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ABSTRACT  28 

Multivariate methods are known to increase the statistical power of association detection, but they 29 

have lacked essential follow-up analysis tools necessary for understanding the biology underlying 30 

these associations. We developed a novel computational workflow for multivariate GWAS follow-31 

up analyses, including fine-mapping and identification of the subset of traits driving associations 32 

(driver traits). Many follow-up tools require univariate regression coefficients which are lacking from 33 

multivariate results. Our method overcomes this problem by using Canonical Correlation Analysis to 34 

turn each multivariate association into its optimal univariate Linear Combination Phenotype (LCP). 35 

This enables an LCP-GWAS, which in turn generates the statistics required for follow-up analyses. 36 

We implemented our method on 12 highly correlated inflammatory biomarkers in a Finnish 37 

population-based study. Altogether, we identified 11 associations, four of which (F5, ABO, C1orf140 38 

and PDGFRB) were not detected by biomarker-specific analyses. Fine-mapping identified 19 signals 39 

within the 11 loci and driver trait analysis determined the traits contributing to the associations. A 40 

phenome-wide association study on the 19 putative causal variants from the signals in 176,899 41 

individuals from the FinnGen study revealed 53 disease associations (p < 1×10-4). Several reported 42 

pQTLs in the 11 loci provided orthogonal evidence for the biologically relevant functions of the 43 

putative causal variants. Our novel multivariate analysis workflow provides a powerful addition to 44 

standard univariate GWAS analyses by enabling multivariate GWAS follow-up and thus promoting 45 

the advancement of powerful multivariate methods in genomics.  46 

 47 

 48 

INTRODUCTION 49 

Genome-wide association studies (GWAS) of biomarkers have been highly successful in identifying 50 

novel biological pathways and their impact on health and disease. Biomarkers increase statistical 51 

power in GWAS, compared to disease diagnoses, due to their quantitative nature and lack of errors 52 
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due to subjectivity, such as misclassification. Thus, biomarker GWAS have identified thousands of 53 

biomarker-associated loci and elucidated the mechanisms underlying numerous disease associations1-54 

3. A recent study on 38 biomarkers in the UK Biobank (UKBB) identified over 1,800 independent 55 

genetic associations with causal roles in several diseases4. Proteomics and metabolomics integrated 56 

with genomics has also revealed causal molecular pathways connecting the genome to multiple 57 

diseases, e.g. autoimmune disorders and cardiovascular disease5-8. Although biomarkers are more 58 

closely related to pathophysiology, a single biomarker is usually an inaccurate estimator of complex 59 

disease due to phenotypic heterogeneity and individual variation. Therefore, combinations of 60 

biomarkers provide a more robust predictive molecular signature. Studies examining combinations 61 

of biomarkers are increasingly feasible given the availability of biobank resources around the globe 62 

with deep phenotyping, i.e. precise and comprehensive data on phenotypic variation including 63 

quantitative measures such as biomarkers9,10.  64 

 65 

Multivariate GWAS of correlated traits increases statistical power compared to univariate analysis, 66 

especially in the case of complex biological processes and correlated traits8,11,12. This leads to 67 

identifying multivariate associations that are otherwise missed by univariate analysis8,13. Efficient 68 

software programs are available for performing multivariate GWAS such as metaCCA14, yet 69 

multivariate analyses currently have shortcomings in interpreting the arising signals. Follow-up tools 70 

for fine-mapping causal variants within the associated loci are lacking and the subset of tested traits 71 

that drive the association signals have not been identified. These shortcomings are largely due to the 72 

lack of a multivariate counterpart to the univariate regression coefficients (beta estimates). Lack of 73 

these necessary follow-up tools has hindered the utilization of multivariate methods.  74 

 75 

In this study, we developed a novel computational workflow for multivariate GWAS discovery and 76 

follow-up analyses including fine-mapping and identification of driver traits (Figure 1). Our 77 
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workflow includes 1) a customized version of the metaCCA software that overcomes the problem of 78 

missing beta estimates by turning each multivariate association into its optimal univariate Linear 79 

Combination Phenotype (LCP), enabling an LCP-GWAS, 2) fine-mapping, i.e. identifying putative 80 

causal variants underlying each association using summary statistics from the LCP-GWAS and a 81 

multivariate extension to FINEMAP15, and 3) determining the traits driving each multivariate 82 

association using a newly developed tool, MetaPhat16 that efficiently decomposes the multivariate 83 

associations into a smaller set of underlying driver traits. Taken together, we present to our knowledge 84 

the first comprehensive framework to map multivariate associations into individual causal variants 85 

and a subset of driver traits. We demonstrate the potential of our workflow in a Finnish population-86 

based cohort with 12 inflammatory biomarkers implicated in the pathogenesis of autoimmune 87 

disorders and cancer17-19. This set of highly-correlated biomarkers is particularly advantageous for 88 

multivariate analysis as high correlation between traits increases the boost in statistical power 89 

achieved by multivariate methods. Using multivariate analysis, we identify additional hits compared 90 

to univariate analysis, totaling 11 independent associations. We follow them up in a phenome-wide 91 

association study (PheWAS) in the FinnGen study (n = 176,899) across 2,367 disease endpoints and 92 

in the UKBB (n = 408,910) 10. We discover multiple disease associations, as well as identify 93 

orthogonal evidence for the biological impact of the causal variants through several expression 94 

quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs) within the multivariate loci.  95 

 96 

 97 

MATERIALS AND METHODS 98 

Study cohort and data 99 

We studied 12 highly correlated inflammatory biomarkers in the population-based national FINRISK 100 

Study collected in 1997 (n = 6,890) 20 (Table 1, Supplementary Figure 1). The FINRISK Study is a 101 

large Finnish population survey of risk factors for chronic, non-communicable diseases, and it has 102 
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been collected by independent random population sampling every five years beginning in 1972 with 103 

multiple recruiting waves. The 12 inflammatory biomarkers included five interleukins (IL-4, IL-6, 104 

IL-10, IL-12p70, IL-17), three growth factors (FGF2, PDGF-BB, VEGF-A), one colony-stimulating 105 

factor (G-CSF), one interferon (IFN-γ), one chemokine (SDF-1ɑ), and one tumor necrosis factor 106 

(TNF-β) (Table 1, Supplementary Figure 1. Hierarchical clustering identified the cluster of 12 107 

inflammatory biomarkers out of 66 quantitative traits of cardiometabolic or immunologic relevance 108 

(Supplementary Figure 2 Supplementary Table 1 and Supplementary Methods). The 66 quantitative 109 

traits were measured as previously described11,20,21.  110 

 111 

Genotyping, imputation and quality control  112 

Samples were genotyped using multiple different genotyping chips, for which the quality control 113 

(QC), phasing and imputation were done in multiple chip-wise batches. Imputation of the genotypes 114 

was done utilizing a Finnish population-specific reference panel of 3,775 high-coverage whole-115 

genome sequences. Genotype imputation was followed by post-imputation sample QC 116 

(Supplementary Methods) and variant QC (imputation INFO > 0.8, minor allele frequency > 0.002 117 

and Hardy-Weinberg equilibrium p-value > 1×10-6). A total of 26,717 samples and 11,329,225 118 

variants passed this rigorous quality control.  119 

 120 

Univariate and multivariate GWAS 121 

Univariate genome-wide association analyses for the biomarkers were performed using a linear mixed 122 

model implemented in Hail22, adjusting for age, sex, genotyping chip, first ten principal components 123 

of genetic structure and the genetic relationship matrix (GRM) (Supplementary Methods). The GRM 124 

was estimated using 73K independent high-quality genotyped variants (Supplementary Methods). 125 

We performed multivariate GWAS on the biomarkers using metaCCA14, software that performs 126 
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multivariate analysis by implementing Canonical Correlation Analysis (CCA) for a set of univariate 127 

GWAS summary statistics.  128 

 129 

The objective of CCA is to find the linear combination of the p predictor variables (X1, X2, …, Xp) 130 

that is maximally correlated with a linear combination of the q response variables (Y1, Y2, …, Yq). If 131 

we denote the respective linear combinations by  132 

 133 

𝑋∗ = 𝒂&𝐱 = 𝑎)𝑥) + 𝑎,𝑥, + ⋯+	𝑎/𝑥/ 134 

and 135 

𝑌∗ = 𝐿𝐶𝑃 = 𝒃&𝒚 = 𝑏)𝑦) + 𝑏,𝑦, +⋯+	𝑏8𝑦8, 136 

 137 

then finding the linear combination of the predictor variables that are maximally correlated with the 138 

linear combination of the response variables corresponds to finding vectors 𝒂 and 𝒃 that maximize  139 

 140 

𝑟 = 	
(𝑋𝑎)′(𝑌𝑏)
‖𝑋𝑎‖‖𝑌𝑏‖ = 	

𝒂′ ∑ 𝒃?@

A𝒂′ ∑ 𝒂?? B𝒃′∑ 𝒃@@

 141 

   142 

where Σ??, Σ@@  and Σ?@  represent the variance-covariance matrices of the predictor variables, 143 

response variables and both of them together, respectively. The maximized correlation r is the 144 

canonical correlation between X and Y. Multivariate GWAS is a special case of CCA with multiple 145 

response variables Y, but only one explanatory variable X, the genotypes at the variant tested. 146 

 147 

Novel multivariate LCP-GWAS method 148 

To enable follow-up analyses of multivariate GWAS results, such as fine-mapping, we developed a 149 

novel method to produce linear combination phenotypes (LCP) at the single variant level by 150 
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extending the functionality of metaCCA. The updated metaCCA is available online at: 151 

https://github.com/acichonska/metaCCA.  152 

 153 

LCPs were constructed as the weighted sum of the trait residuals, where the weights (b = [b1, b2 …, 154 

bq]) were chosen to maximize the correlation between the resulting linear combination of traits and 155 

the genotypes at the variant. We determined association regions by adding 1Mb to each variant 156 

reaching genome-wide significance (GWS; p-value < 5×10-8) in the multivariate analysis and joining 157 

overlapping regions. We constructed LCPs for the lead variant, i.e. the variant with the smallest p-158 

value, in each of these regions, as a univariate representation of the multivariate association in that 159 

region. Next, we performed chromosome-wide LCP-GWAS for the constructed LCPs in a similar 160 

manner as for each of the biomarkers.  161 

 162 

Fine-mapping multivariate associations 163 

We used FINEMAP15,23 on the LCP-GWAS summary statistics to identify causal variants underlying 164 

the multivariate associations. FINEMAP analyses were restricted to a ±1Mb region around the GWS 165 

variants from the LCP-GWAS.  166 

 167 

We assessed variants in the top 95% credible sets, i.e. the sets of variants encompassing at least 95% 168 

of the probability of being causal (causal probability) within each causal signal conditional on other 169 

causal signals in the genomic region. Within these sets we excluded those sets that did not clearly 170 

represent one signal, determined by low minimum linkage disequilibrium (LD, r2 < 0.1). 171 

 172 

To validate the multivariate fine-mapping results, we also performed conventional stepwise 173 

conditional analysis for all fine-mapping regions using LCPs. We iteratively conditioned on the lead 174 

variant in the region until the smallest p-value in the region exceeded 5×10-8.  175 
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 176 

Identifying driver traits 177 

We determined the traits driving the multivariate associations for the putative causal variants 178 

suggested by fine-mapping using the MetaPhat software developed in-house16. MetaPhat determines 179 

the set of driver traits for each multivariate association by performing multivariate testing using 180 

metaCCA iteratively on subsets of the traits, excluding one trait at a time until a single trait remains. 181 

At each iteration, the trait to be excluded is the one whose exclusion leads to the highest p-value for 182 

the remaining subset of traits. The driver traits are determined as a set of traits that have been removed 183 

when the multivariate p-value becomes non-significant (p > 5×10-8). The interpretation is that the 184 

driver traits make the multivariate association significant. 185 

 186 

Phenome-wide association testing in FinnGen and UKBB 187 

We performed a PheWAS in the FinnGen study for variants suggested to be causal by multivariate 188 

fine-mapping and for multivariate GWS functional variants (Table 2 and Supplementary Table 2. 189 

FinnGen (https://www.finngen.fi/en) is a large biobank study that aims to genotype 500,000 Finns 190 

and combine this data with longitudinal registry data, including national hospital discharge, death, 191 

and medication reimbursement registries, using unique national personal identification numbers. 192 

FinnGen includes prospective epidemiological and disease-based cohorts as well as hospital biobank 193 

samples. A total of 176,899 samples from FinnGen Data Freeze 4 with 2,444 disease endpoints were 194 

analyzed using Scalable and Accurate Implementation of Generalized mixed model (SAIGE), which 195 

uses saddlepoint approximation (SPA) to calibrate unbalanced case-control ratios24. Additional 196 

details and information on the genotyping and imputation are provided in the Supplementary Material 197 

and contributors of FinnGen are listed in the Acknowledgements.  198 

 199 
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FinnGen disease associations with p-values < 1×10-4 were considered significant. We tested the p-200 

value threshold by sampling 1,000 allele frequency-matched sets of n variants, where n represents 201 

the number of variants of interest, from 8.2 million non-coding variants and determining a null 202 

distribution of the number of FinnGen associations passing the p-value threshold. We confirmed the 203 

validity of the p-value threshold by comparing the observed number of FinnGen associations passing 204 

the p-value threshold to the null distribution (Supplementary Figure 3). We excluded disease 205 

endpoints within the ICD-10 (International Statistical Classification of Diseases and Related Health 206 

Problems 10th Revision) chapters XXI and XXII from PheWAS analyses, resulting in 2,367 disease 207 

endpoints analyzed.  To assess the relevance of the putative causal variants and the functional variants 208 

for their disease associations in FinnGen, the disease associations were conditioned on the variant 209 

with the strongest FinnGen disease association within the locus (±0.5MB of the putative causal 210 

variant or functional variant). Finally, we assessed replication of the disease associations in the 211 

UKBB, where associations with p-values < 0.05 were considered replicated given that the direction 212 

of effects were coherent. Phecodes from the UKBB were mapped to ICD-10 diagnosis codes using 213 

the PheCode map 1.225. The NHGRI-EBI GWAS Catalog26 was used for assessing the novelty of the 214 

observed genetic associations.  215 

 216 

We also explored whether the fine-mapped putative causal variants or variants in LD with them (r2 > 217 

0.6) had previously been reported as eQTLs or pQTLs. For eQTLs, we looked at overlap with LD-218 

pruned associations derived from the Genotype-Tissue Expression (GTEx) Portal and pQTLs were 219 

included from studies by Suhre5, Sun6, Emilsson27 and Sasayama28; regional overlap and architecture 220 

were visualized in Target Gene Notebook29. 221 

 222 

 223 

RESULTS 224 
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Comparison of multivariate and univariate GWAS of 12 inflammatory biomarkers 225 

We first tested for genome-wide associations of 12 highly correlated inflammatory biomarkers (Table 226 

1, Supplementary Figure 1) measured in 6,890 FINRISK study participants using both multivariate 227 

and univariate methods. Pearson correlations between the biomarkers ranged from 0.64 to 0.93, with 228 

a mean of 0.80. Out of the 11,329,225 variants tested, 190 were significantly associated using both 229 

univariate and multivariate analyses, 999 (in 11 loci) only by the multivariate analysis and two only 230 

by the univariate analysis using a Bonferroni-corrected p-value threshold of 5×10-8/12 (Figure 2). 231 

The two variants that were significant only in the univariate analysis were both located in a locus 232 

(JMJD1C) that was found to be significant also by the multivariate analysis. A total of 1,189 variants 233 

reached the significance threshold in the multivariate analysis compared to only 192 in the univariate 234 

analysis, reflecting a considerable increase in statistical power achieved by the multivariate analysis 235 

while preserving the Type I error rate (Supplementary Figure 4). The corresponding genomic inflation 236 

factor λ was 1.036, with no evidence of concerning genomic inflation due to multivariate analysis 237 

using Canonical Correlation Analysis. 238 

 239 

Within the 1,189 genome-wide significant variants in the multivariate analysis, we identified 11 240 

independently associated loci (Figure 3 and Supplementary Figure 5), four of which (F5, C1orf140, 241 

PDGFRB and ABO) were not detected by univariate analyses corrected for multiple testing (Figure 242 

3). Eight of the 11 loci had previously been associated with at least one of the 12 biomarkers in the 243 

NHGRI-EBI GWAS catalog while three loci (F5, C1orf140 and PDGFRB) were novel.  244 

 245 

At several loci, multivariate analysis revealed more plausible candidates for causal variants than the 246 

univariate analyses. For example, in the C1QA locus, an association with only one of the 12 247 

biomarkers, TNF-β, was noted in the univariate results. The lead variant in the TNF-β univariate 248 

GWAS was rs78655189 (p = 2.2×10-24), an intronic variant in the EPHB2 gene. In contrast, the lead 249 
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variant for the same locus in the multivariate analysis was rs17887074 (p = 1.2×10-73), a Finnish-250 

enriched missense variant located in the C1QA gene. The C1QA gene has been previously associated 251 

with immunologic diseases, such as immunodeficiency and systemic lupus erythematosus30. Our 252 

multivariate analysis may point towards a plausible mechanism underlying these associations via 253 

TNF- β levels. Further, in the VLDLR locus, univariate fine-mapping of VEGF, the only associated 254 

biomarker, suggested that the lead variant rs2375981 from the multivariate analysis was more likely 255 

causal than the lead variant rs10967570 from the VEGF univariate analysis (posterior probabilities 256 

1.0 and 0.025, respectively).  257 

 258 

Fine-mapping multivariate GWAS results 259 

To identify the causal variants of the multivariate associations, we studied the likelihood of multiple 260 

variants contributing to the association signal in the 11 associated loci using FINEMAP23. Our novel 261 

multivariate LCP-GWAS method based on linear combinations calculated for each locus using 262 

multivariate metaCCA results enabled fine-mapping of the multivariate results. The number of 263 

credible sets varied from one to four for the multivariate associated loci (Supplementary Table 3), 264 

resulting in a total of 19 independent sets of variants considered putatively causal. All 183 variants 265 

within the 19 credible sets are available in Supplementary Table 3 and posterior probabilities for 266 

different numbers of causal signals for each locus are available in Supplementary Table 4.  267 

 268 

Among each of the 19 sets, the variant with the highest the causal probability (initial representative 269 

variant) was chosen to represent the set, unless the set contained a functional variant (missense, splice-270 

region or frameshift) in high LD (r2 > 0.95) with the initial representative variant, in which case the 271 

functional variant was chosen (Table 2 and Supplementary Figure 6). This was the case for one 272 

credible set in the F5 locus where the missense variant rs9332701 (causal probability 46.1%) replaced 273 

the initial representative non-coding variant rs61808983 (causal probability 53.3%) as they were in 274 
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high LD (r2 = 0.996). We also assessed whether the causal probabilities changed in the F5 credible 275 

set if the LCP was generated for the missense variant rs9332701 rather than the lead variant 276 

rs61808983. This had no notable effects on the causal probabilities (46.1% vs. 48.5%, 53.3% vs. 277 

51.5% for rs9332701 and rs61808983, respectively).  278 

 279 

The 19 representative variants, hereon referred to as the putative causal variants, included all except 280 

one (rs11637184 in PCSK6 locus) of the 11 lead variants from multivariate GWAS. In the PCSK6 281 

locus one of the four putative causal variants (rs111482836) was associated with disease in FinnGen, 282 

whereas the lead variant was not, highlighting the importance of fine-mapping multivariate GWAS 283 

results. 284 

 285 

Fine-mapping suggested at least as many causal signals as there were conditional rounds in stepwise 286 

conditional analysis (n = 16), thus verifying the results from FINEMAP. Further, 13 of the 19 (68,4%) 287 

putative causal variants were also conditioned on in the conditional analysis (Supplementary Table 288 

5). The main benefit of fine-mapping is the probabilistic quantification of causality for each variant 289 

in the region, which is crucial information when there are several plausible candidates for causal 290 

variants. Such metrics are not available from stepwise conditional analysis. 291 

 292 

Functional coding variants 293 

GWAS hits are generally non-coding, although concentrated in regulatory regions31, and enrichment 294 

of functional coding variants has been seen mainly only after fine-mapping e.g. in inflammatory 295 

bowel disease32. We, however, observed enrichment of functional coding variants in the multivariate 296 

GWAS hits already prior to fine-mapping. Two of the 19 putative causal variants were missense 297 

variants (rs17887074 and rs199588110, in the C1QA and GP6 loci respectively). These two variants 298 

(2/19, 10.5%) were enriched (>1.5-fold) in Finns compared to non-Finnish, Swedish, Estonian 299 
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Europeans (NFSEE) in the gnomAD genome reference database33. Considering all genome-wide 300 

significant variants in the multivariate GWAS, we found 13 functional variants (missense, splice-301 

region and frameshift variants) with at least one functional variant in five of the 11 multivariate loci 302 

(C1QA, F5, C1orf140, SERPINE2, and GP6; Supplementary Table 2). Out of the 13 functional 303 

variants, 11 were missense variants, one was a splice region variant and one a frameshift variant. A 304 

total of six (46.2%) of the 13 variants were enriched in the Finnish population, highlighting the 305 

potential of utilizing isolated populations in GWAS. 306 

 307 

We studied whether the multivariate genome-wide significant variants and variants identified by fine-308 

mapping were enriched for functional variants including missense, splice-region and frameshift 309 

variants compared to the 11.3M variants analyzed. P-values for enrichment were calculated using the 310 

𝜒,-test for the number of functional or missense variants within the variants assessed against the 311 

number of the corresponding subset of variants within all variants tested. The multivariate genome-312 

wide significant variants were enriched for missense variants and functional variants including 313 

missense, splice-region and frameshift variants (2.2-fold, p = 0.015, and 1.9-fold, p = 8.8×10-4, 314 

respectively). The 19 putative causal variants were further enriched for both missense variants and 315 

the broader set of functional variants (37-fold, p = 1.3×10-17, and 28-fold, p = 1.4×10-17, respectively) 316 

as were the 183 variants in the credible sets (3.9-fold, p = 0.050, and 2.9-fold, p = 0.050, respectively).  317 

 318 

Identifying driver traits 319 

Next, we studied which traits were driving the multivariate associations in each of the 11 loci using 320 

metaPhat16. The number of driver traits for each of the 11 loci varied between one and all 12. The 321 

driver traits were very much in line with the univariate results; the most significantly associated 322 

biomarkers in the univariate GWAS were typically included among the driver traits (Table 2). In loci 323 

with multiple putative causal variants, driver traits for the variants were generally subsets of the lead 324 
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variant’s driver traits, and a stronger multivariate association increased the number of driver traits. 325 

However, this relationship between multivariate p-value and the number of driver traits did not hold 326 

across loci. Further, driver traits typically included all or some of the biomarkers that had previously 327 

been associated with the locus (Table 2).  328 

 329 

Disease implications of the multivariate loci 330 

Finally, we tested how the 19 putative causal variants as well as the 13 genome-wide significant 331 

functional variants in the 11 loci associated with disease risk among 2,367 disease endpoints defined 332 

in FinnGen. Altogether, 53 disease associations were observed with seven putative causal variants. 333 

Two of these variants did not lead the multivariate associations at the 11 loci and thus would have 334 

gone unnoticed without fine-mapping. Five genome-wide significant functional variants not 335 

overlapping with the putative causal variants had an additional 35 disease associations.  336 

 337 

To assess the relevance of the putative causal variants and the functional variants for their disease 338 

associations in FinnGen, the disease associations were conditioned on the variant with the strongest 339 

FinnGen disease association within the locus. In 13 of the 53 FinnGen disease associations with the 340 

putative causal variants, the putative causal variant or a variant in near perfect LD (r2 > 0.95) led the 341 

association signal or remained significant after conditioning. Correspondingly, for the functional 342 

variants not overlapping with the putative causal variants 18 of the 35 disease associations were either 343 

led by the functional variant or a variant in near perfect LD or remained significant after conditioning. 344 

We also tested the disease associations in the UKBB, where associations with p-values < 0.05 were 345 

considered replicated given that the direction of effects were coherent (Supplementary Table 6).  346 

 347 

In addition to disease associations, we explored whether the putative causal variants or variants in 348 

LD with them (r2 > 0.6) had previously been reported as eQTLs or pQTLs. Several reported eQTLs 349 
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and pQTLs5 in the 11 loci provided orthogonal evidence for the biologically relevant functions of the 350 

putative causal variants (Supplementary Table 7).  351 

 352 

Here we further discuss results for the four multivariate loci with disease associations (p < 1×10-4) in 353 

FinnGen that remained significant after conditioning. The variants identified by multivariate testing 354 

for which the associations became insignificant after conditioning, were regarded unnecessary for the 355 

observed disease association. Full disease association results for the 11 loci are shown in 356 

Supplementary Table 8. 357 

 358 

GP6 gene locus 359 

Multivariate association and FinnGen disease associations  360 

The Finnish enriched rare missense variant rs199588110 (AF = 0.33%, 3.7-fold enrichment), 361 

predicted deleterious by SIFT34  and probably damaging by Polyphen35 , was suggested causal in the 362 

GP6 locus. In FinnGen it led the association with benign neoplasms of meninges (OR = 6.4, p = 363 

4.9×10-5). The association was not replicated in the UKBB, although this may be due to impaired 364 

power as the AF of the Finnish enriched variant in the UKBB (0.036%) was roughly a tenth of its AF 365 

in FinnGen, and an inadequate match of the discovery and replication phenotypes as UKBB 366 

phenotype definitions included all benign neoplasms of the brain and spinal cord and were not 367 

restricted to neoplasms of the meninges.  368 

 369 

Driver traits 370 

All 12 biomarkers were considered driver traits of the multivariate association. Cytokines, including 371 

many of the 12 biomarkers studied (e.g. IL-6, IL-4, PDGF-BB and VEGF-A), have been implicated 372 

in the autocrine regulation of meningioma cell proliferation and motility36-39 . Further, higher 373 

expression levels of both PDGF-BB and VEGF occur in atypical and malignant meningiomas than in 374 
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benign meningiomas39,40 and microvascular density regulated by VEGF has been linked with time to 375 

recurrence41 . Several phase II clinical trials have tested therapies targeting VEGF and PDGF-BB 376 

signaling pathways as treatments for recurrent or progressive meningiomas37 with promising results 377 

for two multifunctional tyrosine kinase inhibitors, sunitinib and PTK787/ZK 222584 that inhibit both 378 

VEGF and PDGF receptors37,42.  379 

 380 

SERPINE2 gene locus 381 

Multivariate association and FinnGen disease associations  382 

The SERPINE2 locus was the locus with the most significant association in the multivariate analysis 383 

(p < 1×10-324). Three variants (rs13412535, rs58116674 and rs7578029) were suggested causal 384 

(putative causal variants). One of them, the intronic lead variant rs13412535 from the multivariate 385 

analysis, increased the risk of hypertrophic scars (OR = 1.3, p = 7.5×10-5) and was in very high LD 386 

with the variant that led the disease association in FinnGen (rs68066031, r2 = 0.99). The association 387 

was not replicated in the UKBB and had not been previously reported at gene-level. Nonetheless, the 388 

variant in question had an association with another hypertrophic skin disorder, acquired keratoderma 389 

(OR = 1.5, P = 0.02) in the UKBB.  390 

 391 

Previous knowledge of gene function and driver traits 392 

The SERPINE2 gene encodes protease nexin-1, a protein in the serpin family of proteins that inhibits 393 

serine proteases, especially thrombin, and has therefore been implicated in coagulation and tissue 394 

remodeling43. The gene has been associated with chronic obstructive pulmonary disease and 395 

emphysema44. As previously reported, SERPINE2 has been shown to inhibit extracellular matrix 396 

degradation45 and overexpression of SERPINE2 has been shown to contribute to pathological cardiac 397 

fibrosis in mice46. Additionally, serine protease inhibitor genes including SERPINE2 have been noted 398 

to be heavily induced during wound healing47. According to GTEx the SERPINE2 gene is most highly 399 
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expressed in fibroblasts. Further, inflammation plays an important role in hypertrophic scar formation 400 

and cytokines including PDGF and VEGF are dysregulated in hypertrophic scars48. The lead variant 401 

had genome-wide significant associations with 11 of the 12 biomarkers and all 12 were regarded as 402 

driver traits of the association. 403 

 404 

eQTLs and pQTLs 405 

The lead variant (rs13412535) is a pQTL impacting one of the driver traits, PDGF-BB levels, and an 406 

intronic variant rs68066031 in high LD (r2 = 0.99) with the lead variant is a pQTL for SERPINE26,27 407 

. PDGF is considered essential in wound repair49 and growth factors including PDGF are considered 408 

key players in the pathogenesis of hypertrophic scars50. PDGF enhances pathologic fibrosis in several 409 

tissues such as skin, lung, liver and kidney by means of mitogenic and chemoattractant actions on the 410 

principal collagen-producing cell type, myofibroblasts, as well as stimulation of collagen 411 

production51.  412 

 413 

ABO gene locus 414 

Multivariate association and FinnGen disease associations  415 

An association with the ABO locus was only detected by multivariate analysis (minimum univariate 416 

p = 2.1×10-5 for the lead variant from multivariate analysis). One variant, the intronic lead variant 417 

rs550057 (aka rs879055593) from multivariate analysis (p = 8.5×10-14) was suggested causal and was 418 

associated with 45 endpoints in FinnGen, such as endometriosis, heart failure and statin usage. Most 419 

of these associations resulted from LD to other stronger regional associations, however, nine 420 

remained significant after conditioning on other lead variants within the ABO locus, including risk an 421 

increasing effect on anemias, for which rs550057 lead the genome-wide significant association signal 422 

(p = 4.7×10-8), visual field disturbances (p < 6.5×10-5) and diseases of the ear and mastoid process (p 423 

= 4.8×10-5). Replication of only two of the nine associations (other anemias and visual field defects) 424 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 6, 2019. ; https://doi.org/10.1101/867267doi: bioRxiv preprint 

https://doi.org/10.1101/867267


 18 

could be attempted in the UKBB due to poor phenotype matching and did not replicate; however, 425 

bearing relevance to the genome-wide significant finding in anemia, rs550057 led the association 426 

with red blood cell count in the UKBB (p = 1.3×10-212).52 427 

 428 

Driver traits 429 

IL-4 was the only driver trait of the multivariate association and has been implicated in the 430 

pathogenesis of many of the diseases associated with the locus. Aplastic anemia is considered to result 431 

primarily from immune-mediated bone marrow failure and an imbalance in Type I versus Type II T-432 

cells that secrete IL-4 among other cytokines has been reported53 . In endometriosis, IL-4 levels have 433 

been shown to be upregulated and induce the proliferation of endometriotic stromal cells54,55 .  434 

 435 

eQTLs and pQTLs 436 

The lead variant rs550057 is a pQTL impacting the levels of four proteins: ALPI, CHST15, 437 

FAM177A1 and JAG1 6 .Two of these proteins, carbohydrate sulfotransferase 15 (CHST15) and 438 

Jagged1 (JAG1), have been implicated in the pathogenesis of diseases associated with the locus. A 439 

small-interfering RNA targeting CHST15 improved myocardial function as well as reduced cardiac 440 

fibrosis, hypertrophy and secretion of proinflammatory cytokines in rats with chronic heart failure56. 441 

Upregulation of JAG1 has been reported in the endometrium of patients with endometriosis compared 442 

to controls57. Alagille Syndrome mainly caused by mutations in the JAG1 gene, is accompanied by 443 

congenital heart defects and varying degrees of hypercholesterolemia58 444 

 445 

F5 gene locus 446 

Multivariate association 447 

An association with the F5 locus was only detected by multivariate analysis (minimum univariate p 448 

= 1.1×10-3 for the lead variant from multivariate analysis) and the locus had not been previously 449 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 6, 2019. ; https://doi.org/10.1101/867267doi: bioRxiv preprint 

https://doi.org/10.1101/867267


 19 

associated with any of the biomarkers. The locus included two putative causal variants, rs3820060 450 

and rs9332701, out of which the former was the lead variant from multivariate analysis (p = 6.15×10-451 

20).  452 

 453 

FinnGen disease associations  454 

Three genome-wide significant missense variants in the F5 locus (rs4524, rs4525, rs6032), all in high 455 

LD with one another (r2 > 0.98), were associated with nine diseases in FinnGen with four of these 456 

associations remaining significant after conditioning. Three of the four associations were protective 457 

for venous thromboembolism (VTE)-related endpoints (p < 6.9×10-5) and one increased the risk of 458 

fluid and electrolyte balance disruption, more specifically hypo-osmolality and hyponatraemia (p = 459 

9.5×10-5, Supplementary Table 2).  We replicated a previously reported protective effect of the 460 

missense variant rs4524 on VTE59 that remained significant after conditioning on factor V Leiden 461 

(rs6025; p = 1.5×10-11), a missense variant with a well-known risk-increasing effect on VTE60, while 462 

the hypo-osmolality and hyponatraemia association was novel. The VTE-related associations were 463 

replicated in the UKBB. A fourth missense variant in the locus (rs6027) increased the risk of four 464 

VTE-related diseases (p < 2.4×10-5), all of which remained significant after conditioning on the 465 

variant with the strongest association in the locus. These associations were not replicated in the 466 

UKBB. 467 

 468 

Driver traits 469 

The multivariate association in this locus had two driver traits: IL-4 and IL-12 both of which are 470 

relevant for coagulation as IL-12 has been shown to activate coagulation61 and cross-talk between the 471 

inflammatory and coagulation systems is extensive62. 472 

 473 

eQTLs and pQTLs 474 
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The rs3820060 variant was an eQTL for the F5 and NME7 genes and was in the same LD-block (r2 475 

> 0.6) as many pQTLs affecting SEC13, NPTX2, SIG11, CAMK1, and TFPI levels. This block also 476 

included the three highly-correlated genome-wide significant missense variants mentioned above. 477 

Tissue factor pathway inhibitor (TFPI) is a major antithrombotic protein that inhibits thrombin and 478 

the external coagulation pathway. Low levels of TFPI increase the risk of venous thrombosis63 and 479 

TFPI has been shown to interact with the two driver traits IL-4 and IL-1264,65 . The other causal 480 

variant rs9332701 was a pQTL for F55  and was in high LD (r2 = 0.97) with an eQTL for NME7 and 481 

a  pQTL for EHBP16 . 482 

 483 

 484 

DISCUSSION 485 

We developed a novel method for multivariate GWAS follow-up analyses and demonstrated the 486 

considerable boost in power provided by multivariate GWAS using 12 highly correlated 487 

inflammatory markers. In total, four out of 11 genome-wide significant loci were detected only by 488 

multivariate analysis when adjusting univariate GWAS for multiple testing. At several loci, 489 

multivariate analysis also seemed to highlight more plausible candidates for causal variants than the 490 

univariate analyses. For example, in the C1QA locus, the lead variant in the univariate GWAS of the 491 

driver trait TNF-β was an intronic variant in the EPHB2 gene, whereas the lead variant for the locus 492 

in the multivariate analysis was a Finnish-enriched missense variant located in the C1QA gene which 493 

has been previously associated with immunologic diseases. Our multivariate analysis may point 494 

towards a plausible mechanism underlying these associations via TNF-β levels. 495 

 496 

Although both univariate and multivariate scans have previously been applied to these biomarkers1,66, 497 

these studies have suffered from the lack of essential follow-up analyses due to the absence of beta 498 

estimates in multivariate summary statistics. Our novel method enables two key follow-up analyses 499 
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for multivariate GWAS: fine-mapping and trait prioritization. Our method solves the problem of 500 

missing effect sizes and standard errors required for fine-mapping by an extension of metaCCA 501 

followed by LCP-GWAS. This process allows for the transformation of CCA-based multivariate 502 

GWAS results into univariate summary statistics and thus extends the use of FINEMAP and other 503 

summary statistics-based tools to multivariate GWAS. Fine-mapping complex multivariate 504 

associations allows for assessing causality of the variants within the associated loci. This has not been 505 

previously feasible. We also further describe the multivariate associations by determining the traits 506 

driving the associations using MetaPhat. This workflow allows the identification of both the variants 507 

and traits underlying the multivariate associations.  508 

 509 

Our study also elucidates the advantage of multivariate analysis combined with large biobank-based 510 

phenome-wide screening by discovering multiple novel disease associations. For example, in the GP6 511 

locus we observe a novel risk-increasing association between the Finnish enriched rare missense 512 

variant rs199588110 and benign neoplasms of meninges. Altogether, a majority of the observed 513 

disease associations were for variants in the F5 and ABO loci that were only detected by multivariate 514 

GWAS. All these associations, including a genome-wide significant association with anemia that 515 

replicated in the UKBB as an effect on red blood cell count, would have gone undetected had we used 516 

univariate GWAS. In addition to disease association discovery, our workflow promotes increasing 517 

insight into the pathophysiology underlying the associations by identifying the biomarkers driving 518 

the associations. Detailed exploration of biological evidence including eQTLs and pQTLs in the GP6, 519 

SERPINE2, ABO, and F5 loci orthogonally supports our evidence of causal variants and driver traits. 520 

For example, in the SERPINE2 locus one of the three putative causal variants rs13412535 increased 521 

the risk of hypertrophic skin disorders in FinnGen and was a pQTL for PDGF-BB 6 that is considered 522 

a key player in the pathogenesis of hypertrophic scars 50, increasing evidence of the biologically 523 

relevant functions of this variant. 524 
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 525 

These methodological development and novel findings notwithstanding, our study has some 526 

limitations. First, our newly developed workflow for multivariate fine-mapping requires individual 527 

level genotype and phenotype data, problematic for some analysis settings. Additionally, the LCPs 528 

are optimized for the lead variants, potentially resulting in overestimation of the causal probability of 529 

these variants. We did not, however, see evidence of this in the F5 locus where we constructed LCPs 530 

for two missense variants in addition to the lead variant with no significant changes in the causal 531 

probabilities of the variants. We also acknowledge that the credible sets we chose for follow-up may 532 

not encompass all causal signals within the multivariate associations. The credible sets excluded due 533 

to low LD may arise from multiple signals included in the same set, resulting in small LD within the 534 

set. Further, some disease associations require replication and follow-up analyses.  535 

 536 

On the other hand, our study has many strengths. First, a prospective cohort study was used to assess 537 

deep phenotype data rarely available at large scale. Second, we are the first to present phenome-wide 538 

results from FinnGen, a very large and well-phenotyped Finnish biobank study, and also make use of 539 

the UKBB, in disease association follow-up, ensuring enough power for disease association detection. 540 

Finland has a public healthcare system and national health registries, which enable the vast and 541 

accurate phenotyping in FinnGen. Besides FinnGen, an additional advantage to performing the study 542 

in Finns is that deleterious variants are enriched in the Finnish population due to population history21. 543 

Furthermore, our reference panel for genotype imputation is from the same population as our 544 

discovery and follow-up data sets, which, as demonstrated also by others67,68, allows us to study 545 

variants that are enriched (and often unique) in the study-specific population.  546 

 547 

In conclusion, we developed a novel workflow for multivariate GWAS discovery and follow-up 548 

analyses, including fine-mapping and identification of driver traits, and thus promote the 549 

advancement of powerful multivariate methods in genomic analyses. We demonstrate the benefit of 550 
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applying this workflow by identifying novel associations and further describing previously reported 551 

associations with both biomarkers and diseases using a set of inflammatory markers. We show that 552 

compared to univariate analyses, multivariate analysis of biomarker data combined with large 553 

biobank-based PheWAS reveals a considerably increased number of novel genetic associations with 554 

several diseases. 555 

 556 

 557 
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FIGURES 1188 

 1189 

Figure 1. Study workflow. The novel LCP-GWAS method that enables follow-up analyses 1190 

such as fine-mapping for multivariate GWAS is illustrated in the violet panel on the right. 1191 
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 1192 

Figure 2. Power comparison between multivariate and univariate methods. Red and blue 1193 

dots represent genetic variants reaching genome-wide significance only by the multivariate or 1194 

univariate method, respectively. Black dots reach the genome-wide significance threshold by 1195 

both methods and grey dots do not by either method. Respective numbers are reported in the 1196 

accompanying table. 1197 
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 1198 

Figure 3. Manhattan plot of the multivariate GWAS results on 12 inflammatory 1199 

biomarkers. Gene names colored in orange represent associations only detected by the 1200 

multivariate method while black are detected by both multivariate and univariate methods. 13 1201 

genome-wide significant functional variants are denoted with diamonds.  1202 
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TABLES 1203 

 1204 

 1205 

Table 1. Characterization of the 12 inflammatory biomarker measurements. n = sample 1206 

size, SD = standard deviation. The cytokine concentrations are pg/ml. 1207 

  1208 

Characteristic n
Sample size 6,890

male/female
3370/3520
(49% male)
Mean±SD

Age (year) 48±13.3
Basic fibroblast growth factor (FGF2) 26.7±49.5
Granulocyte colony stimulating factor (G-CSF) 141.2±173.9
Interferon gamma (IFN-γ) 89.3±160.8
Interleukin-4 (IL-4) 4.2±5.4
Interleukin-6 (IL-6) 11.8±29.7
Interleukin-10 (IL-10) 2.3±7.4
Interleukin-12 p70 (IL-12p70) 26.4±114.1
Interleukin-17 (IL-17) 65.2±72.0
Platelet derived growth factor BB (PDGF-BB) 1199.0±1152.8
Stromal cell derived factor 1 alpha, CXCL12 (SDF-1ɑ) 123.4±176.2
Tumor necrosis factor beta (TNF-β) 26.6±66.9
Vascular endothelial growth factor A (VEGF-A) 16.6±27.5
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 1209 

Table 2. Results of the 19 putative causal variants, i.e. the representative variants of the 1210 

19 credible sets.  1211 

* missense variant 1212 

▴variant was in high linkage disequilibrium (r2 = 0.997) with a missense variant (rs6030) 1213 

(Supplementary Table 2) 1214 

**missense variant that replaced the initial representative variant (rs61808983) in its credible 1215 

set  1216 

a Bolded variants are lead variants. 1217 

b AF = allele frequency, FIN enrichment = AF in Finns compared to AF in non-Finnish, 1218 

Swedish, Estonian Europeans (NFSEE) in the gnomAD genomes database; reported if it was 1219 

at least 1.5-fold.  1220 

OR p-value

rs17887074* C1QA
1.48%
(4.64)

1.21E-73
1.70E-23 
(TNF-β)

TNF-β IFN-γ, IL-17, TNF-β — — — — — — —

rs3820060� F5 29.60 % 6.15E-20
1.07E-3

(VEGF-A)
IL-4, IL-12p70 NOVEL

eQTL
eQTL

F5
NME7

9.2E-118
1.8E-10

— — — —

rs9332701** F5 4.03 % 3.71E-06
3.02E-2

(VEGF-A)
— NOVEL pQTL F5 1.0E-23 — — — —

rs151049317 C1orf140 0.98 % 1.79E-08
2.79E-2

(PDGF-BB)
PDGF-BB NOVEL — — — — — — —

rs13412535 SERPINE2 19.8 % < 1E-324
1.60E-37
(IL-10)

all 12 biomarkers
FGF2, IL-6, IL-10, IL-

12p70, PDGF-BB
pQTL PDGF-BB 4.6E-13 Hypertrophic scar 1.34 7.5E-5 YES

rs58116674 SERPINE2 71.5 % 3.37E-78
6.18E-13

(IL-6)

PDGF-BB, SDF-1α, 
IL-4, IL-17, IL-6, 

IL-10, FGF2, TNF-β

FGF2, IL-6, IL-10, 
IL-12p70, PDGF-BB

— — — — — — —

rs7578029 SERPINE2 8.46 % 1.02E-08
3.28E-4

(PDGF-BB)
PDGF-BB

FGF2, IL-6, IL-10, 
IL-12p70, PDGF-BB

— — — — — — —

rs2304058 PDGFRB 37.7 % 1.08E-15
2.46E-8

(SDF-1α)
SDF-1α NOVEL pQTL PDGFRB 2.3E-458 — — — —

rs6921438
C6orf223 / 

VEGFA
48.3 % 3.03E-296

3.38E-91
(VEGF-A)

VEGF-A, IL-12p70, 
IL-10

IL-10, IL-12p70, 
VEGF-A

pQTL VEGFA 7.8E-71 — — — —

rs4714726
C6orf223 / 

VEGFA
45.5 % 1.12E-11

6.95E-5
(VEGF-A)

VEGF-A
IL-10, IL-12p70, 

VEGF-A
— — — — — — —

rs2375981
VLDLR / 
KCNV2

48.0 % 2.03E-17
1.29E-8

(VEGF-A)
VEGF-A, IL-12p70

IFN-γ, IL-10, 
IL-12p70, VEGF-A

— — — — — — —

rs10122155
VLDLR / 
KCNV2

43.3 % 1.08E-04
5.43E-3

(VEGF-A)
—

IFN-γ, IL-10, 
IL-12p70, VEGF-A

— — — — — — —

Anemias
Other and unspecified anaemias

Other anaemias
Diseases of the blood and blood-

forming organs

1.12
1.10
1.11
1.06

4.7E-8
4.9E-5
2.6E-5
2.9E-5

NO

Visual field defects
Diseases of the eye and adnexa

1.24
1.04

4.4E-5
9.4E-6

YES

Diseases of the ear and mastoid 
process

1.04 4.8E-5 YES

rs7080386 JMJD1C 38.1 % 4.04E-08
1.86E-11

(VEGF-A)
VEGF-A

IFN-γ, IL-10, 
IL-12p70, VEGF-A

pQTL HB-EGF 1.60E-13 — — — —

rs111482836 PCSK6 29.0 % 3.42E-05
0.010

(PDGF-BB)
— PDGF-BB — — — — — — —

rs12905972 PCSK6 21.8 % 0.035
0.027

(VEGF-A)
— PDGF-BB — — — — — — —

rs6598475 PCSK6 65.7 % 1.27E-54
2.63E-8

(PDGF-BB)
PDGF-BB, SDF-1α, 

IL-4, IL-17
PDGF-BB — — — — — — —

rs11639051 PCSK6 24.3 % 2.71E-69
1.11E-13

(PDGF-BB)
PDGF-BB, SDF-1α, 

IL-4, IL-10
PDGF-BB — — — — — — —

rs199588110* GP6
0.33%
(3.69)

8.54E-14
1.25E-17
(IL-17)

all 12 biomarkers G-CSF — — — Benign neoplasm of meninges 6.4 4.9E-5 YES

pQTL
pQTL
pQTL
pQTL

ALPI
CHST15

FAM177A1
JAG1

2.8E-19
1.0E-30
9.3E-19
8.3E-14

Novel 
disease 

associationf

QTL Gene p-value

IL-4

FinnGen 
association 
statistics

Varianta Locus AFb

(FIN 
enrichment)

Multivariate 
p-value

Minimum 
univariate

p-value
(biomarker)

Driver traitsc Previous biomarker 
associationsd

FinnGen disease associationse

rs550057 ABO 31.0 % 8.49E-14 2.08E-5
(IL-4)

FGF2
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c Driver traits can only be determined for those variants with a genome-wide significant 1221 

association in the multivariate analysis.  1222 

d Previous associations with the 12 biomarkers were searched for in the NHGRI-EBI GWAS 1223 

Catalog within a region encompassing ±500 kB around the variant. An association was 1224 

regarded novel if no associations with any of the 12 biomarkers had been reported in this 1225 

region.  1226 

e Only associations that remain significant after conditioning are reported here. Closely related 1227 

disease diagnoses are represented in a shared cell and their replication is assessed jointly.  1228 

f Novelty of disease associations was assessed at gene-level. 1229 
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