2013).	In	all	these	models,	the	distribution	of	fitness	effects	among	mutation	sites	DFE	41	

serves	as	an	important	input	parameter.		42	

The	 average-over-genome	 fitness	 effect	 of	 a	 beneficial	 mutation	 in	 HIV	 genome	 was	43	

estimated	using	 genetic	 samples	 from	HIV	 infected	patients	 (Rouzine	 and	Coffin	1999).	 Finding	44	

out	the	distribution	of	the	fitness	effect	over	sites	(DFE)	over	genomic	sites	in	several	viruses	and	45	

bacteria	 required	 specially	 designed	 and	 rather	 elaborate	 experiments	 	 (Imhof	 and	 Schlotterer	46	

2001;	Kassen	and	Bataillon	2006;	Acevedo,	et	al.	2014;	Stern,	et	al.	2014;	Wrenbeck,	et	al.	2017).	47	

Recently,	 selection	 coefficients	 across	 the	 sites	 of	 the	 hemagglutinin	 gene	 of	 human	 influenza	48	

A/H3N2	 were	 estimated	 by	 fitting	 the	 deterministic	 one-locus	 model	 and	 its	 approximate	49	

extension	for	two-loci	(Illingworth	and	Mustonen	2012).	The	authors	fit	the	model		to		time-series	50	

data	on	allele	frequencies	of	hemagglutinin	(HA)	gene	of	human	influenza	A	H3N2.	(Keightley	and	51	

Eyre-Walker	2007)	proposed	a	method	of	DFE	estimation	in	mutation-selection-drift	equilibrium	52	

based	 on	 the	 assumption	 that	 DFE	 has	 the	 shape	 of	 the	 gamma	 distribution.	 They	 estimate	53	

parameters	of	gamma	distribution	from	maximization	of	the	likelihood	under	the	assumption	that	54	

the	 derived	 sites	 are	 binomially	 distributed.	 Thus,	 the	 two	 modeling	 papers	 used	 strong	55	

assumptions	about	the	dynamics	of	the	system.			56	
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	 (Eyre-Walker	 and	 Keightley	 2007)	 reviewed	 different	 types	 of	 experiments	 to	 estimate	57	

DFE.	 They	 noted	 that	 there	 is	 a	 lack	 of	58	

understanding	 in	 DFE.	 In	 particular,	 during	59	

evolution,	 DFE	 is	 likely	 to	 change	 in	 time,	60	

which	 is	 not	 in	 agreement	 with	 the	61	

assumption	 of	 Gillespie-Orr	 theory	 of	62	

constant	DFE	(Gillespie	1982;	Orr	2003).		63	

	 To	fill	this	gap	of	knowledge,	we	use	a	64	

different	 approach	 based	 on	 mechanistic	65	

description.	 We	 study	 the	 dynamics	 of	 a	66	

system	 in	 the	 state	 of	 adaptation	 (non-67	

equilibrium).	 Based	 on	 our	 results,	 we	68	

propose	a	more	general	method	of	measuring	69	

selection	 coefficients	 for	 specific	 sites	 not	70	

restricted	 to	 the	 one-site	 model	71	

approximation.	 In	 fact,	 this	 approximation	72	

usually	does	not	work	 for	highly	diverse	and	73	

rapidly	 changing	 RNA	 viruses.	 The	 reason	 is	74	

linkage	 of	 many	 evolving	 loci	 causing	 clonal	75	

interference	 and	 genetic	 hitchhiking	 effects	76	

complicated	 by	 stochastic	 effects	 in	 finite	77	

population.	Linkage	effects	greatly	modify	the	78	

speed	 of	 evolution	 and	 other	 parameters.	 Our	 method	 takes	 these	 effects	 into	 consideration	79	

automatically	 by	 taking	 advantage	 of	 the	 prediction	 of	 a	 narrow	 solitary	wave	 in	 fitness	 space	80	

(Rouzine,	et	al.	2003;	Rouzine	and	Coffin	2005,	2010;	Good,	et	al.	2012).	81	

The	 key	 to	 the	 method	 is	 revealed	 by	 the	 intriguing	 fact	 long	 defying	 explanation:	 the	82	

frequent	occurrence	of	a	universal	form	of	DFE	of	beneficial	mutations.	Previous	studies	in	E.	coli,	83	

Pseudomonas	 aeruginosa,	 Pseudomonas	 fluorescence,	 poliovirus	 show	 that	 the	 rate	 of	 beneficial	84	

mutation	 often	 decreases	with	 their	 fitness	 effect	 exponentially	 (Fig.	 1)	 (Imhof	 and	 Schlotterer	85	

2001;	Kassen	and	Bataillon	2006;	Acevedo,	et	al.	2014;	Stern,	et	al.	2014;	Wrenbeck,	et	al.	2017).		86	

	
	
Fig.	 1:	 Different	 studies	 on	 distribution	 of	 fitness	
effects	 of	 beneficial	 mutations	 demonstrate	 an	
exponential	 form.	 Y-axis:	 Frequency	 of	 beneficial	
alleles	(arbitrary	units).		X-axis:	Mutation	gain	in	fitness	
due	 to	 a	 beneficial	 mutation	 (selection	 coefficient).	
Symbols	represent	results	obtained	for	different	sites	of	
the	 genome	 in	 experiments	 on	 Escherichia	 coli	 (Imhof	
and	 Schlotterer	 2001),	 Pseudomonas	 fluorescens	
(Kassen	 and	 Bataillon	 2006),	 poliovirus	 synonymous	
mutations,	 poliovirus	 non-synonymous	 mutations	
(Acevedo,	et	al.	2014),	poliovirus	 low	MOI	(Stern,	et	 al.	
2014),	E.	coli	acetamide	(ACT),	propionamide	(PR),	and	
isobutyramide	(IB)	(Wrenbeck,	et	al.	2017).	
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In	the	present	work,	we	offer	a	simple	interpretation	of	this	phenomenon.	We	demonstrate	87	

that,	 regardless	 of	 the	 initial	 distribution	 of	 fitness	 effects	 across	 genomic	 sites,	 an	 exponential	88	

DFE	 emerges	 naturally,	 as	 a	 consequence	 of	 an	 evolutionary	 process.	 Further,	 we	 apply	 these	89	

findings	to	a	nucleic	acid	sequence	set	of	HA	protein	of	influenza	virus	A	strain	H1N1	to	obtain	the	90	

relative	value	of	the	selection	coefficient	for	each	variable,	non-synonymous	site	in	the	protein.	91	

Studying	 the	 existing	 literature	 on	 DFE,	 we	 found	 out	 that	 two	 different	 distributions,	92	

which	are	described	below,	were	both	referred	as	DFE.	We	note	that	there	is	an	inherent	constant	93	

distribution	of	selection	coefficients	of	a	genome,	which	represents	the	number	of	genome	sites	in	94	

the	given	small	 interval	of	 the	values	of	 selection	coefficient.	This	distribution	can	be	measured	95	

directly	 only	 by	 a	 site-directed	mutagenesis	 experiment.	We	will	 refer	 to	 the	 first	 as	 "intrinsic	96	

DFE"	 to	 emphasize	 the	 fact	 that	 it	 is	 the	 property	 of	 the	 pathogen/environment	 and	 does	 not	97	

depend	 on	 the	 state	 of	 population.	 	 Another	 distribution	 is	 the	 distribution	 of	 new	 beneficial	98	

mutations	arising	naturally,	which	depends	on	the	state	of	adapting	population.	In	our	work,	we	99	

will	 use	 term	 "DFE"	 to	 denote	 the	 second	 distribution,	 which	 is	 the	 relative	 rate	 of	 mutations	100	

naturally	occurring	during	experimental	evolution	(see	results	shown	in	Fig.	1).	We	show,	in	our	101	

work,	 by	 mathematical	 analysis	 of	 a	 simple	 and	 general	 population	 model	 and	 by	 direct	102	

comparison	with	data	on	 influenza	A,	 that	 these	 two	distributions	 turn	out	 to	be	quite	different	103	

from	each	other.	We	will	focus	on	beneficial	mutations.	104	

	105	

Results	106	

In	order	to	explain	the	exponential	shape	of	DFE	observed	in	the	experiments,	we	start	by	107	

noting	 that	 beneficial	 mutations	 can	 emerge	 only	 at	 the	 sites	 currently	 occupied	 with	 less-fit	108	

alleles.	Here	we	assume	bi-allelic	approximation,	when	two	alleles	are	considered:	the	best-fit	and	109	

the	next	 less-fit.	Although	each	position,	 in	principle,	can	have	four	nucleotides	A,	C,	T,	G,	 in	real	110	

viral	 data,	 on	moderate	 time	 scales	 1-10,000	 generations,	most	 variable	 sites	 display	 only	 two	111	

alleles	 in	a	sample.	 In	 this	case,	 if	a	genomic	site	 is	occupied	by	 the	 less-fit	allele,	 it	can	become	112	

only	the	best-fit	by	mutation,	and,	vice	versa,	a	genomic	site	occupied	by	the	best-fit	allele,	it	can	113	

only	lose	in	fitness.	If	a	population	is	well	adapted	during	the	process	of	evolution,	most	of	genome	114	

sites,	 in	 each	 genome,	 already	 carry	 best-fit	 alleles	 and	 cannot	 experience	 beneficial	mutations.	115	
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Therefore,	 the	 observed	 DFE	will	 be	 affected	 by	 the	 occupation	 number	 distribution	 of	 less-fit	116	

alleles	among	sites	with	different	s,	i.e.,	by	the	state	of	population.	117	

Let	denote	the	average	frequency	of	less-fit	alleles	at	a	site	with	fitness	effect	s	by	f	(s).	We	118	

note	that	f	(s)	can	also	be	viewed	as	the	frequency	of	sites	available	for	beneficial	mutations.	For	119	

example,	consider	a	sequence	of	the	form	1000001,	where	1	stands	for	the	less-fit	allele	and	0	for	120	

the	best-fit	allele.		Then,	only	the	first	and	the	last	positions	in	the	sequence	are	the	sites,	where	a	121	

beneficial	mutation	can	occur,	1	→	0.	Thus,	the	rate	of	beneficial	mutation	at	any	fixed	position	of	122	

the	genome	must	be	proportional	to	the	frequency	of	less-fit	allele	f	at	this	position.	If	the	system	123	

is	fully	adapted,	we	have	f	=	0,	and	no	beneficial	mutations	are	possible.		124	

Experiment	 description.	The	experiments,	 shown	 in	Fig	1,	 consider	naturally	occurring	125	

evolution	and	count	beneficial	and	deleterious	mutations	emerging	in	an	adapting	population.	The	126	

authors	 evolve	 a	 population	 of	 bacteria	 or	 virus	 for	 a	 short	 time	 in	 culture.	 Newly	 emerging	127	

beneficial	 mutations	 result	 in	 spontaneous	 increase	 in	 the	 best-fit	 allele	 frequency	 in	 time	128	

(selection	 sweeps).	 Although	 exact	 protocols	 differ,	 the	 count	 occurs	 for	 naturally	 occurring	129	

mutations,	 not	 for	 random	 mutagenesis.	 In	 one	 experiment	 (Acevedo,	 et	 al.	 2014),	 an	130	

experimentalist	 uses	 a	 deep	 sequencing	 technique	 CirSeq	 to	 monitor	 the	 arising	 frequency	 of	131	

minority	 alleles	 at	 each	 genomic	 site	 as	 a	 function	 of	 time	 and	 fits	 it	 with	 a	 simple	 one-site	132	

evolution	model	expression	to	estimate	s	for	each	site.	In	another,	the	experimentalist	is	focused	133	

on	beneficial	mutations	in	E.Coli.	(Imhof	and	Schlotterer	2001),	he	measures	selection	coefficient	s	134	

for	each	selection	sweep	from	time	series,	and	then	count	the	number	of	sweeps	at	sites	belonging	135	

to	 an	 interval	 of	 the	 selection	 coefficient	 (X-axis	 in	 Fig.	 1).	 	 Therefore,	 all	 these	 experiments	136	

measure	the	naturally	occurring	mutation	density,	DFE,	and	not	intrinsic	DFE.	137	

In	 	 the	 last	 experiment,	 a	 beneficial	 mutation	 event	 occurs	 spontaneously,	 with	 a	 small	138	

probability,	at	a	rare	less-fit	site.	If	it	survives	random	drift,	it		gets	fixed	in	the	population.	We	can	139	

present	 the	 results	 of	 these	 experiments	 on	 beneficial	mutations	 (Y	 axis,	 Fig	 1)	 as	 the	 product	140	

!"# ! !(!), where	the	observed	DFE	is	given	by	141	

	142	

!"#(!) =  !(!)!(!),		 	 	 	 	 	(1)	143	

	144	
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!(!)	is	the	frequency	of	target	sites	available	for	beneficial	mutations,	!(!)	is	fixation	probability	145	

of	beneficial	mutation	s,	and	g(s)ds	is	the	number	of	sites	with	the	selection	coefficient	in	interval	146	

[s,	s+ds].	Therefore,	we	conclude	that	the	raw	distribution	of	selection	coefficient	across	different	147	

sites,	intrinsic	DFE	g(s),	is	not	the	same	as	the	observable	distribution	DFE(s),	given	by	Eq.	1.	The	148	

first	distribution	is	a	property	of	the	virus	and	the	cell	type	and	is	fixed.	The	DFE(s)	observed	in	149	

the	 experiments	 (Fig.	 1)	 depends	 on	 the	 state	 of	 the	 population	 and	 evolves	 in	 time,	 since	 f(s)	150	

evolves	 in	 time,	which	 explains	 the	 aforementioned	 observation	 in	 (Eyre-Walker	 and	Keightley	151	

2007).	 	DFE(s)	given	by	Eq.	1	serves	as	the	 input	density	parameter	 for	the	models	of	evolution	152	

(Good,	et	al.	2012)	.	153	

	 Below	mutant	frequency	f	(s)	is	assumed	to	have	pre-evolved	before	the	experiment	for	a	154	

long	time,	reflecting	pre-history	of	the	population	under	similar	conditions,	but	is	not	in	mutation-155	

selection	drift	equilibrium	yet,	 i.e.,	 it	 is	not	best	adapted	yet	to	the	conditions	of	the	experiment.	156	

We	will	describe	 this	pre-evolution	of	 f	 (s)	by	simulations	and	analytically.	 	After	predicting	 the	157	

form	of	f	(s),	we	will	use	it	to	estimate	intrinsic	distribution	of	g(s)	from	data.	We	will	show	that	158	

f(s)	depends	sharply	(exponentially)	on	s,	while	both	experimental	dependence	g(s)	and	fixation	159	

probability	!(!)	depend	on	s	relatively	weakly.	Therefore,	the	exponential	dependence	in	mutant	160	

frequency	f	(s)	dominates	experimentally	measured	DFE(s)	(see	Eq.	1),	which	explains	the	results	161	

shown	in	Fig.	1.	162	

	163	

Model.	We	 consider	 an	 asexual	 organism,	which	evolved	 for	 some	 time	but	 is	 still	 far	 from	 the	164	

mutation-selection	 equilibrium	 before	 the	 experiment.	 A	 haploid	 population	 has	 N	binary	165	

sequences,	where	each	genome	site	(nucleotide	position)	numbered	by	i	=1,	2,	…,	L	carries	one	of	166	

two	possible	genetic	variants	(alleles),	denoted	Ki	=0	or	Ki	=1.	Each	site	(nucleotide	position)	has	167	

one	 of	 two	 alleles:	 the	 better-fit	 (for	 example,	 A),	 or	 the	 less-fit	 (for	 example,	 G).	We	 note	 that	168	

beneficial	mutations	are	rare,	which	is	why	it	unlikely	that	two	occur	at	the	same	nucleotide.	We	169	

focus	 here	 on	 the	 short-term	 adaptation	 to	 a	 new	 constant	 environment,	 where	 the	 bi-allelic	170	

model	is	a	fair	approximation.		171	

	 The	genome	is	assumed	to	be	very	long,	L	>>	1.	Time	is	discrete	and	measured	in	units	of	172	

population	generations.	The	evolution	of	the	population	is	described	by	a	standard	Wright-Fisher	173	

model,	which	includes	the	factors	of	random	mutation	with	genomic	rate	µL,	natural	selection,	and	174	
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random	 genetic	 drift.	 Recombination	 is	 assumed	 to	 be	 absent.	 Once	 per	 generation,	 each	175	

individual	 genome	 is	 replaced	 by	 a	 random	 number	 of	 its	 progeny	 which	 obeys	 multinomial	176	

distribution.	 The	 total	 population	 stays	 constant	with	 the	 use	 of	 the	 broken-stick	 algorithm.	To	177	

include	 natural	 selection,	 the	 average	 progeny	number	 (Darwinian	 fitness)	 of	 sequence	Ki	is	 set	178	

to		!! .	We	consider	the	simplest	case	when	the	fitness	effects	of	mutations,		!! 	,	are	additive	over	179	

sites:	180	

		 	 	 	 	181	

	 	 	 	 	 	 ! = !!!
!!! !! 																																																																						182	

																				183	

The	reference	genome,	{Ki=0},	can	be	chosen	in	arbitrary	way.	For	our	aim,	it	is	convenient	to	set	it	184	

to	be	the	same	as	the	best	fit	sequence,	so	that	all	selection	coefficients	si	are	negative.	Each	site	i	185	

with	deleterious	allele,	Ki=1,	 is	 a	 target	 site	 for	 a	possible	beneficial	mutation.	Vice	versa,	 a	 site	186	

with	the	favorable	allele,	Ki=0,	can	have	a	deleterious	mutation.	A	more	general	version	of	fitness	187	

model	that	accounts	for	pairwise	epistatic	interactions	is	considered	in	(Pedruzzi,	et	al.	2018)	and,	188	

for	macroscopic	epistasis,	in		(Good	and	Desai	2015).	Here	we	focus	on	additive	contributions	of	189	

single	sites	to	the	fitness	landscape.	We	note	that	most	sites	usually	do	not	have	epistatic	partners,	190	

so	the	approximation	is	fair.		191	

	 	The	 fitness	 cost	of	 a	deleterious	allele	 s	 is	distributed	 in	a	 complex	way	among	genomic	192	

sites.	In	general,	the	inherent	distribution	!(!) is	unknown	and	depends	on	a	virus,	host	cell	type,	193	

and	a	protein.	Its	measurement	requires	an	experiment	with	site-directed	mutagenesis	along	the	194	

entire	genome.	The	genome	has	 to	be	mutated	artificially,	site	by	site,	and	then	the	value	of	s	 is	195	

measured	 for	 each	mutation. Below	we	make	 no	 assumptions	 regarding	!(!) and	 demonstrate	196	

that	 the	 exponential	 shape	 in	 the	 less-fit	 allele	 frequency	 f	 (s)	 arises	 automatically	 and	197	

independently	 on	 the	 form	 of	!(!).	 Later	 on,	 we	 will	 show	 how	 g(s)	 can	 be	 calculated	 from	198	

sequence	data	 for	 the	 influenza	virus	and	demonstrate	 that	 it	 is	an	unremarkably	slow	 function	199	

within	an	interval	of	s.		200	
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Fig.	2:	Deleterious	alleles	with	higher	values	of	fitness	cost,	s,	are	the	first	to	be	depleted	during	the	process	
of	adaptation.	In	other	words,	beneficial	mutations	with	higher	s	are	fixed	first.	(a-e)	Evolution	of	a	sample	of	102	
sequences.	Violet	dots:	better-fit	alleles,	yellow	dots:	less-fit	alleles.	X-axis:	the	cost	in	fitness,	s,	multiplied	by	100.	
The	 values	 of	 s	 are	 randomly	 distributed	with	 the	 half-Gaussian	 distribution,	 s	 >	 0,	with	 the	 average	!!" 		=	 0.05.	
Genomic	 sites	 are	 ordered	 by	 the	 value	 of	 s.	 Y-axis:	 genome	 number	 in	 the	 sample.	 The	 initial	 population	 is	
randomized	with	 the	average	 frequency	of	deleterious	alleles	 fin	=	 0.2.	Time	points	 in	generations	are	 shown.	(f)	
Evolution	of	the	genome	distribution	in	fitness.	X-axis:	the	effective	number	of	deleterious	alleles,	defined	as	k	=	-
W/sav.	where	W	 is	 fitness.	Different	colors	 show	discrete	time	intervals	 from	0	 to	5.	Vertical	 grey	 line	shows	 the	
best	fitness	class	of	genomes	at	t=0.	The	emergence	of	clonal	structure	in	(a-e)	coincides	with	the	transition	from	
the	 selection	of	pre-existing	 sequences	to	the	 traveling	wave	regime.	Parameters:	 fin	=	0.2,	N	=	104,	L	=	100,	!!" 	=	
0.05,	µL	=	0.05.	
	

	 Our	 work	 applies	 only	 far	 from	 mutation	 selection	 equilibrium	 when	 system	 is	 still	201	

adapting.	It	is	well	known	that,	in	equilibrium,	the	dependence	f	(s)	is	not	exponential,	but	close	to		202	

f	 =	µ/s.	 For	 example,	 computer	 simulations	 in	 [Keightly	NRG]	 show	 that	 the	DFE	 evolves	 away	203	

from	an	exponential	distribution	when	approaching	equilibrium.	204	

	205	
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	206	

Monte-Carlo	simulation.	We	start	from	an	initial	population	of	N	genomes	that	has	a	fraction	of	207	

deleterious	alleles	 randomly	distributed	among	genomic	 sites	 (Fig	2a).	Evolution	of	a	 sample	of	208	

hundred	sequences	in	a	representative	Monte-Carlo	run	is	shown	in	Fig.	2.	For	the	sake	of	visual	209	

convenience,	we	have	 re-ordered	genomic	 sites	 in	 the	 ascending	order	of	 the	value	of	 selection	210	

coefficient	si.		211	

	 In	 the	 process	 of	 evolution,	 we	 observe	 increasing	 redistribution	 of	 deleterious	 alleles	212	

among	 genomic	 sites	 as	 follows	 (Fig.	 2).	 	 The	 sites	 with	 a	 relatively	 high	 mutation	 cost	 loose	213	

deleterious	alleles	due	to	natural	selection.	The	asymmetry	becomes	evident	from	t	=	20.	Finally,	214	

at	 t	=	50	 (Fig	 2e),	mutations	 on	 the	 right	 side	 are	 almost	 absent.	 Thus,	 deleterious	 alleles	with	215	

higher	 values	 of	mutation	 cost	vanish	 earlier,	which	 represents	 a	 qualitative	 explanation	 of	 the	216	

observed	exponential	dependence	of	DFE	on	s	(Fig	1).			217	

We	note	that	in	our	example,	we	set	a	rather	large	value	of	initial	f,	which	is	convenient	for	218	

numerical	computations.	In	real	life,	mutant	frequency	f	may	be	much	smaller	than	the	value	we	219	

choose.	However,	our	results	do	not	depend	on	this	initial	condition	assumption.	Later,	we	provide	220	

our	 analytic	 derivation	 which	 is	 general	 and	 applies	 to	 very	 low	 f,	 as	 long	 as	 they	 are	 not	 in	221	

mutation	selection	equilibrium.		222	

	In	 addition	 to	 the	 observed	 re-distribution	 of	 less	 fit	 alleles,	 we	 also	 observe	 the	223	

emergence	of	group	of	identical	sequences,	which	we	explain	by	evolutionary	process	as	follows.	224	

In	Fig	2,	two	intervals	of	adaptation	can	be	discerned.	Early	on,	new	mutations	can	be	neglected,	225	

and	the	critical	evolutionary	factor	is	the	natural	selection	of	pre-existing	genomes	(Fig	2a,	b).	It	226	

was	 previously	 revealed	 by	 a	 combination	 of	modeling	 and	 experimental	 evolution	 of	 vesicular	227	

stomatitis	virus	(Dutta,	et	al.	2008).	In	time	interval,	t	<<	1/sav,	where	sav	is	the	average	of	g(s),	the	228	

distribution	of	alleles	over	genomes	remains	random.		229	

In	 contrast,	 in	 the	 second	 time	 interval,	 which	 starts	 around	 t	 ~	 1/sav,	 new	 beneficial	230	

mutations	 become	 crucial	 for	 further	 evolution,	 because	 they	 give	 birth	 to	 new	 highest-fit	231	

genomes	 (Fig	 2b-e).	 To	 explain	 the	 formation	 and	 subsequent	 growth	 of	 groups	 of	 identical	232	

sequences	(Fig	2b-e),	we	address	to	traveling	wave	theory	of	evolution	(Fig	2f).		233	

Formation	of	 these	clones	occurs	at	 the	edge	of	 the	 traveling	wave	of	 fitness	distribution	234	

(Rouzine,	 et	 al.	 2003;	Desai	 and	Fisher	2007;	Hallatschek	2011;	Good,	 et	 al.	 2012)	 (Fig	2f).	The	235	

fitness	 distribution	 moves	 in	 time	 towards	 higher	 values	 of	 fitness,	 i.e.,	 smaller	 numbers	 of	236	
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deleterious	alleles.		At	early	times,	the	distribution	is	broad	and	symmetric.	In	this	regime,	as	was	237	

mentioned	earlier,	the	main	force	is	the	selection	of	preexisting	genomes.	 After	a	while	(t	~	1/sav),	238	

the	profile	becomes	asymmetric,	and	the	high-fitness	edge	starts	to	move	to	the	left	together	with	239	

the	peak	due	to	new	beneficial	mutations	(Fig	2f).	The	genomes,	appearing	on	the	left	side	from	240	

the	initial	high-fitness	edge	(grey	line	in	Fig	2f)	share	the	initial	genetic	background.	Hence,	they	241	

produce	observed	groups	of	sequences	identical	at	most	sites	(yellow	vertical	lines,	Fig	2b).	As	the	242	

wave	 progresses,	 the	 clonal	 structure	 grows,	 and	 eventually,	 most	 genomes	 in	 the	 population	243	

become	an	offspring	of	the	same	ancestor	(Fig	2f).	244	

	245	

Analytic	derivation	of	universal	DFE.			246	

Short	times.	As	the	above	simulation	shows,	the	evolution	of	genomes	occurring	at	short	times	t	<<	247	

1/sav	is	mainly	due	to	the	selection	of	preexisting	variation	and	new	mutations	are	not	important	248	

(Methods).	The	probability	of	having	a	deleterious	allele	at	a	site	with	mutation	cost	s	at	time	t	has	249	

the	form		250	

	251	

!(!, !) = !!"
(!!!!") !!"!!!"

	 	 	 	 			 		(2)	252	

	253	

where	 fin	 is	 the	 initial	 mutant	 frequency.	 The	 slope	 of	 the	 distribution	 of	 deleterious	 alleles	 is	254	

defined	as	255	

	256	

! = − ! !"# !
!" 			 	 	 	 	 	 (3)	257	

	258	
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We	 observe	 that	 the	 formula	 in	 Eq	 2	 does	 not	 depend	 on	 the	 initial	 distribution	 of	 selection	259	

coefficients	 among	 sites,	 g(s).	 At	 a	 small	 initial	 mutant	 frequency	!!" ,	 the	 formula	 can	 be	260	

approximated	 with	 an	 exponential,	!(!, !) ≈ exp(-!s).	 The	 exponential	 slope	 is	 approximately	261	

equal	to	time,	! = !	(see	Fig.	3).	 	This	 is	an	early	regime	where	the	evolution	of	different	sites	is	262	

effectively	independent.		263	

	 Long	term.	At	longer	times	t	>	1/sav,	beneficial	mutations	become	essential,	and	the	above	264	

approximation	does	not	apply	anymore.	We	need	to	use	the	results	of	the	traveling	wave	theory	265	

(Rouzine,	 et	 al.	 2003;	 Desai	 and	 Fisher	 2007;	 Hallatschek	 2011;	 Good,	 et	 al.	 2012).	 In	 the	266	

stationary	 regime	 of	 traveling	 wave	 (Fig	 2f),	 fixation	 of	 beneficial	 alleles	 is	 the	 process	 that	267	

	
	
Fig.	3:	The	frequency	of	deleterious	alleles	decays	exponentially	with	their	fitness	effect,	with	 the	slope	
increasing	 in	 time.	 (A)	Analytic	prediction	(Eqs.	1)	 for	the	 frequency	of	deleterious	alleles	agrees	with	Monte-
Carlo	simulation.	X-axis:	Mutation	cost	of	deleterious	allele	at	a	genomic	site,	s.	Y-axis:	Frequency	of	deleterious	
alleles	at	 such	a	site,	 f(s).	The	mutant	 frequency	 f	 is	 averaged	over	20	random	simulation	runs.	Different	colors	
show	different	times,	symbols	are	simulation,	and	lines	are	analytic	prediction	(Eq.	1).	The	numbers	on	the	curves	
are	 the	 values	 of	 the	 slope.	 Parameters	 as	 in	 Fig	 2.	 (B)	 The	 slope	 of	 the	 distribution	 of	 deleterious	 alleles	 β,	
analytic	 (blue	 lines)	and	simulation	 (purple	 lines),	 as	a	 function	of	 time,	t.	Parameters	 fin	and	!!" different	 from	
those	 in	 Fig	 2	 are	 shown	 on	 the	 legend.	 The	 log-slope	 for	 the	 simulated	 curves	 of	mutant	 frequency	 in	 (A)	 is	
obtained	by	an	exponential	fit.	We	observe	that	the	deviation	of	the	simulated	slope	from	the	analytic	prediction	
Eq.	1	at	 long	 times	coincides	with	the	establishment	of	 the	 traveling	regime,	which	occurs	 later	 for	smaller	 	!!"	
(Fig.	 2f).	 At	 long	 times,	 the	 traveling	 wave	 prediction	 Eq.	 3	 applies	 (dashed	 blue	 lines).	 Grey	 diagonal	 shows		
β (t) =	t.	
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dominates	the	loss	of	deleterious	alleles.	Let	t0	be	the	characteristic	time	when	the	traveling	wave	268	

regime	starts.	In	Supplementary	Methods,	we	solve	a	dynamic	equation	for	allelic	frequency	f	and	269	

obtain		270	

	271	

!(!, !) = !!" !!!!!!!" !(!)!"!
!! 			 	 	 	 					(4)	272	

	273	

where	 π (s)	 is	 the	 probability	 of	 fixation	 of	 a	 beneficial	 mutation	 with	 fitness	 gain	 s	 derived	274	

previously	 (Good,	 et	 al.	 2012).	 By	 expanding	 the	 argument	 of	 the	 exponential	 in	 Eq.	 4	 in	 s,	 the	275	

slope	takes	the	form		276	

	277	

!(!) = !! + !"#′(0)(! − !!)		 	 	 	 (5)	278	

	279	

Please	note	that	Eq.	4	for	adaptation	regime	neglects	deleterious	mutation	events	and	is	valid	far	280	

from	equilibrium.	 	281	

	 Previously,	a	more	general	argument	was	used	to	predict	the	exponential	shape	of	the	DFE		282	

(Pedruzzi,	et	al.	2018).	We	assumed	that	mutant	frequency	f	(s)	has	evolved	for	some	time	before	283	

the	 experiment	 measuring	 DFE,	 but	 that	 the	 population	 was	 not	 in	 equilibrium	 yet,	 so	 that	284	

deleterious	mutation	events	(reverse	mutations)	are	negligible.	Under	these	condition,	the	system	285	

is	in	quasi	equilibrium,	where	all	the	variables	change	slowly	adjusting	to	the	slow	change	of	the	286	

average	fitness	in	time.	Hence,	given	the	fitness	distribution	of	genomes,	the	distribution	of	alleles	287	

over	sites	and	genomes	is	given	by	the	condition	that	the	entropy	is	in	the	maximum.	However,	the	288	

full	equilibrium	does	not	occur	until	much	later	on	scaled	much	larger	than	1/<s>.	289	

	 Further,	the	fitness	distribution	is	narrow,	as	follows	from	traveling	wave	theory,	ΔW	<<	W.	290	

Therefore,	the	system	entropy	is	at	the	conditional	maximum	S	restricted	by	the	average	value	of	291	

fitness	-W.	From	these	assumptions,	we	obtained	the	probability	to	have	a	deleterious	allele	at	a	292	

given	site		293	

	294	

! = (1− !)!!!"																																																																						(6)	295	

	296	

where	! = !"
!"	.	Eq.	6	is	general,	while	Eqs.	2	and	4	provide	explicit	expressions	for	!.		297	
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	 Thus,	Eqs.	2	to	4	demonstrate	that	the	exponential	dependence	f	(s)	arises	in	the	course	of	298	

evolution	 at	 any	 initial	 conditions	 after	 the	 evolution	 time	 t	 ~	 1/sav,	 and	 that	 the	 resulting	299	

exponential	slope	is	robust	to	the	initial	conditions.	The	pre-factor	at	the	exponential	depends	on	300	

the	 time	 of	 pre-evolution	 and	 f	 in.	We	 assume	 that	 the	 system	evolved	 for	 time	 longer	 than	 the	301	

inverse	average	<si	>	but	is	not	in	equilibrium	yet.	302	

Later,	we	propose	the	procedure	of	estimation	of	this	pre-factor	directly	from	data.	303	

	304	

Monte-Carlo	simulation	confirms	theory.	To	test	our	analytic	theory,	we	compare	the	frequency	305	

of	deleterious	alleles	obtained	by	analytic	prediction	(Eq.	2)	f	(s)	with	the	results	of	Monte-Carlo	306	

simulation	averaged	over	20	random	runs	at	several	time	points	(Fig.	3a).	At	t	=	0,	simulated	and	307	

predicted	mutant	frequencies	are	constant,	since	all	sites	have	the	same	probability	of	deleterious	308	

allele,	 	!!". 	Thus,	 the	 slope	!	is	 equal	 to	 0	 (blue	 line).	 At	 later	 times,	we	 observe	 that	 the	 slope	309	

increases	gradually	in	time	and	the	frequency	of	deleterious	alleles	f(s,t)	depends	exponentially	on	310	

selection	 coefficient.	 Apart	 from	 some	 residual	 fluctuations,	 our	 analytical	 formula	 (Eq.	 1)	311	

demonstrates	 excellent	 agreement	 with	 simulation.	 Since	 the	 sites	 with	 possible	 beneficial	312	

mutations	with	given	mutation	gain	s	are	the	sites	with	deleterious	alleles	with	fitness	cost	s,	we	313	

confirm	that	distribution	of	beneficial	fitness	effects	acquires	and	maintains	an	exponential	shape	314	

in	a	broad	interval	of	time.		315	

Then,	 we	 compared	 the	 analytic	 prediction	 for	 the	 log-slope	 of	 DFE	 	! 	(Eq.	 2)	 with	316	

simulation,	for	different	values	of	the	average	selection	coefficient	!!"	and	initial	allelic	frequency	317	

!!"	(Fig.	3b).	We	observe	a	good	match	with	the	analytic	formula	that	predicts	the	linear	increase	318	

of	the	slope	in	time	at	early	times.	At	longer	times,	! > 1/!!" ,	our	analysis	and	simulation	deviate	319	

because	 the	 time	 dependence	 of	 the	 simulated	 slope	 becomes	 slower	 than	 linear	 in	 time.	 The	320	

results	are	not	very	sensitive	to	initial	frequency	fin	or	variation	of	other	model	parameters	(Fig.	321	

3b).	Note	that,	 in	this	regime,	although	the	slope	 increases	more	slowly	than	predicted	by	Eq.	2,	322	

the	 exponential	 dependence	 on	 mutation	 cost	 is	 conserved.	 For	 longer	 times,	 the	 fluctuations	323	

increase	with	time,	which	is	related	to	strong	stochastic	effects	in	the	traveling	wave	regime.	324	
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	 The	differences	between	the	prediction	of	Eq.	2	and	simulation	at	long	times	are	caused	by	325	

entering	the	traveling	wave	regime.	In	this	regime,	the	wave	moves	beyond	the	best-fit	sequence	326	

present	 in	 the	 initial	 population	 due	 to	 beneficial	 mutations	 (Fig	 2f).	 To	 predict	 the	 slope	327	

analytically,	we	need	to	account	for	the	effect	of	beneficial	mutations	(Good,	et	al.	2012).	Using	the	328	

analytic	 result	 in	 Eq.	 4	 derived	 in	 S1	 Appendix,	 we	 obtain	 a	 good	 agreement	 with	 long-term	329	

simulation	results	(Fig.	3).	These	results	were	averaged	over	several	independent	simulation	runs.	330	

Thus,	 our	model	 of	 evolution	provides	 a	 simple	 explanation	 for	 the	 long-standing	puzzle	 of	 the	331	

exponential	DFE	(Fig.	1).	332	

	333	

Calculating	 selection	 coefficients	 from	 a	 virus	 protein	 sequence	 set.	 Our	 results	 have	 an	334	

important	 practical	 application.	 They	 enable	 us	 to	 estimate	 the	 relative	 value	 of	 the	 selection	335	

coefficient,	s,	for	each	genetically	diverse	site	using	a	one-time	sequence	set,	as	long	as	the	system	336	

is	 far	 from	 steady-state.	 We	 focus	 on	 one	 of	 two	 surface	 proteins	 of	 Influenza	 A	 H1N1,	337	

Hemagglutinin	 (HA),	which	 contains	 targets	 of	 neutralizing	 antibody	 response	 and	 a	 subject	 of	338	

	
	
Fig.	4:	The	method	determines	selection	coefficients	for	all	genetically	diverse	sites	of	 influenza	H1N1	
Hemagglutinin	(HA).	(A)	The	ranked	relative	values	of	selection	coefficient	!"	calculated	from	Eq.		6	for	three	
5-year	 windows	 (shown).		Only	 sufficiently	 variable	 sites	 (	f	 >	 5%)	 are	 shown.	 For	 balanced	 sampling,		
sequences	with	overall	mutation	frequency	<	5%	were	down-weighted	by	25%	 through	resampling	25	times	
(Pedruzzi	and	Rouzine	2019).	(Insert)	The	normalized	distributions	of	selection	coefficients	across	amino	acid	
positions	for	s	>	0	in	the	three	time	windows.	(B-D)	The	values	of	!" at	their	actual	positions	in	HA.	 
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intense	 scrutiny.	 HA	 sequences	 were	 downloaded	 from	 a	 public	 database	339	

(https://www.fludb.org).	 The	 sequences	 were	 collected	 worldwide	 between	 years	 2000	 and	340	

2019.		 	We	classified	 them	 into	 three	5-year	 time	windows	before	and	after	pandemic	 influenza	341	

(2005-2010),	during	which	replication	inhibitors	were	administered	broadly.	After	binarization	of	342	

all	sequences	into	consensus	0	and	non-consensus	1,	we	determined	allelic	 frequency	 fi	 for	each	343	

site	 i.	 Based	 on	 our	 analytic	 result	 in	 Eq.	 3,	 the	 relative	 value	 of	 the	 selection	 coefficients	 at	344	

aminoacid	position	i	can	be	estimated	from		345	

	346	

!(!)!!  = −log !!(!)
!!"#$

		 	 	 	 	 	 (7)	347	

	348	

	 The	 presence	 of	 an	 additional	 factor	!!"#$	in	 Eq.	 7	 is	 due	 to	 the	 fact	 that,	 in	 Eq.	 7,	 fi	349	

represents	the	frequency	of	less-fit	alleles	at	site	i,	hence,	si		>	0	for	all	sites,	by	definition.	In	real	350	

life,	in	experiment,	the	best-fit	sequence	is	not	known,	or	may	not	even	exist,	see	the	discussion	of	351	

influenza	below.	Hence,	fi		has	to	be	redefined	as	the	frequency	of	minority	alleles	with	respect	to	352	

the	 consensus	 sequence	determines	 at	 a	 fixed	 (usually	 initial)	 time	point.	Therefore,	 some	 sites	353	

will	 have	 negative	 si,	 and	 we	 need	 to	 introduce	 factor	 fnorm	 to	 account	 for	 such	 sites:	 they	354	

correspond	to	fi		>	fnorm	.	355	

	 Note	that	the	left-hand	side	in	Eq.	7	factorizes	into	a	product	of	two	term:	one	depends	only	356	

on	time,	and	another	only	on	site.	We	can	use	this	fact	to	determine	the	normalization	factor	!!"#$ ,	357	

as	 follows.	 In	 each	 time	window,	we	 rank	 genomic	 sites	 in	 the	 descending	 order	 in	−log !.	We	358	

observe	the	intersection	between	the	ranked	curves	obtained	at	different	times	(Fig.	4a).	Then,	we	359	

add	a	constant	to	the	ranked	log	f	to	obtain	s = 0 	at	the	intersection	point	between	the	curves.	The	360	

resulting	 estimate	 of	 !(!)!!  from	 Eq.	 7	 represents	 the	 selection	 coefficient	 at	 site	 i	 in	 relative	361	

units.	Further,	taking	the	inverse	derivative	from	each	ranked	s	curve,	we	obtain	the	distribution	362	

density	of	selection	coefficient	over	non-conserved	sites	g(s),	which	is	broad	and	becomes	almost	363	

uniform	after	 the	pandemic	of	2005-2010	(inset	 in	Fig.	4a).	Finally,	we	can	re-order	 the	ranked	364	

sites	 back	 and	 plot	 the	 relative	 values	 of	 selection	 coefficient,	 	!" ,	 against	 their	 aminoacid	365	

positions		(Fig	4	b-d).		 	366	

	 	367	

	368	
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Discussion	369	

	370	

In	 summary,	 we	 proposed	 an	 evolutionary	 explanation	 for	 the	 exponential	 DFE	 of	 beneficial	371	

mutations	 in	 terms	 of	 the	 mutation	 gain	 in	 fitness.	 Using	 an	 asexual	 population	 model,	 we	372	

predicted	a	gradual	depletion	of	deleterious	alleles	with	higher	fitness	costs	accompanied	by	the	373	

emergence	of	a	clonal	structure	after	! ≈ 1/!!" .	First,	neglecting	new	mutations,	we	obtained	an	374	

exponential	 dependence	 of	 allelic	 frequency	 on	 fitness.	 The	 logarithmic	 slope	 is	 equal	 to	 time,	375	

which	 corresponds	 to	 the	 virtual	 absence	 of	 linkage	 effects	 at	 early	 times.	 	 The	 formula	 is	 in	376	

agreement	with	Monte-Carlo	 simulations	 for	 early	 times	 until	! ≈ 1/!!" .	 At	 longer	 times,	 when	377	

beneficial	mutations	 become	 crucial	 for	 the	 generation	 of	 new	highly	 fit	 genomes,	we	 obtained	378	

another	 expression	based	 on	 the	 traveling	wave	 theory.	Our	 results	 confirm	 the	previous	work	379	

(Pedruzzi,	 et	 al.	 2018)	 where	 an	 exponential	 dependence	 for	 deleterious	 allele	 frequency	 was	380	

predicted	using	a	rather	general	argument	based	on	the	maximum	of	entropy.	This	work	confirms	381	

this	result	and,	moreover,	calculates	a	specific	logarithmic	slope	for	the	exponential.		382	

Based	 on	 the	 experiments	 cited	 in	 Introduction,	 many	 models	 assume	 an	 exponential	383	

distribution	of	fitness	effects	as	a	starting	assumption	(Gerrish	and	Lenski	1998;	Good,	et	al.	2012;	384	

Walczak,	et	al.	2012).	Our	 findings	provide	an	evolutionary	 justification	 for	 this	assumption	and	385	

update	 these	 theories	 by	 predicting	 that	 the	 distribution	 is	 not	 constant	 but	 shrinks	 in	 time.	386	

However,	when	mutation	selection	balance	 is	approached,	reverse	mutations	demolish	selection	387	

as	well	as	exponential	dependence	in	DFE.	388	

Other	 groups	 attempted	 to	 explain	 the	 universality	 of	 the	 exponential	 DFE	 using	 formal	389	

statistical	 arguments,	 such	 as	 the	 extreme-value	 theory	 (Gillespie	 1982;	 Orr	 2003;	 Joyce,	 et	 al.	390	

2008).	There	are	essential	differences	between	this	pioneering	work	and	our	findings.	In	the	cited	391	

work,	 the	 aim	 was	 to	 prove	 an	 exponential	 distribution	 for	 the	 raw	 distribution	 of	 selection	392	

coefficient	among	all	possible	genomic	sites,	g(s),	in	the	limit	of	large	s.		393	

In	contrast,	we	take	into	account	our	conclusion	that	the	exponential	dependence	of	DFE	on	394	

selection	coefficient	is	mostly	determined	by	the	evolved	occupation	numbers	of	sites	f	(s,	t)	in	the	395	

broad	range	of	s	and	that	g(s)	 is	a	relative	slow	function	of	s.	Also,	 the	cited	approach	(Gillespie	396	

1982;	Orr	2003;	Joyce,	et	al.	2008)	predicts	a	constant	slope	of	the	exponential,	while	our	analysis,	397	

simulation,	and	experimental	data	prove	that	it	changes	in	time.			398	
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	 Applying	our	theory	to	influenza	A	virus	sequence	data,	we	estimated	selection	coefficients	399	

for	each	diverse	site	of	hemagglutinin	 in	a	broad	time	range.	Note	that	predicted	si	depend	on	a	400	

time	 interval	 (Fig	 4b-d).	 The	 time	 dependence	 is	 expected,	 because	 the	 evolution	 of	 influenza	401	

occurs	 under	 time-dependent	 selection	 conditions	 created	 by	 accumulating	 memory	 cells	 in	402	

recovered	 individuals	 (Rouzine	 and	 Rozhnova	 2018).	 The	 sharp	 change	 in	 the	 shape	 of	403	

distribution	of	g(s)	 (Fig.	4a	 inset),	 as	well	 as	 the	drop	 in	 the	exponential	 slope	before	and	after	404	

pandemic	 (Fig	 4a),	 may	 be	 related	 to	 epistatic	 effects	 caused	 by	 rapid	 development	 of	 virus	405	

resistance	 to	 antiviral	 treatment	 used	 during	 pandemics	 of	 2005-2010	 (Pedruzzi	 and	 Rouzine	406	

2019).	Analogously,	it	has	been	argued	that	the	high	level	of	HIV	diversity	in	chronically	infected	407	

patients	is	caused	by	adaptation	to	the	individual	immune	response,	including	escape	mutations	in	408	

20-30	epitopes	and	numerous	epistatic	sites	per	each	escape	mutation	(Rouzine	and	Coffin	1999).	409	

To	conclude,	we	demonstrated	that	the	exponential	DFE	observed	in	viruses	and	bacteria	is	410	

a	natural	consequence	of	the	process	of	adaptation.	We	derived	analytical	expressions	for	the	log-411	

slope	of	exponential	distribution	in	a	broad	range	of	times	and	parameter	values.	We	showed	how	412	

these	 theoretical	 findings	 can	 be	 used	 to	measure	 the	 Darwinian	 fitness	 effect	 of	mutations,	 in	413	

relative	units,	from	a	single	protein	sequence	sample.	414	

	415	
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Sample	 balancing.	 After	 alignment	 and	 binarization	 of	 sequences	 by	 setting	
consensus	residues	to	0	and	non-consensus	to	1,	we	balanced	sequence	sampling	for	
the	reasons	described	in	(1).	Specifically,	we	selected	the	sequences	with	frequency	
of	1s	per	genome	 less	 than	a	preset	value	dv	(5%).	These	were	randomly	sampled	
25	times	and	down-weighted	by	a	coefficient	Dw,	set	to	25%.	Then,	we	followed	the	
procedure	 described	 in	 the	 main	 text	 and	 in	 the	 legend	 to	 Fig.	 5	 to	 predict	 the	
distribution	of	selection	coefficients.	
	
Model.	 We	 consider	 a	 haploid	 population	 of	N	binary	 sequences,	 where	 each	
genome	 site	 (nucleotide	 position)	 numbered	 by	i	=1,	 2,	 …,	L	carries	 one	 of	 two	
possible	genetic	variants	(alleles),	denoted	Ki	=0	or	Ki	=1.	The	genome	is	assumed	to	
be	 very	 long,	L	>>	 1.	 Time	 is	 discrete	 and	 measured	 in	 units	 of	 population	
generations.	The	evolution	of	the	population	is	simulated	using	a	standard	Wright-
Fisher	model,	which	includes	the	factors	of	random	mutation	with	genomic	rate	µL,	
natural	selection,	and	random	genetic	drift.	Recombination	is	assumed	to	be	absent.	
Once	per	generation,	each	individual	genome	is	replaced	by	a	random	number	of	its	
progeny	which	obeys	multinomial	distribution.	The	total	population	stays	constant	
with	the	use	of	the	broken-stick	algorithm.	To	include	natural	selection,	the	average	
progeny	 number	 (Darwinian	 fitness)	 of	 sequence	Ki	is	 set	 to		!! .	We	 consider	 the	
simplest	case	when	the	fitness	effects	of	mutations,		!! 	,	are	additive	over	sites:	
		 	 	 	 	
	 	 																								 					! = !!!

!!! !! 																																																																					(8)	
																				

The	 reference	 genome,	 {Ki=0},	 can	 be	 chosen	 in	 arbitrary	 way.	 For	 our	 aim,	 it	 is	
convenient	 to	 set	 it	 to	 be	 the	 same	 as	 the	 best	 fit	 sequence,	 so	 that	 all	 selection	
coefficients	si	are	negative.	Each	site	i	with	deleterious	allele,	Ki=1,	is	a	target	site	for	
a	possible	beneficial	mutation.	Vice	versa,	a	site	with	the	favorable	allele,	Ki=0,	can	
have	a	deleterious	mutation.	A	more	general	version	of	fitness	model	that	accounts	
for	 pairwise	 epistatic	 interactions	 is	 considered	 in	 (2)	 and,	 for	 macroscopic	
epistasis,	in		(3).	Here	we	focus	on	additive	contributions	of	single	sites	to	the	fitness	
landscape.	
	
In	our	simulations,	selection	coefficients	are	chosen	randomly	at	each	site	from	the	
half-normal	distribution		
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! ! = !
!!"!

exp − !!
!!!"!

	 	 	 	 	 (9)	

	
Here,	!!"	is	the	average	mutation	cost	in	fitness	for	the	initial	state.	
	
Early	evolution.	We	focus	on	one	genomic	site	of	L	sites,	whose	selection	coefficient	
is	assumed	to	be	known	and	equal	to	-s,	where	s	>	0.	The	other	selection	coefficients	
are	 assumed	 to	 vary	 following	 some	 random	 distribution	 with	 density	! ! .	 We	
make	no	assumption	regarding	the	shape	of	g(s),	but	assume	that	distribution	of	s	at	
different	 sites	 is	 independent.	We	 assume	 also	 that	 initial	 population	has	 random	
distribution	of	alleles	among	sites	with	average	frequency	of	less	fit	alleles	denoted	
by	!!".	 Biologically	 this	 condition	 corresponds	 to	 a	 population	 that	 has	 changed	
suddenly	its	conditions.		 First,	we	will	 also	 neglect	 the	 effect	 of	 new	mutations,	
which	 simplification	 is	 shown	 to	 be	 accurate	 at	 early	 times,	 when	 evolution	 is	
dominated	by	decay	of	standing	variation.	In	the	next	subsection,	we	will	include	the	
effect	 of	 new	 mutations.	 Denote	 by	 I0	 the	 proportion	 of	 all	 possible	 sequences	
having	0	 (wild-type)	at	given	site.	 	The	proportion	of	possible	sequences	having	1	
(mutation)	at	the	site	denote	by	I1.	Then,	the	corresponding	mutant	 frequency	can	
be	found	as	ratio	
	
																																																																									! = !!

!!!!!
	 	 	 	 																		(10)	

	
To	obtain	frequency	in	time	we	account	for	the	action	of	selection.	Selection	causes	

decay	 of	 the	 number	 of	 each	 sequence	 {Ki},	 by	 time	 dependent	 factor	!!! !!!!!!!
!!! .	

Frequencies	I0	and	I1	represent	the	average	over	all	values	of	s	and	Ki	for	all	sites	
	

!! = 1− !!" !!!  !!! !!!!!!!
!!! !(!!)!(!!)

!

!!!!

!!

!

!!!

!!!
	

!! = !!"  !!!" !!!!!! !!!!!!!
!!! !(!!)!(!!)

!

!!!!

!!

!

!!!

!!!
	

	
probabilities	of	having	less-fit	and	better-fit	alleles	is	! 1 = !!"	and ! 0 = 1− !!",	
respectively.	Then,	I0	and	I1	can	be	rewritten	by	taking	exponential	term	inside	of	
parentheses	and	separating	variables	at	different	sites	i.		The	result	takes	the	form		
	

! = !!!"!!"
!!!!"!!!!"!!"

	 	 	 	 	(11)	

	
Traveling	 wave	 regime.	 In	 the	 traveling	 wave	 regime,	 which	 starts	 around	 t	 >	
1/sav,	 beneficial	 mutations	 have	 to	 be	 included	 into	 consideration	 because	 they	
create	new	best-fit	genomes	of	the	traveling	wave	(4-7).	Let	t0	be	the	characteristic	
time	of	the	beginning	of	traveling	wave	regime	and	! ! 	be	the	fixation	probability	
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of	 beneficial	 mutations.	 In	 this	 regime,	 most	 of	 deleterious	 alleles	 are	 located	 at	
uniformly	deleterious	sites	(Fig.	2,	yellow	columns).	Hence,	their	loss	occurs	mostly	
due	 to	 fixation	of	new	beneficial	alleles	at	 these	sites.	Then,	 the	dynamic	equation	
for	the	frequency	of	deleterious	alleles	for	t	>	t0	,	t0	~	1/sav	,	can	be	written	as	follows	
	

																																																																	 !"(!,!)!" = −!"# ! ! !, !  			 	 																		(12)	

	
The	 initial	 condition	 for	Eq.	8	 can	be	obtained	 from	 the	estimate	of	 f	 in	 the	 initial	
time	 interval	 where	 selection	 of	 pre-existing	 genomes	 is	 the	 dominant	 process.	
From	Eq.	7	
	 										

	! !, !! ≈ !!"!!!!!	
	
The	solution	of	Eq.	8	with	these	initial	conditions	is	given	by	Eq.	3	in	the	Main	text.	
Thus,	the	problem	is	reduced	to	the	result	of	the	previous	work	(8)	for	the	fixation	
probability	of	mutations	π(s)		
	

  ! !  ~ !!
!!
!! !!!

!!
! !!
! + !

!!!
!!
!!!

!" !!!
(!!!)!
!! ,    !

!! !(0) ≈ !
!																							(13)	

	
Here,	!	is	the	rate	of	adaptation,	!! 	is	the	characteristic	value	of	fitness.		Parameters	
!	and	!! 	can	be	found	numerically	from	two	transcendental	equations	
	

																			                  2 = !!
!    !!!!

! 1+ !
!!
+ !

!!!!!
!
(!!!!!)

!
!!  																																				(14)	

	

																																		1 = !!!    !!!
! − 1+

!!!!
! + !!!

! !!
!
! !!! !

!!                                         (15)	
	
where	!!	is	the	probability	of	beneficial	mutation	per	genome	per	generation.	Thus,	
the	time	evolution	of	the	frequency	of	deleterious	alleles	can	be	found	numerically	
using	Eqs.	3,	9,	10,	11.	We	note	that	parameter	!!		in	Eq.	3	is	unknown,	since	Eq.	3	is	
the	 asymptotic	 expression	 at	 large	 times,	! ≫ 1/!!" 	To	 connect	 two	 regimes	 of	
evolution	we	find	optimum	value	of	!!,	such	that	simulated	and	analytical	curves	for	
the	 slopes	are	 at	 the	best	match.	The	value	of	σ	 is	 the	average	effect	of	beneficial	
mutation	 for	 the	 sites	 that	 can	 have	 such	 a	mutation	 and,	 hence,	 is	 equal	 to	 1/β,	
where	β	found	from	self-consistent	condition	given	by	Eqs.	2	and	3.	Note	that	Eq.	3	
predicts	 an	 exponential	 decay	 at	 small	 to	moderate	 s;	 at	 large	 s	~	 1,	 it	 predicts	 a	
faster	decay	with	s.	
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