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Abstract 27 

Sleep arousals are transient periods of wakefulness punctuated into sleep. Excessive sleep arousals are 28 
associated with many negative effects including daytime sleepiness and sleep disorders. High-quality 29 
annotation of polysomnographic recordings is crucial for the diagnosis of sleep arousal disorders. Currently, 30 
sleep arousals are mainly annotated by human experts through looking at millions of data points manually, 31 
which requires considerable time and effort. Here we present a deep learning approach, DeepSleep, which 32 
ranked first in the 2018 PhysioNet Challenge for automatically segmenting sleep arousal regions based on 33 
polysomnographic recordings. DeepSleep features accurate (area under receiver operating characteristic 34 
curve of 0.93), high-resolution (5-millisecond resolution), and fast (10 seconds per sleep record) delineation 35 
of sleep arousals. 36 

 37 

Main 38 

Sleep is important for our overall health and quality of life 1. Inadequate sleep is often associated with many 39 
negative outcomes, including obesity 2, irritability 2,3, cardiovascular dysfunction 4, hypotension 5, impaired 40 
memory 6 and depression 7. About one third of the general population in the United States are affected by 41 
insufficient sleep 8. The prevalence of inadequate sleep results in large economic costs 9 and continues to 42 
increase in various nations 10,11. Spontaneous sleep arousals, defined as brief intrusions of wakefulness into 43 
sleep 12, are a common characteristic of brain activity during sleep. Excessive arousals due to disturbances 44 
can be harmful, resulting in fragmented sleep, daytime sleepiness and sleep disorders 13,14. There are 45 
different types of arousing 15stimulus, including obstructive sleep apneas or hypopneas, respiratory effort-46 
related arousals (RERA), hyperventilations, bruxisms (teeth grinding), snoring, vocalizations, and leg 47 
movements. Together with sleep stages (wakefulness, stage1, stage2, stage3, and rapid eye movement), 48 
sleep arousals are labeled through visual inspections of polysomnographic recordings according to the 49 
American Academy of Sleep Medicine (AASM) scoring manual 16. Of note, an 8-hour sleep record sampled 50 
at 200Hz with 13 different physiological measurements contains a total of 75 million data points. It takes 51 
hours to manually annotate such a large-scale sleep record.  52 

Many research efforts have been made in developing computational methods for automatic arousal 53 
detection based on polysomnographic recordings 17–21. These methods mainly focus on 30-second epochs, 54 
and extract statistical features in the time and frequency domains through Fourier transform or in-house 55 
feature engineering. These features and/or raw signals are subsequently fed into machine learning models 56 
to predict sleep arousals. However, due to the large differences of datasets and evaluation metrics used in 57 
previous studies, it remains unknown how to build an accurate and robust model to quickly delineate all 58 
sleep arousal events within a sleep record at a high resolution. In particular, how to preprocess the raw data 59 
or extract features before training models? Which types of machine learning models are well suited? What 60 
is the optimal input length (e.g. 30-second epochs or full-length records)? Which types of physiological 61 
signals should be used?  62 

Here we investigate these questions and describe a novel deep learning approach, DeepSleep, for automatic 63 
detection of sleep arousals. This approach ranked first in the 2018 “You Snooze, You Win” 64 
PhysioNet/Computing in Cardiology Challenge 22, in which state-of-the-art computational methods were 65 
systematically evaluated for predicting non-apnea sleep arousals on a large held-out test dataset 23. The 66 
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workflow of DeepSleep is schematically illustrated in Fig. 1. We built a deep convolutional neural network 67 
(CNN) to capture long-range and short-range interdependencies between time points across an entire sleep 68 
record. Information at different resolutions and scales was integrated to improve the performance. 69 
Intriguingly, we found that similar EEG and EMG channels were interchangeable, which was used as a 70 
special augmentation in our approach. DeepSleep is able to delineate the sleep arousal profile of a sleep 71 
record at 5-millisecond resolution within 10 seconds. 72 

 73 

Results 74 

 75 

 76 

Fig. 1. Schematic Illustration of DeepSleep workflow.  77 

Location. The 13-channel polysomnogram monitored multiple body functions, including brain activity 78 
(EEG), eye movement (EOG), muscle activity (EMG), and heartbeat (ECG). Data. A 50-second sleep 79 
record with the gold standard label of arousal/sleep and 13 physiological features. Cross-validation. In the 80 
nested train-validate-test framework, 60%, 15%, and 25% of the data were used to train, validate, and 81 
evaluate the model. Model. The classic U-Net architecture was adapted to capture the information at 82 
different scales and allowed for detecting sleep arousals at millisecond resolution. Evaluation. DeepSleep 83 
achieved high area under receiver operating characteristic curve (AUROC) of 0.927 and area under 84 
precision-recall curve (AUPRC) of 0.550 on the testing dataset. 85 

Overview of the experimental design for predicting sleep arousals from polysomnogram 86 

In this work, we used the 994 polysomnographic records provided in the 2018 PhysioNet challenge, which 87 
were collected at the Massachusetts General Hospital. In each record, 13 physiological measurements were 88 
sampled at 200Hz (Location and Data in Fig. 1), including six electroencephalography (EEG) signals at 89 
F3-M2, F4-M1, C3-M2, C4-M1, O1-M2 and O2-M1; one electrooculography (EOG) signal at E1-M2; three 90 
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electromyography (EMG) signals of chin, abdominal and chest movements; one measure of respiratory 91 
airflow; one measure of oxygen saturation (SaO2); one electrocardiogram (ECG). Each time point in the 92 
polysomnographic record was labeled as “Arousal” or “Sleep” by sleep experts, excluding some non-93 
scoring regions such as apnea or hypopnea arousals. To exploit the information of the training records, we 94 
employed a nested train-validate-test framework, in which 60% of the data was used to train the neural 95 
network, 15% of the data was used to validate for parameter selection and 25% of the data was used to 96 
evaluate the performance of the model (Cross-validation in Fig. 1). To capture the long-range and short-97 
range information at different scales, we adapted a classic neural network (Model in Fig. 1), U-Net, which 98 
was originally designed for image segmentation 24. Multiple data augmentation strategies, including 99 
swapping similar polysomnographic channels, were used to expand the training data space and enable the 100 
generalizability of the model. Finally, the prediction performance was evaluated by the area under receiver 101 
operating characteristic curve (AUROC) and the area under precision-recall curve (AUPRC) on the held-102 
out test dataset of 989 records (Evaluation in Fig. 1) during the challenge. 103 

 104 

 105 

Fig. 2. Sleep arousals sparsely distributed in the heterogenous sleep records among individuals. 106 

(A) The 8 major annotation categories are shown in different colors for 20 randomly selected sleep records. 107 
The apneic and non-apneic arousal events overwrite sleep stages (N1, N2, N3, REM). (B) The relationship 108 
between the number of sleep arousals (y-axis) and the percentage of total sleep arousal time over total sleep 109 
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time (x-axis) in the 994 sleep records. In general, more arousal events lead to longer accumulated arousal 110 
time and the correlation is significantly strong. (C) The length of sleep (x-axis) has no significant correlation 111 
with the accumulated length of sleep arousals (y-axis). 112 

Highly heterogeneous sleep records among individuals 113 

By investigating the annotations of these sleep records, we found high levels of heterogeneity among 114 
individuals. In Fig. 2A, we randomly selected sleep records of 20 individuals and presented the annotations 115 
in different colors. There are 8 major annotation categories: “Arousal”, “Undefined”, “REM” (Rapid Eye 116 
Movement), “N1” (Non-REM stage 1), “N2” (Non-REM stage 2), “N3” (Non-REM stage 3), “Wake” and 117 
“Apnea”. The distribution of these categories differs dramatically among individuals (different colors in 118 
Fig. 2A). Clearly, different individuals display distinct patterns of sleep, including the length of total sleep 119 
time and multiple sleep stages. Notably, the sleep arousal regions are relatively short and sparsely 120 
distributed along the entire record for most individuals (yellow regions in Fig. 2A).  121 

We further investigated the occurrence of arousals and found that the median number of arousals during 122 
sleep was 29, indicating the prevalence of sleep arousals. A total of 43 individuals (4.33%) had solid sleep 123 
without any arousal, whereas 82 individuals (8.25%) had more than 100 arousals during their sleep (y-axis 124 
in Fig. 2B), lasting around 10% of the total sleep duration (x-axis in Fig. 2B). In addition, there was no 125 
significant correlation between the total sleep time and the total length of sleep arousals (Fig. 2C), which 126 
was expected since the quality of sleep is not determined by sleep length. In summary, the intrinsically high 127 
heterogeneity of sleep records across individuals rendered the segmentation of sleep arousals a very difficult 128 
problem. 129 

 130 

 131 
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Fig. 3. The deep convolutional neural network architecture in DeepSleep.  132 

(A) The classic U-Net structure was adapted in DeepSleep, which has two major components of the encoder 133 
(the red trapezoid on the left) and the decoder (the purple trapezoid on the right). (B) The building blocks 134 
of DeepSleep are the convolution-convolution-pooling block (red), the concatenation (green) and the 135 
convolution-convolution-upscaling block (purple). The orange arrow represents the convolution operation. 136 

Deep U-Net captures the long-range and short-range information at different scales and resolutions 137 

Current manual annotation of sleep arousals is defined by the AASM scoring manual 16, in which sleep 138 
experts focus on a short period (less than a minute) and make decisions about sleep arousal events. However, 139 
it remains unclear whether the determinants of sleep arousals reside only within a short range, or long-range 140 
information across minutes and even hours plays an indispensable role in detecting sleep arousals. Although 141 
sleep arousal is in nature a transient event, it may be associated with the overall sleep pattern through the 142 
night. Intriguingly, when we trained the convolutional neural networks on longer sleep records, we 143 
consistently achieved better performances (Fig. S1). Therefore, we used the entire sleep record as input to 144 
make predictions, instead of small segments of a sleep record.  145 

To learn the long-range association between data points across different time scales (second, minute, and 146 
hours), we develop an extremely deep convolutional neural network, which contains a total of 35 147 
convolutional layers (Fig. 3A). This network architecture has two major components, the encoder and the 148 
decoder. The encoder takes a full-length sleep record of 223 = 8,388,608 time points and gradually encrypts 149 
the information into a latent space (the red trapezoid in Fig. 3A). Sleep recordings were centered, regardless 150 
of their original lengths, within the 8-million input space by filling in with zeros on their extremes. To be 151 
specific, the convolution-convolution-pooling (hereafter referred to as “ccp”) block is used to gradually 152 
reduce the size from 223 = 8,388,608 to 28 = 256 (Fig. 3B top). Meanwhile, the number of channels gradually 153 
increases from 13 to 480 to encode more information, compensating the loss of resolution in the time 154 
domain. In each convolutional layer, the convolution operation is applied on the data along the time axis to 155 
aggregate the neighborhood information. Since the sizes of data in these convolutional layers are different, 156 
the encoded information is unique within each layer. For example, in the input layer, 10 successive time 157 
points sampled at 200Hz correspond to a short time interval of 10/200=0.05 seconds, whereas in the center 158 
layer (size = 28), 10 time points correspond to a much longer time interval of 0.05 * 223-8 = 1,638 seconds, 159 
nearly 30 minutes. Therefore, this deep encoder architecture allows us to capture and learn about the 160 
interactions across data points at multiple time scales. The relationship between length of segments and the 161 
corresponding time can be found in Table S1. 162 

Similar to the encoder, the second component of our network architecture is a decoder to decrypt the 163 
compressed information from the center latent space. In contrast to the “ccp” block, the convolution-164 
convolution-upscaling (hereafter referred to as “ccu”) block is used (Fig. 3B bottom), which gradually 165 
increases the size and decreases the number of channels of the data (the purple trapezoid in Fig. 3A). In 166 
addition, concatenation is used to integrate the information from both the encoder and the decoder at each 167 
time scale (green horizontal arrows in Fig. 3). Finally, the output is the segmentation of the entire sleep 168 
record, where high prediction values indicate sleep arousal events and low values indicate sleep. 169 

 170 
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 171 

Fig. 4. The performance comparison of DeepSleep using different model training strategies.  172 

(A) The training and validation cross entropy losses are shown in the dashed and solid lines, respectively. 173 
The models using sleep records at different resolutions are shown in different colors. (B) The prediction of 174 
each sleep record in the test set is shown as a blue dot in the AUROC-AUPRC space. A weak correlation 175 
is observed between AUROCs and AUPRCs with a significant p-value < 0.001. The 95% percent 176 
confidence interval is shown as the yellow bend. The baselines of random predictions are shown as red 177 
dashed lines. The prediction (C) AUPRCs and (D) AUROCs of models using different resolution or 178 
strategies were calculated. The “1/8_no_swap” model corresponds to the model using the “1/8” resolution 179 
records as input without any channel swapping, whereas the “1/8”, “1/2” and “full” models use the strategy 180 
of swapping similar polysomnographic channels. The final “1/8+1/2+full” model of DeepSleep is the 181 
ensemble of models at 3 different resolutions, achieving the highest AUPRC of 0.550 and AUROC of 0.927. 182 
 183 

Deep learning enables accurate predictions of sleep arousals 184 

By capturing the information at multiple resolutions, DeepSleep achieves high performance in automatic 185 
segmentation of sleep arousals. Since deep neural networks are iteration-based machine learning 186 
approaches, a validation subset is used for monitoring the underfitting or overfitting status of a model and 187 
approximating the generalization ability on unseen datasets. A subset of 15% randomly selected records 188 
was used as the validation set during the training process (Cross-validation in Fig. 1) and the cross entropy 189 
was used to measure the training and validation losses (see details in Materials and Methods). The 13 190 
polysomnographic channels complemented each other and using all of them instead of one type of these 191 
signals enabled the neural network to capture interactions between channels and achieved the highest 192 
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performance (Fig. S2A-B). We developed three basic models called “1/8”, “1/2” and “full”, according to 193 
the resolution of the neural network input. The “full” resolution means that the original 8-million (223 = 194 
8,388,608) length data were used as input. The “1/2” or “1/8” resolution means that the original input data 195 
were first shrunk to the length of 4-million (222) or 1-million (220) by averaging every 2 or 8 successive time 196 
points, respectively. We observed similar validation losses of the “full”, “1/2” and “1/8” models (solid lines 197 
in Fig. 4A). The final evaluation was based on the AUROC and AUPRC scores of predicting 25% of the 198 
data. In Fig. 4B, each blue dot represented one sleep record and we observed a significant yet weak 199 
correlation = 0.308 between the AUROCs and AUPRCs. The baselines of random predictions were shown 200 
as red dashed lines. Notably, the AUPRC baseline of 0.072 corresponded to the ratio of the average total 201 
sleep arousal length over the total sleep time, which was considerably low and made it a hard task due to 202 
the intrinsic sparsity of sleep arousal events.  203 

To build a robust and generalizable model, multiple data augmentation strategies were used in DeepSleep. 204 
After carefully examining the data, we found that signals belonging to the same physiological categories 205 
were very similar and synchronized, including two EMG channels and six EEG channels (see Data in Fig. 206 
1). We applied a novel augmentation strategy by randomly swapping these similar channels during the 207 
model training process, assuming that these signals were interchangeable in determining sleeping arousals. 208 
There are three EMG channels but EMG-chin were not considered in this swapping strategy due to its 209 
differences from the other two EMG (ABD and chest) channels (see Data in Fig. 1). This channel swapping 210 
strategy was bold but effective, adapting which largely improved the prediction performance 211 
(“1/8_no_swap” versus “1/8” in Fig. 4C-D). In addition, we multiplied the polysomnographic signals by a 212 
random number between 0.90 and 1.15 to simulate the inherent fluctuation and noise of the data. Other 213 
augmentations on the magnitude and time scale were also explored (Fig. S2C-D). Furthermore, to address 214 
the heterogeneity and batch effects among individuals, we quantile normalized each sleep record to a 215 
reference, which was generated by averaging all the records. This step effectively removed the biases 216 
introduced by the differences of individuals and instruments, and Gaussian normalization was also tested 217 
and had slightly lower performance (Fig. S2E-F). Finally, we assembled the predictions from the “1/8”, 218 
“1/2” and “full” resolution models as the final prediction in DeepSleep (red violin plots in Fig. 4C-D). 219 

We further compared different machine learning models and strategies in segmenting sleep arousals. We 220 
first tested a classical model, logistic regression, and found that our deep learning approach had a much 221 
higher performance (Fig. S2G-H). It has also been reported that neural network approaches significantly 222 
outperformed classical machine learning methods, including random forest, logistic regression 25, support 223 
vector machine, and linear models 26. In fact, 8 out of the top 10 teams used neural network models in the 224 
2018 PhysioNet Challenge (red blocks in Fig. S3A) 22. Two types of network structures (convolutional and 225 
recurrent) were mainly used, and integrating Long Short-Term Memory (LSTM) or Gated Recurrent Unit 226 
(GRU) into DeepSleep did not improve the performance (Fig. S3B-D). In terms of input length, increasing 227 
input length significantly improved the performance, and full-length records were used by three teams (blue 228 
blocks in Fig. S3A). We also compared DeepSleep with recent state-of-the-art methods in sleep stage 229 
scoring. These methods extracted features from 30-second epochs through short-time Fourier transform 230 
(STFT) 27,28 or Thomson’s multitaper 25,29. They were originally designed for automatic sleep staging and 231 
we applied them to the task of detecting sleep arousals on the same 2018 PhysioNet data. Although these 232 
methods performed well in sleep stage scoring, they were not well suited for arousal detection (Fig. S3E-233 
F). Deep learning approaches can model informative features in an implicit way without tedious feature 234 
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crafting 30, and neural networks using raw data as input were frequently used by half of the top 10 teams 235 
(orange blocks in Fig. S3A). 236 

To comprehensively investigate the effects of various network structures and parameters on predictions, we 237 
further performed experiments with different modifications, including shallow neural network (Fig. S4A-238 
B), average pooling (Fig. S4C-D), large convolution kernel size (Fig. S4E-F), and loss functions (Fig. 239 
S4G-H). These modifications had either similar or lower prediction performances. We concluded that the 240 
neural network architecture and augmentation strategies in DeepSleep were optimized for the current task 241 
of segmenting sleep arousals. Subsequent analysis of the relationships between the prediction performance 242 
and the number of arousal were investigated (Fig. S5A-B). As we expected, the prediction AUPRC was 243 
correlated with the number of arousals in a sleep record. The individuals who had more sleep arousals 244 
during sleep were relatively easier to predict. Moreover, we tested the runtime of DeepSleep with Graphics 245 
Processing Unit (GPU) acceleration and segmenting sleep arousals of a full sleep record can be finished 246 
within 10 seconds on average (Fig. S5C-D). The time cost of DeepSleep is much lower than that of manual 247 
annotations, which requires hours for one sleep record.  248 

In addition to the 2018 PhysioNet dataset, we further validated our method on the large publicly available 249 
Sleep Heart Health Study (SHHS) dataset, which contains 6,441 individuals in SHHS visit 1 (SHHS1) and 250 
3,295 individuals in SHHS visit 2 (SHHS2) 31. The SHHS is a multi-center cohort study, including 251 
participants from multiple different cohorts and the polysomnograms were annotated by sleep experts from 252 
different labs (https://sleepdata.org/datasets/shhs). The recording montages and signal sampling rates of 253 
SHHS1 and SHHS2 were quite different. For both SHHS1 and SHHS2, we randomly selected 1,000 254 
recordings, which was comparable to the number of recordings (n=994) in the PhysioNet training dataset. 255 
Then we applied DeepSleep pipeline to train, validate, and test models on SHHS1 and SHHS2 datasets 256 
individually. We observed similar performances of detecting sleep arousals on the PhysioNet, SHHS1, and 257 
SHHS2 datasets in Fig. S6A-B, demonstrating the robustness of our DeepSleep method. 258 
 259 
In the clinical setting, both apneic and non-apneic arousal are very important. We have therefore built neural 260 
network models for detecting apnea, in addition to the model for detecting non-apneic arousals, which was 261 
originally designed during the 2018 PhysioNet challenge. Specifically, we applied DeepSleep pipeline to 262 
the PhysioNet data and built three types of models for (1) detecting apneic arousals; (2) detecting non-263 
apneic arousals; and (3) detecting all arousals (apneic and non-apneic arousals). DeepSleep is able to detect 264 
both apneic and non-apneic arousals (Fig. S6C-D). 265 
 266 
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 267 

Fig. 5. Visualization of DeepSleep predictions and the gold standard annotations.  268 

(A) A 7.5-hour sleep record (id=tr05-1034) with the prediction AUROC of 0.960 and AUPRC of 0.761 is 269 
used as an example. From top to bottom along the y-axis, the four rows correspond to the 8 annotation 270 
categories, the binary label of arousal (yellow), sleep (blue) and the non-scoring regions (gray), the 271 
continuous prediction, and the cross-entropy loss at each time point along the x-axis. The wrongly predicted 272 
regions lead to high cross entropy losses, which are shown in dark red at the bottom row. (B) The zoomed 273 
in comparison of a 12.5-minute period of this sleep record. 274 

Visualization of DeepSleep predictions 275 

In addition to the abstract AUROC and AUPRC scores, we directly visualized the prediction performance 276 
of DeepSeep at 5-millisecond resolution (corresponding to the 200Hz sample rate). An example 7.5-hour 277 
sleep record with the prediction AUROC of 0.960 and AUPRC of 0.761 is shown in Fig. 5. More examples 278 
at 3 rank percentiles (25%, 50%, and 75%) based on the AUPRC values can be found in Fig. S7. From top 279 
to bottom, we plotted the multi-stage annotations, sleep arousal labels, predictions and cross-entropy losses 280 
long the time x-axis. By comparing the prediction and gold standard, we can see the general prediction 281 
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pattern of DeepSleep correlates well with the gold standard across the entire record (the second and third 282 
rows in Fig. 5A). We further zoom into a short interval of 12.5 minutes and DeepSleep successfully 283 
identifies and segments seven sleep arousal events out of eight (yellow in Fig. 5B), although one arousal 284 
around 25,600 is missed. Intriguingly, DeepSleep predictions display a different pattern from the gold 285 
standard annotated by sleep experts: DeepSleep assigns continuous prediction values with lower 286 
probabilities near the arousal-sleep boundaries, whereas the gold standard is strictly binary either arousal = 287 
1 or sleep = 0 based on the AASM scoring manual 16. This becomes clearer when examining the cross 288 
entropy loss at each time point and the boundary region has higher losses shown in red (the bottom row in 289 
Fig. 5B). This is expected because in general we will have a higher confidence of annotation in the central 290 
region of sleep arousal or other sleep events. Yet due to the limit of time and effort, it is practically infeasible 291 
to introduce rules for manually annotating each time point via a probability scenario. Additionally, binary 292 
annotation of sleep records containing millions of data points has already required significant effort. 293 
DeepSleep opens a new avenue to reconsider the way of defining sleep arousals or other sleep stage 294 
annotations by introducing the probability system. 295 

 296 
Discussion 297 

In this study, we created a deep learning approach, DeepSleep, to automatically segment sleep arousal 298 
regions in a sleep record based on the corresponding polysomnographic signals. A deep convolutional 299 
neural network architecture was designed to capture the long-range and short-range interactions between 300 
data points at different time scales and resolutions. Unlike classical machine learning models 32, deep 301 
learning approaches do not depend on manually crafted features and can automatically extract information 302 
from large datasets in an implicit way 33. Using classical approaches to define rules and craft features for 303 
modelling sleep problems in real life would become much too tedious. In contrast, without assumptions and 304 
restrictions, deep neural networks can approximate complex mathematical functions and models to address 305 
those problems. Currently, these powerful tools have also been successfully applied to biomedical image 306 
analysis and signal processing 34,35. Compared with classical machine learning models, deep learning is a 307 
“black box” method which is relatively hard to interpret and understand. Meanwhile, deep learning 308 
approaches usually requires more computational resources such as GPUs, whereas most classical machine 309 
learning models can run on common CPUs. 310 

Overfitting is a common issue in deep learning models, especially when the training dataset is small and 311 
the model is complex. Even if we use a large dataset and perform cross-validation, we will gradually and 312 
eventually overfit to the data. This is because each time we evaluate a model using the internal test set, we 313 
probe the dataset and fit our model to it. In contrast to previous studies, the 2018 PhysioNet Challenge 314 
offered us a unique opportunity to truly evaluate the performances and compare cutting-edge methods on a 315 
large external hidden test set of 989 samples 23. In addition, we demonstrate that deep convolutional neural 316 
networks trained on full-length records and multiple physiological channels have the best performance in 317 
detecting sleep arousals, which are quite different from current approaches extracting features from short 318 
30-second epochs 25,27,30. Beyond sleep arousals, we propose that the U-Net architecture used in DeepSleep 319 
can be adapted to other segmentation tasks such as sleep staging. A multi-tasking learning approach can be 320 
further implemented as the outputs of U-Net to directly segment multiple sleep stages simultaneously based 321 
on polysomnograms. 322 
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An interesting observation is that when we used records of different lengths as input to train deep learning 323 
models, the model using full-length records largely outperformed models using short periods of records. 324 
This observation brings about the question of how to accurately detect sleep arousals based on 325 
polysomnography. Current standards mainly focus on short time intervals of less than one minute 16, yet 326 
the segmentations among different sleep experts are not very consistent in determining sleep arousals. One 327 
reason is that it is hard for humans to directly read and process millions of data points at once. In contrast, 328 
computers are good at processing large-scale data and discover the intricate interactions and structures 329 
between data points across seconds, minutes and even hours. Our results indicate that sleep arousal events 330 
are not be solely determined by the local physiological signals but associated with much longer time 331 
intervals even spanning hours. It would be interesting to foresee the integration of computer-assisted 332 
annotations to improve definitions of sleep arousals or other sleep stages. 333 

In addition to the unique long-range information captured by DeepSleep, a clear advantage of computational 334 
approaches lies in the annotations for the boundary regions between arousal and sleep. Since current sleep 335 
annotations are binary only, it would be a more accurate and appropriate approach to introduce the 336 
probability of the annotation confidence, especially at the boundary regions. Machine learning approaches 337 
such as DeepSleep naturally provide the continuous predictions for each time point. It would be interesting 338 
to see improved annotation systems using continuous values instead of binary labels. A simple approach 339 
could be directly integrating the computer predictions with annotations by human sleep experts. The 340 
proposed annotation systems would provide more accurate information for the diagnosis of sleep disorders 341 
and the evaluation of sleep quality in the future. 342 

 343 

Materials and Methods 344 

Polysomnographic recordings 345 

The dataset used in this study contains a total of 994 polysomnographic sleep records from different 346 
individuals and their corresponding labels at each time point. Specifically, the arousal region is labeled by 347 
“1” and other sleep regions are labeled by “0”, except for the wakefulness regions, apnea arousal regions 348 
and hypopnea arousal regions labeled by “-1”. These “-1” regions will not be scored in the challenge, and 349 
we mainly focused on non-apnea arousals that interrupted the sleep of an individual, including 350 
spontaneous arousals, respiratory effort related arousals (RERA), bruxisms, hypoventilations, hypopneas, 351 
apneas (central, obstructive and mixed), vocalizations, snores, periodic leg movements, Cheyne-Stokes 352 
breathing or partial airway obstructions (https://physionet.org/challenge/2018/). The final test dataset 353 
consists of 989 unseen polysomnographic recordings from different individuals. For each time point 354 
sampled at 200Hz in each test sleep record, the participants needed to provide a prediction value between 355 
0 and 1. A 8-hour sleep record contained nearly 75 million data points (8*60*60*200*13=74,880,000). 356 
Our model made predictions for all the time points, at the resolution of 5 milliseconds (1/200Hz = 5 357 
milliseconds). 358 
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Partition of the training, validation and testing sleep records 359 

The 994 sleep records were randomly partitioned into three sets: 60% of them as the training set, 15% of 360 
them as the validation set and 25% of them as the testing set. The validation set was used for monitoring 361 
the training-validation losses and avoiding the problems of overfitting or underfitting. 362 

Gaussian normalization 363 

The Gaussian normalization is calculated by 364 
𝑥"' = (𝑥"-𝑥)/𝑠* 365 

 366 

𝑥 =
1
𝑁

𝑥"

-

"./

 367 

 368 

𝑠* =
1
𝑁-1

(𝑥"-𝑥)0
-

"./

 369 

where xi is the original value at time point i, x’
i is the normalized value at time point i, and N is the total 370 

number of time points. For the polysomnographic signals, we normalized each channel individually. 371 
 372 
Quantile normalization 373 

For each polysomnographic channel, we first ranked the original input vector 374 
x1 , x2 , … , xN 375 

into a sorted vector in the increasing order  376 
x1

i1 , x2
i2 , … , xN

iN 377 
where superscript number denotes the ranked increasing order, and the subscript number denotes the 378 
original position before ranking. Then we replace this sorted vector with a sorted reference vector 379 

ref1 , ref2 , … , refn  380 
which is also in the increasing order. For example, xk

ik will be replaced by refk . Then we changed the order 381 
back and mapped refk to its original position ik. After this quantile normalization, the overall distribution 382 
of the input vector has been mapped to the distribution of the reference vector. The reference vector was 383 
pre-calculated by averaging all the sorted recordings in the training dataset. We quantile normalized each 384 
recording to the same reference to address potential batch and cohort effects. Each polysomnographic 385 
channel was normalized individually. 386 
 387 
AUROC and AUPRC 388 

Since sleep arousal events are extremely rare (<10% in terms of length), the performances of different 389 
methods are not apparent in the Receiver Operating Characteristic (ROC) curve, where the y-axis is the 390 
True Positive Rate (TPR) and the x-axis is the False Positive Rate (FPR). The TPR and FPR are defined as 391 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 392 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 393 
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where TP is True Positive, FN is False Negative, FP is False Positive, and TN is True Negative. This is 394 
because when the number of negative events (“Sleep”; 92.8%), or TN, is much larger than the positive ones 395 
(“Arousal”; 7.2%), the FPR is always very small and will barely change even if a poor model makes many 396 
FP predictions. Therefore, in addition to the commonly used AUROC, we evaluated our model and various 397 
strategies using ARPRC 36,37. In the Precision-Recall space, the Precision and Recall are defined as 398 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 399 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 400 

The Precision is very sensitive to FP when the number of TP is relatively small. Therefore, the AUPRC 401 
metric is able to distinguish the performances in highly unbalanced data such as the annotations of sleep 402 
arousals. 403 

Convolutional neural network architectures 404 

The classic U-Net architecture was adapted in DeepSleep. The original U-Net is a 2D convolutional neural 405 
network designed for 2D image segmentation 24. We transformed the structure into 1D for the time-series 406 
sleep records and largely increased the number of convolutional layers from the original 18 to 35 for 407 
extracting the information at different scales. Similar to U-Net, we had convolution, max pooling and 408 
concatenation layers. The kernel size of 7 was used in the convolution operation and increasing the kernel 409 
size didn’t significantly change the performance. The nonlinear activation after each convolution operation 410 
is a Rectified Linear Unit (ReLU) defined as 411 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 412 

where x is the input to a neuron and f(x) is the output. Only positive values active a neuron and ReLU 413 
allows for fast and effective training of neural networks compared to other complex activation functions. 414 
In addition, batch normalization was used after each convolutional layer. In the final output layer, we used 415 
the sigmoid activation unit defined as 416 

𝑓(𝑥) =
1

1 + 𝑒B*
 417 

where x is the input to a neuron and f(x) is the output. During the training process, the Adam optimizer was 418 
used with the learning rate of 1e-4 and the decay rate of 1e-5.  419 

Other network structures were also tested, including Long Short-Term Memory (LSTM) and Gated 420 
Recurrent Unit (GRU). They have similar performances. Therefore, we kept the U-Net based structure. 421 

Training Losses 422 

The cross entropy loss, or log loss, was used for model training in DeepSleep. The cross entropy loss is 423 
defined as 424 
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𝐻(𝑦, 𝑦) = [−𝑦" ∙ 𝑙𝑜𝑔𝑦I − (1 − 𝑦") ∙ 𝑙𝑜𝑔	(1 − 𝑦I)]
-

"./

 425 

where 𝑦" is the gold standard label of sleep=0 or arousal=1 at time point i, 𝑦I is the prediction value at time 426 
point i, N is the total number of time points, 𝑦 is the vector of the gold standard labels and 𝑦 is the vector 427 
of predictions. Ideally, an “AUPRC loss” should be used for optimizing the prediction AUPRC. However, 428 
the “AUPRC loss” doesn’t exist because the AUPRC function is not mathematically differentiable, which 429 
is required in the neural network model training through the back-propagation algorithm 38. Therefore, we 430 
need to use cross-entropy loss to approximate the “AUPRC loss”. Another option is using the Sorensen-431 
dice coefficient defined as 432 

S y, 𝑦 = 𝑦" ∙ 𝑦I

-

"./

[ 𝑦"

-

"./

+ (𝑦I)]
-

"./

 433 

where 𝑦" is the gold standard label of sleep=0 or arousal=1 at time point i, 𝑦I is the prediction value at time 434 
point i, N is the total number of time points, 𝑦 is the vector of the gold standard labels and 𝑦 is the vector 435 
of predictions. We have tested the cross-entropy loss, the Sorensen dice loss and combining these two losses. 436 
Using the cross-entropy loss achieved the best performance in DeepSleep. 437 

Overall AUPRC and AUROC 438 

The overall AUPRC, or the gross AUPRC, is defined as 439 

AUPRC = 𝑃S(𝑅S − 𝑅ST/)
S

 440 

𝑃S =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑟𝑜𝑢𝑠𝑎𝑙	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠	𝑤𝑖𝑡ℎ	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	(𝑗/1000)	𝑜𝑟	𝑔𝑟𝑒𝑎𝑡𝑒𝑟
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠	𝑤𝑖𝑡ℎ	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	(𝑗/1000)	𝑜𝑟	𝑔𝑟𝑒𝑎𝑡𝑒𝑟

 441 

𝑅S =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑟𝑜𝑢𝑠𝑎𝑙	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠	𝑤𝑖𝑡ℎ	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	(𝑗/1000)	𝑜𝑟	𝑔𝑟𝑒𝑎𝑡𝑒𝑟

𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑟𝑜𝑢𝑠𝑎𝑙	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠
 442 

where the Precision (𝑃S) and Recall (𝑅S) were calculated at each cutoff j and j = 0, 0.001, 0.002, …, 0.998, 443 
0.999, 1. For a test dataset of multiple sleep records, this overall AUPRC is similar to the “weighted 444 
AUPRC”, which is different from simply averaging the AUPRC values of all test records. This is because 445 
the overall AUPRC considers the length of each record and longer records contributing more to the overall 446 
AUPRC, resulting in a more accurate performance description of a model. The overall AUPRC was also 447 
used as the primary scoring metric in the 2018 PhysioNet Challenge. The overall AUROC was defined in 448 
a similar way as the overall AUPRC. 449 

Validation on the SHHS datasets 450 

The large publicly available Sleep Heart Health Study (SHHS) dataset contains 6,441 individuals in SHHS 451 
visit 1 (SHHS1) and 3,295 individuals in SHHS visit 2 (SHHS2). The SHHS1 dataset was collected between 452 
1995 and 1998, whereas the SHHS2 dataset was collected between 2001 and 2003. Since the recording 453 
montages were different among the PhysioNet, SHHS1, and SHHS2 datasets, the channels of 454 
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polysomnograms were also different. For the SHHS1 and SHHS2 datasets, we only used a subset of 7 455 
channels (SaO2, EEG-C3/A2, EEG-C4/A1, EOG-L, ECG, EMG, and Airflow), which were shared among 456 
these three datasets. In addition, the major signal sampling rates in the PhysioNet, SHHS1, and SHHS2 457 
were 200Hz, 125Hz, and 250Hz respectively. We down-sample the signals to the same 25Hz by averaging 458 
successive time points. Quantile normalization was used to address the potential cohort and batch effect. 459 
For both SHHS1 and SHHS2, we randomly selected 1,000 recordings, which was comparable to the number 460 
of recordings (n=994) in the PhysioNet training dataset. Then we applied DeepSleep pipeline to train, 461 
validate and test models on SHHS1 and SHHS2 datasets individually. 462 
 463 
Data availability 464 

The datasets used in this study are publicly available at the 2018 PhysioNet Challenge website and the 465 
Sleep Heart Health Study website: 466 

https://physionet.org/physiobank/database/challenge/2018/ 467 

https://sleepdata.org/datasets/shhs 468 
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The system configuration to test DeepSleep runtimes 608 

 609 
CPU 610 
Architecture:       x86_64 611 
CPU op-mode(s):     32-bit, 64-bit 612 
Byte Order:         Little Endian 613 
CPU(s):             8 614 
On-line CPU(s) list:   0-7 615 
Thread(s) per core: 2 616 
Core(s) per socket: 4 617 
Socket(s):          1 618 
NUMA node(s):       1 619 
Vendor ID:          GenuineIntel 620 
CPU family:         6 621 
Model:              94 622 
Model name:         Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz 623 
Stepping:           3 624 
CPU MHz:            4000.000 625 
BogoMIPS:           8015.88 626 
Virtualization:     VT-x 627 
L1d cache:          32K 628 
L1i cache:          32K 629 
L2 cache:           256K 630 
L3 cache:           8192K 631 
NUMA node0 CPU(s):  0-7 632 
 633 
GPU 634 
NVIDIA GeForce GTX TITAN X 635 
 636 
Memory 637 
31GB in total 638 
 639 
System 640 
Linux version 4.4.16-1.el7.elrepo.x86_64 (mockbuild@Build64R7) (gcc version 4.8.5 20150623 (Red Hat 641 
4.8.5-4) (GCC) ) #1 SMP Wed Jul 27 15:27:40 EDT 2016 642 
 643 
 644 
 645 
 646 
 647 
 648 
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649 
Fig. S1. The prediction performances of models using various lengths of polysomnographic 650 
recordings as input. 651 

The (A) AUROCs and (B) AUPRCs of models using different lengths of polysomnographic recordings as 652 
input. From left to right, the length of input gradually increases from 4,096 (about 20 seconds) to 131,072 653 
(about 11 minutes). Each color represents a model using one of the 13 polysomnographic signals. These 654 
signals correspond to the 13 channels from top to bottom in Fig. 1 - “Data”: 1. F3-M2; 2. F4-M1; 3. C3-655 
M2; 4. C4-M1; 5. O1-M2; 6. O2-M1; 7. E1-M2; 8. Chin; 9. ABD; 10. Chest; 11. Airflow; 12. SaO2; 13. 656 
ECG. The dashed lines represent the baseline of random predictions in the AUROC space (baseline=0.500) 657 
and the AUPRC space (baseline=0.072). In contrast to (A) and (B) where a single channel was used as 658 
input,  all 13 channels were used together as input features in (C) and (D). Longer input lengths achieved 659 
higher AUPRCs and AUROCs. The value above each violin is the overall AUPRC/AUROC, which is 660 
different from the simple mean or median value. The overall AUPRC/AUROC considers the length of each 661 
record and longer records contribute more to the overall AUPRC/AUROC (see details in Methods - 662 
Overall AUPRC and AUROC). 663 
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664 
Fig. S2. The performance comparison of models using different types of polysomnographic signals, 665 
augmentation strategies, normalization methods. 666 

From left to right, the first six categories are EEG (channel 1-6), EOG (channel 7), EMG (channel 8-10), 667 
Airflow (channel 11), saturation of Oxygen (channel 12) and ECG (channel 13). The last one, “All”, 668 
represents the model using all these 13 channels as input. The prediction (A) AUPRCs and (B) AUROCs 669 
of models using different types of signals are shown in different colors. Of note, the model “All” using all 670 
13 polysomnographic signals achieved the best performance. We further compared the prediction (C) 671 
AUPRCs and (D) AUROCs of different data augmentation strategies are. The “Magnitude 1” strategy 672 
means that each training record was multiplied by a random number between 0.90 and 1.15, to simulate the 673 
fluctuation of the measurement in real life. The “Magnitude 2” strategy was the same as “Magnitude 1”, 674 
except for the range of the random number becomes wider, between 0.80 and 1.25. These two strategies 675 
had almost the same performance. The last “Magnitude+Length” strategy was built on top of “Magnitude 676 
1”, in which we further extended or shrunk the record along the time axis by a random number between 677 
0.90 and 1.15. This strategy decreased the performance and was not used in the final model training. In 678 
addition, the prediction (E) AUPRCs and (F) AUROCs of the Gaussian normalization and the quantile 679 
normalization were compared. In the Gaussian normalization, we first subtracted the average value of a 680 
signal then divided the signal by the standard deviation for each sleep record. In the quantile normalization, 681 
we first calculated the average of all training records as the reference record. Then for each record, we 682 
quantile normalized it to the reference record. The quantile normalization had better performance. We also 683 
compared the prediction (G) AUPRCs and (H) AUROCs of deep convolutional neural network (CNN) and 684 
logistic regression. Clearly, the deep CNN had much higher performance in terms of both AUPRC and 685 
AUROC. The value above each violin is the overall AUPRC/AUROC, which is different from the simple 686 
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mean or median value. The overall AUPRC/AUROC considers the length of each record and longer records 687 
contribute more to the overall AUPRC/AUROC (see details in Methods - Overall AUPRC and AUROC). 688 
 689 
 690 

 691 

Fig. S3. The comparison of top 10 teams in the 2018 PhysioNet Challenge, recurrent neural network, 692 
and sleep staging methods. 693 

(A) In the left panel, top methods, rank 2 1, rank 3 2, rank 4 3, rank 5 4, rank 6 5, rank 7 6, rank 8 7, rank 9 8, 694 
rank 10 9 are compared in terms of machine learning models (red blocks), input length for models (blue 695 
blocks), and the types of input (orange blocks). In particular, the input are either raw polysomnogram data, 696 
or features extracted by statistical analysis, short-time Fourier transform, or wavelet transform. The 697 
corresponding prediction performances of these methods are shown in the right panel. We also implemented 698 
the recurrent neural network (RNN) structure by adding a recurrent unit of LSTM or GRU layer (yellow 699 
arrow with red border) at the bottom of U-Net (B). The arrows in different colors represent different neural 700 
network layers, blocks or operations. The prediction (C) AUPRCs and (D) AUROCs of U-Net, U-Net with 701 
GRU and U-Net with LSTM are shown in different colors. Adding the recurrent layer did not improve the 702 
performance. We used U-Net without recurrent layers as in our final model. We further compared current 703 
methods for sleep staging. The prediction (E) AUPRCs and (F) AUROCs of (a) attention recurrent neural 704 
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network (ARNN) 10, (b) SeqSleepNet using features from short-time Fourier transform 11,12, (c) a method 705 
using features from Thomson’s multitaper 13,14, and (d) our DeepSleep approach are shown in different 706 
colors. The value above each violin is the overall AUPRC/AUROC, which is different from the simple 707 
mean or median value. The overall AUPRC/AUROC considers the length of each record and longer records 708 
contribute more to the overall AUPRC/AUROC (see details in Methods - Overall AUPRC and AUROC). 709 
 710 
 711 

 712 

Fig. S4. The performance comparison of U-Net with different modifications. 713 

The prediction (A) AUPRCs and (B) AUROCs of the “Shallow” and “Deep” U-Net were compared. The 714 
“Shallow” structure is only relatively shallow (4 less convolutional layers), compared with the “Deep” 715 
structure. Nevertheless, the “Shallow” U-Net already showed worse prediction performance than the “Deep” 716 
one. The prediction (C) AUPRCs and (D) AUROCs of U-Net with the kernel size of 7 and 11 in the 717 
convolutional layers were compared. Since the performances were very similar and the kernel size of 11 718 
required more computational time and sources, we used the kernel size of 7 in our model. The prediction 719 
(E) AUPRCs and (F) AUROCs of U-Net with max-pooling or average-pooling layers are also compared. 720 
Using max-pooling layers has slightly higher performance, which was implemented in our model. The 721 
prediction (G) AUPRCs and (H) AUROCs of models trained with the cross-entropy loss, the sorensen dice 722 
loss or combining both losses were further tested. The cross-entropy loss significantly outperformed the 723 
sorensen dice loss. Even if we combined both losses, the performance was still lower. Therefore, we used 724 
the cross-entropy loss function to train our model. The value above each model is the overall 725 
AUPRC/AUROC, which is different from the simple mean or median value. The overall AUPRC/AUROC 726 
considers the length of each record and longer records contribute more to the overall AUPRC/AUROC (see 727 
details in Methods - Overall AUPRC and AUROC). 728 
 729 
 730 
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 731 

Fig. S5. The relationship between prediction performance and the number of arousals, and the 732 
runtimes for predicting sleep arousals. 733 

The prediction (A) AUPRCs and (B) AUROCs are shown by the y-axis. Each dot represents one sleep 734 
record.  The AUPRC has a medium correlation with the number of sleep arousals. The (C) total time cost 735 
and (D) average time cost per sleep record are shown in bar plots. Notably, the average runtime per sleep 736 
record is less than 10 seconds and gradually decreases as the total number of records to be analyzed 737 
increases. This results from the overhead time of loading the large neural network models before the 738 
prediction step. 739 
 740 
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 741 
 742 

Fig. S6. The performance comparison of DeepSleep on different datasets and different types of 743 
arousals 744 

The prediction (A) AUPRCs and (B) AUROCs of DeepSleep on the 2018-PhysioNet,  Sleep Heart Health 745 
Study visit 1 (SHHS1), and SHHS2 datasets were compared. The performance on these three datasets was 746 
comparable. We further tested the prediction (C) AUPRCs and (D) AUROCs of DeepSleep on apneic, non-747 
apneic, and all (both apneic and non-apneic) arousals. The value above each violin is the overall 748 
AUPRC/AUROC, which is different from the simple mean or median value. The overall AUPRC/AUROC 749 
considers the length of each record and longer records contribute more to the overall AUPRC/AUROC (see 750 
details in Methods - Overall AUPRC and AUROC). 751 
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Fig. S7. Visualization of our prediction and the gold standard annotation for three sleep records with 754 
rank percentile 25%, 50%, and 75% based on the prediction AUPRC. 755 

From top to bottom along the y-axis, the four rows correspond to the 8 annotation categories, the binary 756 
label of arousal (yellow) and sleep (blue), excluding the non-scoring regions (gray), the continuous 757 
prediction and the cross entropy loss at each data point. The sleep records in (A), (B), and (C) were ranked 758 
25%, 50%, and 75% respectively among all records based on the prediction AUPRC. 759 
 760 

Table S1. The relationship between length of segments and the corresponding time. 761 
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