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Abstract 50 

Human genetics seeks a way to improve human health on a global scale. Expectations are 51 

running high for polygenic risk scores (PRSs) to be translated into clinical practice to predict 52 

an inborn susceptibility to health risks. While risk stratification based on PRS is one way to 53 

promote population health, a strategy to utilize genetics to prioritize modifiable risk factors 54 

and biomarkers driving heath outcome is also warranted. To this end, here we utilized PRSs 55 

to comprehensively investigate the association of the genetic susceptibility to complex traits 56 

with human lifespan in collaboration with three worldwide biobanks (ntotal = 675,898). First, 57 

we conducted genome-wide association studies for 45 quantitative clinical phenotypes, 58 

constructed the individual PRSs, and associated them with the age at death of 179,066 59 

participants in BioBank Japan. The PRSs revealed that the genetic susceptibility of high 60 

systolic blood pressure (sBP) was strongly associated with a shorter lifespan (hazard ratio 61 

[HR] = 1.03, P = 1.4×10-7). Next, we sought to replicate these associations in individuals of 62 

European ancestry in UK Biobank (n = 361,194) and FinnGen (n = 135,638). Among the 63 

investigated traits, the individuals with higher blood pressure-related PRSs were trans-64 

ethnically associated with a shorter lifespan (HR = 1.03, Pmeta = 3.9×10-13 for sBP) and 65 

parental lifespan (HR = 1.06, PUKBB = 2.0×10-86 for sBP). Further, our trans-biobank study 66 

identified additional complex traits associated with lifespan (e.g., obesity, height, serum lipids, 67 

and platelet counts). Of them, obesity-related traits showed strikingly heterogeneous effects 68 

on lifespan between Japanese and European populations (Pheterogeneity = 9.5×10-8 for body 69 

mass index). Through trans-ethnic biobank collaboration, we elucidated the novel value of 70 

the PRS study in genetics-driven prioritization of risk factors and biomarkers which can be 71 

medically intervened to improve population health. 72 

73 
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Main 74 

Introduction 75 

Human disease risks can be explained by the combinations and interactions of inherited 76 

genetic susceptibility, acquired environmental exposures, and lifestyle factors1. One of the 77 

goals of medical research is to identify individuals at health risks both at the time of birth and 78 

later in life, and to provide them medical attention when necessary. Polygenic risk scores 79 

(PRSs) have successfully shown their predictive ability to idenitify those with a several-fold 80 

higher inherited risk of a given disease or condition2. Both an increase in statistical power 81 

and ethnic diversity in genetic studies—accelerated by nation-wide biobanks—have been 82 

instrumental in accurately predicting disease onset by PRSs3–6. Stratification of health risks 83 

based on PRSs would be one of the strategies to improve population health through targeted 84 

prevention. Nevertheless, the genetic risk itself cannot be modified. For many complex 85 

human traits, environmental exposure and lifestyle are also of great importance, such as 86 

cigarette smoking7 and dietary habits8. The accurate identification of risk factors that affect 87 

not only disease onset but also long-term health outcomes would contribute to population 88 

health, because these factors can be modified by medical intervention.  89 

Observational studies have been attempting to identify monitorable risk factors and 90 

biomarkers that are correlated with the health outcomes (e.g., high low-density lipoprotein 91 

[LDL] cholesterol levels and the development of myocardial infarction). Nevertheless, the 92 

observational studies are inevitably laden with the pervasive issue of difficulty in inferring the 93 

cause-and-effect direction. A randomized controlled trial (RCT) is considered the gold 94 

standard to derive the effect of the exposure on the outcome free from unknown confounders9. 95 

In the above example, if a medical intervention to decrease the LDL cholesterol level leads 96 
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to the decreased incidence of myocardial infarction at the population level, we could estimate 97 

that the high LDL cholesterol levels cause the development of myocardial infarction. The 98 

limitations of RCTs are, however, that they require a considerable amount of human and 99 

economic resources and are not always ethically feasible.  100 

To address this, we here aimed to identify complex human traits affecting human lifespan, 101 

a health outcome of extreme importance and interest, by utilizing PRSs. The association of 102 

genetic susceptibility with lifespan would enable the prioritization of common risk factors and 103 

biomarkers, which could drive mortality in the current generation, among a variety of 104 

phenotypes that could be monitored in clinics. Furthermore, integration with deep-phenotype 105 

records and follow-up data in biobanks would enable us to pinpoint specific comorbidities and 106 

death causes that lead this association. Given the large genetic and environmental 107 

differences among populations, trans-ethnic comparison is also warranted. A collaboration 108 

with three trans-ethnic nation-wide biobanks collecting genotype, phenotype and survival 109 

data (ntotal = 675,898) has enabled us to uncover the modifiable risk factors and monitorable 110 

biomarkers affecting human lifespan across the populations, on an unprecedented scale and 111 

without any clinical intervention.  112 

  113 
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Results 114 

Study overview 115 

An overview of our study design is presented in Supplementary Figure 1. We collaborated 116 

with three nation-wide biobanks (BioBank Japan [BBJ], UK Biobank [UKBB], and FinnGen) 117 

to elucidate clinical biomarkers affecting the lifespan of the current generation, across the 118 

different populations. The BioBank Japan cohort consisted of 200,000 participants mainly of 119 

Japanese ancestry, with clinical phenotype, biochemical measurement, lifestyle, and 120 

genotype data. The detailed information of this cohort is described elsewhere10–12 and in 121 

Supplementary Table 1a. Of them, 138,278 participants were followed up for their health 122 

record after an initial visit, including disease onset, survival outcome, and the cause of death 123 

if they died. The mean follow-up period was 7.44 years, and the number of deaths during the 124 

follow-up was 31,403. The UK Biobank project is a population-based prospective cohort 125 

consisting of approximately 500,000 people in the United Kingdom with deep phenotype and 126 

genotype data (summary in Supplementary Table 1b; see URLs). The biobank participants 127 

are linked to a death registry, which provides the age and cause of death when they die. In 128 

this study, we analyzed 10,483 deaths during a mean follow-up period of 6.97 years. FinnGen 129 

is a public-private partnership project combining genotype data from Finnish biobanks and 130 

digital health record data from Finnish health registries (see URLs). We analyzed 11,058 131 

deaths in the national death registry among the 135,638 participants in this study. 132 

We first sought to identify clinical biomarkers that were associated with lifespan in BioBank 133 

Japan and UK Biobank as an illustration of a conventional observational study. We then 134 

performed an association test of the PRSs (i.e., genetic susceptibility) of these biomarkers 135 

with lifespan in BioBank Japan, in order to elucidate the drivers, not the correlation, affecting 136 
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human lifespan. We next performed replication studies of the association of the PRSs with 137 

lifespan in UK Biobank and FinnGen. We finally meta-analyzed these associations across 138 

the three cohorts.  139 

 140 

Association study of clinical biomarkers with human lifespan 141 

First, in order to identify candidate clinical biomarkers correlated with human lifespan, we 142 

conducted an observational association study of these phenotypes with the lifespan on 143 

BioBank Japan. After the Bonferroni correction for multiple testing, 38 out of 45 clinical 144 

phenotypes showed a significant association with age at death (Figure 1a; Summary results 145 

are in Supplementary Table 2). The top traits associated with a shorter lifespan were low 146 

albumin, high γ-glutamyl transpeptidase, and increased height. The effect of a one standard 147 

deviation (SD) increase in each trait on mortality resulted in a hazard ratio (HR) of 0.80 [0.79–148 

0.81], 1.16 [1.15–1.17], and 1.30 [1.27–1.32] (P = 3.3 × 10−287, 1.1 × 10−224, and 8.3 × 10−186), 149 

respectively. These results were consistent with the previous epidemiological studies in other 150 

cohorts13–16.  151 

To investigate how the association of clinical biomarkers with human lifespan is shared 152 

across different populations, we next performed the same observational study in UK Biobank 153 

using the 20 clinical phenotypes that were recorded in both UK Biobank and in BioBank 154 

Japan (Supplementary Figure 2). We again observed significant associations of the 155 

quantitative traits with lifespan in 17 out of 20 traits. Of note, 14 among the 15 traits with 156 

significant association in BioBank Japan showed directionally concordant associations with 157 

lifespan in UK Biobank. The only trait that showed directionally discordant association was 158 

body mass index (BMI). While a lower BMI was significantly associated with a shorter lifespan 159 
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in Biobank Japan, a higher BMI showed significant association with a shorter lifespan in UK 160 

Biobank. This discordant result could be attributed to differences in the participation criteria 161 

(i.e. hospital-based recruitment in BioBank Japan and healthy volunteers in UK Biobank) and 162 

differences in the health burden of obesity across populations, which warrants further 163 

replication studies in different cohorts. 164 

A weakness of the epidemiological associations was, however, that it was difficult to 165 

conclude whether the variations in clinical measurements had caused the variations in 166 

lifespan, or they were just correlations. For example, a decreased albumin level was 167 

associated with a shorter lifespan, but this did not mean that low albumin caused high 168 

mortality. Rather, the decline in general health and nutritional status, which led to high 169 

mortality, might have resulted in low albumin levels.   170 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 29, 2019. ; https://doi.org/10.1101/856351doi: bioRxiv preprint 

https://doi.org/10.1101/856351


 10 

 171 

Figure 1. The hazard ratios for the age at death, according to clinical phenotypes and 172 

according to the PRSs and their correlations in BioBank Japan. 173 
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Shown are the adjusted HRs from Cox proportional-hazard models for lifespan, according to 174 

clinical phenotypes (a) and according to the PRSs for the clinical phenotypes (b) in BioBank 175 

Japan. The boxes indicate the point estimates, and the horizontal bars indicate the 95% 176 

confidence interval. Boxes in blue (a) or red (b) indicate the nominal significance (P < 0.05), 177 

and the white-out boxes indicate the statistical significance after correcting for multiple testing 178 

by the Bonferroni method. (c) Co-plot of the coefficients from the Cox proportional-hazard 179 

models for lifespan according to the PRS (x-axis) and those according to clinical phenotypes 180 

(y-axis). 181 

 182 

  183 
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 184 

Figure 2. Overview of PRS-lifespan association study in collaboration with three 185 

nation-wide biobanks. 186 

In BioBank Japan, we first randomly split the entire cohort into 10 sub-groups and performed 187 

genome-wide association studies (GWASs) on 45 quantitative traits. We then performed a 188 

10-fold leave-one-group-out (LOGO) meta-analysis, derived the PRSs in one remaining sub-189 

group, and associated them with lifespan. We meta-analyzed the statistics of the lifespan 190 

association obtained from the ten sub-groups. In UK Biobank, when individual-level 191 

phenotype data is available, we adopted the LOGO approach. Otherwise, we derived the 192 

PRSs from public large-scale GWAS statistics, and associated the PRSs with lifespan in the 193 

cohort. As a secondary analysis, we also associated the PRS with parental lifespan in UK 194 
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Biobank. In FinnGen, we derived the PRSs from UK Biobank GWAS summary statistics or 195 

public large-scale GWAS statistics, and associated the PRS with lifespan in the cohort. 196 

Finally, we performed trans-ethnic meta-analysis.  197 
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Association study of PRSs of complex traits with human lifespan in BioBank Japan 198 

Next, in order to prioritize the clinical traits affecting human lifespan, we utilized genetic 199 

information. PRS is supposed to simulate the genetic predisposition towards the investigated 200 

trait1. Thus, the association of the PRS of the investigated trait with lifespan can be 201 

considered as less susceptible to the confounding factors such as a decline in general 202 

health17,18. PRSs should be constructed from the genetic studies of the same population5,19, 203 

and BioBank Japan has been the largest study of East Asian populations to date. 204 

Conventionally, when independent large-scale GWAS statistics with matched population and 205 

a sufficient sample size are not available for constructing PRSs, a strategy to split the study 206 

cohort into two groups (i.e., discovery group to conduct GWASs and a validation cohort to 207 

derive the PRSs) has been used. This strategy compromises accurate estimates in GWAS 208 

statistics using maximum samples or lowers the statistical power in PRS validations, 209 

depending on how the cohort is split. To address this, we adopted a 10-fold leave-one-group-210 

out (LOGO) meta-analysis approach in the derivation of PRSs in order to validate the PRSs 211 

in participants independent from GWAS while retaining as much sample size and statistical 212 

power as possible. Briefly, we first conducted GWASs on 45 clinical phenotypes by randomly 213 

splitting the whole cohort into ten sub-groups (Supplementary Table 3 shows the detailed 214 

phenotype information used in GWASs).  Then, we meta-analyzed nine GWASs 215 

(Supplementary Table 4 for the GWAS summaries), constructed PRSs from the meta-216 

analyzed statistics by using a clumping and thresholding method, and performed survival 217 

analyses to investigate the association of the derived PRS with individual lifespan (age at 218 

death) in the one withheld sub-group. We repeated this analysis ten times and further meta-219 

analyzed the statistics of survival analyses in the 10 sub- groups (Figure 2 and Methods for 220 
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the study design). Thus, we were able to maintain the sample size in GWASs at nine-tenths 221 

of the whole cohort and at the same time, validate the derived PRSs using all of the 222 

individuals in the cohort. 223 

Among the investigated clinical phenotypes, higher PRSs of blood pressure-related traits 224 

(systolic blood pressure [sBP], diastolic blood pressure [dBP], and mean arterial pressure 225 

[MAP]) were significantly associated with a shorter lifespan (Figure 1b; summary results 226 

shown in Supplementary Table 2). In the case of sBP, whose PRS showed the strongest 227 

association with the age at death (HR of per SD increase in PRS on mortality = 1.03 [1.02–228 

1.04], P = 1.4×10-7), individuals with the highest sBP PRS (in the top quintile) had indeed a 229 

1.46-fold higher risk of being hypertensive (sBP > 130 mmHg or dBP > 80 mmHg) or being 230 

treated with anti-hypertensive medications when compared with those with the lowest PRS 231 

(in the bottom quintile; P = 1.4×10-84). A comparison between the standardized survival 232 

curves according to the observed phenotype and those according to the PRS of the 233 

phenotype is highlighted in Figure 3. Those with the highest PRS (in the top quintile) and 234 

thus with the genetic predisposition to cause increased blood pressure were significantly 235 

associated with an increased risk of standardized mortality than those with the lowest PRS 236 

(the standardized 10-year mortality rate was 0.210 and 0.217, respectively, Figure 3b, top). 237 

On the other hand, the measured blood pressure value showed U-shaped associations with 238 

lifespan, with those with the lowest and the highest sBP both harboring an increased risk of 239 

mortality (Figure 3a top and Supplementary Figure 3). By utilizing the genetic data, we 240 

disentangled the dose-dependent association of the genetic risk of high blood pressure with 241 

a short lifespan, while the observed association of the lowest-range blood pressure with a 242 

short lifespan might have been confounded by the consequence (i.e. decline in general health 243 
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caused low blood pressure20). This contrasts with the case of albumin. Although the 244 

measured low albumin level showed the strongest association with a short lifespan (Figure 245 

3a, bottom), the PRS of the albumin did not show any association with the age at death (HR 246 

= 0.99 [0.98–1.00], P = 0.40, Figure 3b, bottom). Overall, there was no significant correlation 247 

of the effect size and directions between the association of clinical phenotypes on lifespan 248 

and the association of PRSs of clinical phenotypes on lifespan (r = -0.16, P = 0.29; Figure 249 

1c), which was not confounded by the variance explained by PRSs in each trait (shown in 250 

Supplementary Table 5). To summarize, the PRSs have provided novel and distinct insights 251 

into prioritizing critical factors affecting human lifespan from the observational studies. 252 

In addition to the overall survival outcome, we also tested the cause-specific mortality that 253 

drives the association with the sBP PRS, by leveraging the detailed follow-up data in BioBank 254 

Japan. Among the four most frequent causes of death in Japan11, a high sBP PRS was 255 

significantly associated with death from cardiovascular diseases (I01–I02, I05–I09, I20–I25, 256 

I27 and I30–I52 [HR = 1.04 (1.01–1.08), P = 0.0064]) and nominally associated with death 257 

from cerebrovascular diseases (I60–69 [HR = 1.05 (1.01–1.10), P = 0.024]), as categorized 258 

by the International Classification of Diseases 10. We next performed comorbidity-stratified 259 

analysis in the association of sBP PRS with lifespan. We found that individuals with a past 260 

medical history of type 2 diabetes, cerebral infarction, or dyslipidemia strongly drove the 261 

association of sBP PRS with lifespan in Japanese individuals (HR = 1.05 [1.03–1.07), 1.06 262 

[1.03–1.09), 1.05 [1.02–1.08), and P = 2.6×10-5, 1.9×10-4, 4.0×10-3, respectively). These 263 

results recapitulated the epidemiological knowledge that high blood pressure is one of the 264 

strongest risk factors of mortality among patients with cardiovascular21, cerebrovascular 22,23, 265 
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and metabolic diseases24. It has been previously reported that healthy-aging individuals had 266 

low genetic risk of coronary artery disease25, which is in line with our findings. 267 

  268 
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 269 

Figure 3. Standardized survival rate, according to systolic blood pressure (sBP) and 270 

albumin, and PRS status of both traits in BioBank Japan. 271 

In each box, the standardized and adjusted survival curves according to three bins (lowest, 272 

first quintile; intermediate, 2–4 quintiles; and highest, fifth quintile) of the investigated trait or 273 

the PRS of the investigated trait are illustrated by analyzing mortality data in BioBank Japan. 274 

The standardization was performed using the mean of all the covariates. (a) Survival curves 275 

according to measured sBP value (top) and according to sBP PRS (bottom). (b) Survival 276 

curves according to measured serum albumin level (top) and according to albumin PRS. 277 

  278 
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Trans-ethnic association study of PRSs of complex traits with human lifespan 279 

Next, we sought to replicate these associations in individuals of European ancestry using the 280 

individual-level data of UK Biobank (n = 361,194) and FinnGen (n = 135,638). We first 281 

constructed the PRSs by adopting the 10-fold LOGO meta-analysis approach when the 282 

individual-level phenotype was available (20 out of 33 traits in UK Biobank). Otherwise, we 283 

derived the PRSs by using independent publicly available large-scale GWAS summary 284 

statistics of European ancestry (13 out of 33 traits in UK Biobank and all the 33 traits in 285 

FinnGen) with a linkage disequilibrium (LD) reference of European individuals (Figure 2 and 286 

Methods for the study design and Supplementary Table 6 for public GWAS information). In 287 

this way, we could calculate the individual PRSs of 33 quantitative traits among the 45 288 

investigated traits in BioBank Japan (Supplementary Table 7 and 8 for phenotype and 289 

internal GWAS summary). We then associated the derived PRSs with lifespan in UK Biobank 290 

and FinnGen, and finally performed a trans-ethnic meta-analysis across the three cohorts 291 

(Summary results are shown in Supplementary Table 9). In UK Biobank and FinnGen, we 292 

successfully replicated the directional consistency of the association of a genetically 293 

increased risk of sBP with a shorter lifespan (HR = 1.02 [1.00–1.04], P = 0.083 in UK Biobank 294 

[Figure 4b] and HR = 1.03 [1.01–1.05], P = 0.0031 in FinnGen [Figure 4c]). A fixed-effect 295 

meta-analysis revealed a trans-ethnically robust association of higher PRSs of sBP with a 296 

shorter lifespan (HR = 1.03 [1.02–1.04], P = 3.9×10-13; Figure 4d). To further validate this 297 

finding, we also performed a secondary analysis using parental lifespan data in UK Biobank, 298 

which offered a much larger statistical power (see Methods for the detailed analysis method). 299 

The secondary analysis revealed that a genetically increased risk of sBP was also associated 300 

with a shorter parental lifespan (HR = 1.06 [1.06–1.07], P =2.0×10-86).  301 
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Interestingly, the high PRSs of BMI and body weight (BW) were most significantly 302 

associated with short lifespan in UK Biobank and FinnGen (BMI: HR = 1.07 [1.05-1.09] and 303 

1.06 [1.04-1.08], P = 1.7×10-11 and 1.5×10-8, respectively), while they showed much smaller 304 

effect sizes and less significant associations in BioBank Japan (BMI: HR = 1.01 [1.00-1.02], 305 

P = 0.094). We noted that a strong effect of obesity on lifespan was consistent between the 306 

two of the European cohorts, UK Biobank and FinnGen, which would suggest the robustness 307 

of the result against the methods used for the calculation of PRSs (i.e., LOGO in UK Biobank 308 

and usage of independent GWAS summary statistics in FinnGen). Among all the investigated 309 

traits, the random effect meta-analyses only revealed a significant heterogeneity in 310 

association for BMI and BW (Pheterogeneity = 9.5×10-8 [BMI] and 1.5×10-8 [BW]). We did not 311 

observe apparent differences in the heritability and variance explained by the PRSs of BMI 312 

or BW between in BioBank Japan and UK Biobank (Supplementary Table 4, 5, 8 and 10). 313 

Thus, we considered that the reasons for this trans-ethnic heterogeneity was not attributed 314 

to the differences in GWASs utilized for the derivations of PRSs. The observed trait mean 315 

and SD were larger in the European cohorts before normalization (the mean for BMI was 316 

23.3, 27.4, and 27.2, and the SD was 3.7, 4.8, and 4.1 in BioBank Japan, UK Biobank and 317 

FinnGen, respectively), and this was also the case in World Health Organization (WHO) data 318 

from 2016 (BMI: 22.8 [22.5–23.2] in Japan, 27.5 [27.2–27.8] in UK, and 26.6 [26.1–27.1] in 319 

Finland; see URLs). Obesity-related cardiovascular deaths are significantly prevalent among 320 

Europeans, and the epidemiological data revealed that the mortality rate of individuals in the 321 

in high BMI range was higher in Europeans than in East Asians26. The heterogeneity in the 322 

association of BMI or BW PRSs on lifespan between Japanese and Europeans might reflect 323 

the differences in the strength of the effect of obesity on mortality, on which further trans-324 
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ethnic studies should be warranted.  325 

To determine what is driving the association of BMI PRS on lifespan (i.e. mortality) in 326 

Europeans, we additionally investigated the cause-specific mortality and comorbidity 327 

information recorded in UK Biobank. When we tested the association of BMI PRS with the 328 

cause-specific mortality in UK Biobank, the BMI PRS was most strongly associated with 329 

cerebrovascular death (HR = 1.12 [1.08–1.17], P = 3.1×10-8). When we stratified individuals 330 

based on the comorbid conditions (i.e., common disease affection status), we found that the 331 

association of BMI PRS with lifespan was strongest among those with unstable angina (HR 332 

= 1.17 [1.05–1.30], P = 3.1×10-3). These analyses successfully pinpointed the target 333 

individuals who would be expected to benefit most from the modification of obesity. 334 

There were several additional traits where the PRSs showed significant associations with 335 

lifespan in trans-ethnic meta-analysis after the Bonferroni correction for multiple testing (Pmeta 336 

< 1.5x10-3; i.e., lipid-related traits, height, and platelet count). The genetic burden of increased 337 

lipid-related traits (i.e. total cholesterol and LDL cholesterol) was associated with a shorter 338 

lifespan, which was concordant with the observational studies reporting the causal roles of 339 

cholesterol in worse health outcomes27. Height has been indicated as a risk factor for various 340 

cancers and linked with cancer-related mortality in both Europeans and Asians15,16. A lower 341 

platelet count was also reported as associated with an increased mortality in Europeans28.  342 

To test whether there existed differences in the effect sizes of PRS on lifespan between 343 

males and females, we performed a sex-stratified association study of PRSs with lifespan 344 

across the investigated traits and across the three cohorts. While we did not find any 345 

significant differences between sexes within each of the three cohorts (Supplementary 346 

Figure 4a–c), the sex-stratified trans-ethnic meta-analysis revealed that the effect of high 347 
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dBP PRS on a short lifespan, which was the largest among 33 traits in primary meta-analysis, 348 

was significantly larger in males than in females (HRmale = 1.05 [1.04-1.06], HRfemale= 1.02 349 

[1.00-1.03], Pheterogeneity = 0.0013; Supplementary Figure 4d). This observation was in line 350 

with previous epidemiological studies showing that the excess mortality caused by 351 

hypertension was higher for men than for women in the Japanese population29, and that 352 

women with hypertension not complicated by left ventricular hypertrophy had lower risk of 353 

clinical major cardiovascular events than men in Europeans30. 354 

Finally, in order to validate our findings, we conducted a trans-ethnic Mendelian 355 

randomization (MR) study of the 33 traits on which we had performed the trans-ethnic PRS-356 

lifespan association study (see Methods). Two-sample MR with the inverse-variance 357 

weighted method revealed the following; (i) the significant causal effect of sBP and mean 358 

arterial blood pressure (MAP) on lifespan in BioBank Japan; (ii) the significant causal effect 359 

of BMI and BW on lifespan in UK Biobank and FinnGen; and (iii) that trans-ethnic meta-360 

analysis further strengthened their significance (i.e. BMI, BW, sBP, and MAP; βcausal = 0.17, 361 

0.17, 0.15, 0.15; and Pmeta = 1.6×10-11, 9.6×10-11, 1.6×10-4, 8.2×10-4 respectively; summary 362 

results shown in Supplementary Figure 5). While both methods (PRS and MR study) have 363 

their own limitations, such as pleiotropy and assumptions on instrumental variables31,32, we 364 

consider that the consistent result from these two methods would complement each other 365 

and further support the robustness of our findings in identifying the driver biomarkers of 366 

human lifespan. 367 

To summarize, these results collectively suggest the utility of PRSs in genetics-driven 368 

identification of both known and novel drivers for longevity, and could potentially pinpoint a 369 

group of individuals who could most likely benefit from the intervention.  370 
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 371 

Figure 4. Trans-ethnic association study of PRS with lifespan. 372 

Shown are the adjusted HRs from Cox proportional-hazard models for lifespan, according to 373 

the PRS of the clinical phenotypes in (a) BioBank Japan, (b) UK Biobank and (c) FinnGen. 374 

The threshold of significance for the derivation of PRS was set P = 1.0×10-6. We further 375 

performed a trans-ethnic fixed-effect meta-analysis of the association results from the three 376 

cohorts (d) by the inverse-variance method. The boxes indicate the point estimates, and the 377 

horizontal bars indicate the 95% confidence interval. Boxes in colors indicate the nominal 378 

significance (P < 0.05) and the white-out boxes indicate the statistical significance after the 379 

Bonferroni correction for multiple testing (P < 1.5x10-3).  380 
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No evidence of an interaction effect of PRSs of complex traits and lifestyle factors on 381 

lifespan 382 

Motivated by the identification of biomarkers genetically affecting lifespan, we finally 383 

investigated whether there existed any interaction between the PRS of these biomarkers and 384 

various lifestyles. As blood pressure PRSs were most strongly associated with lifespan in the 385 

Japanese population, we tested the interaction effect between sBP PRS and lifestyle on 386 

lifespan in BioBank Japan (Supplementary Table 11). While various lifestyle factors had a 387 

strong impact on lifespan (Supplementary Table 12), none of them showed significantly 388 

heterogeneous effects on survival according to the sBP PRS status. For example, the 389 

beneficial effect of smoking cessation on survival was not significantly different among those 390 

with the highest risk of increased blood pressure (Δ10-year mortality = -0.050) or those with 391 

the lowest risk of increased blood pressure (Δ10-year mortality = -0.049, interaction P = 0.63) 392 

inBioBank Japan. In Europeans, as we found the strongest association between the obesity 393 

PRS and lifespan, we investigated the interaction between BMI PRS and lifestyle in UK 394 

Biobank. Again, no significant interaction effect on lifespan was observed (Pinteraction > 0.05). 395 

Taken together, even people with the high genetic burden of increased blood pressure or 396 

obesity could benefit from the modifiable lifestyles such as abstinence from smoking and 397 

regular exercise, which could lead to a better survival. 398 

  399 
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Discussion 400 

Harnessing a global effort to expand genetic studies in both sample size and the scope of 401 

phenotypes, with the additional notion of the importance of population diversity5, PRS is 402 

expected to identify individuals with inborn health risks in clinics. While early detection and 403 

appropriate health communication should contribute to the improvement of health care33, the 404 

inherited genetic risks of disease onset cannot be modified.  405 

We here showed the novel value of PRS study to identify the monitorable phenotypes that 406 

genetically affect health outcomes. Our approach has the potential to contribute to the 407 

improvement of healthcare because the identified factors can be modified by medical 408 

intervention. We showed a global burden of increased blood pressure and obesity as drivers 409 

of mortality from genetics. Our study also revealed that those with a genetic burden to cause 410 

high blood pressure or obesity could benefit from healthy lifestyles to the same degree as 411 

those without. If those with high-risk alleles are to be notified about their own risks, the early 412 

lifestyle modification and medical attention should prevent their premature death. Of note, 413 

the magnitude of the effect size in which the PRS of the trait was associated with lifespan 414 

was relatively small. However, the magnitude of effect size in which the trait itself (e.g., blood 415 

pressure or obesity) affects lifespan, or in which the modification of the trait (e.g., proper 416 

blood pressure management or healthy diet) would improve health outcomes, would be 417 

expected to be larger in terms of population health. 418 

 In order to improve population health, we need to decide on how to prioritize the 419 

numerous health issues. The observational studies could partly address this point, but the 420 

biggest challenge has been that we cannot infer the cause-and-effect direction. While RCTs 421 

have been the gold standard to provide robust evidence of the effect of risk factors on health 422 
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outcomes, they are not always feasible because conducting RCTs (i.e. recruitment, random 423 

allocation, treatment, and follow-up etc.) takes a huge amount of resources, which hampers 424 

the application to diverse phenotypes. Our approach, which leverages genetic and 425 

phenotypic information already existing in biobanks, would have the potential to support the 426 

clinical evidence, or to identify candidate risk factors to bring into RCTs. We also note that 427 

in-depth analyses, such as those leveraging cause-specific mortality and comorbidity data, 428 

could pinpoint target individuals who could most likely benefit from medical attention and 429 

intervention. These insights would also be useful in designing efficient RCTs or providing 430 

individualized medical evidence. 431 

Notably, the genetics-driven identification of critical factors for health outcomes was made 432 

possible by trans-ethnic, large-scale, and deep-phenotyped biobanks. The trans-biobank 433 

collaboration provided (i) a large sample size, which was critical in analyzing mortality data, 434 

(ii) the opportunity for replication, which made our findings robust to cohort-specific 435 

confounders, (iii) a trans-ethnic comparison as in the example of obesity, (iv) the validation 436 

of our methodology (i.e., we confirmed the coherent result between LOGO and independent 437 

GWAS), and (v) the integration of cohort-specific data, such as parental lifespan data in UK 438 

Biobank.  Nation-wide biobanks, such as those in this study, are prospectively collecting 439 

deep phenotype and health outcomes of genotyped individuals, and our proof-of-concept 440 

approach would be expected to discover the actionable traits driving health outcomes on a 441 

global scale if further applied to diverse and larger populations.  442 

This study has potential limitations. First, as BioBank Japan is a hospital-based cohort, it 443 

does not represent the Japanese population as a whole. However, since we performed the 444 

survival analyses with an adjustment for the disease status and principal components 445 
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followed by sensitivity analyses, our main result was not confounded by the proportion of 446 

patients with a specific disease group (Supplementary Figure 6) or population stratification. 447 

Of note, UK Biobank generally enrolls healthy-volunteers34. The directional concordance of 448 

statistics in BioBank Japan with those in UK Biobank should further support the robustness 449 

of the results and mitigates the concern on potential biases due to the differences in genetic 450 

structure and environmental interactions. Second, it is unclear whether the PRSs of the traits 451 

that showed less significant results in our study were not associated with lifespan because 452 

there is truly no relationship, because the PRS did not sufficiently explain the variance of the 453 

investigated phenotype, or because there was a strong effect of rare variants, which were 454 

not captured in our study. Third, the polygenic effect of the variants constituting the PRSs 455 

which also partially affect other traits (pleiotropy), might have coexisted with the association 456 

of the PRS of a specific trait with lifespan. Further integration with novel statistical methods 457 

to handle and disentangle pleiotropy and desirably RCTs, if feasible, are warranted to obtain 458 

clearer insights into the true effect of the complex trait on human lifespan. Fourth, there is 459 

currently no consensus on how to optimize and harmonize the P value threshold in calculating 460 

PRSs across different cohorts. Our strategy was to set a fixed P value threshold of 1×10-6 in 461 

the trans-ethnic meta-analysis, because we could not obtain trait-specific best P values for 462 

every trait which should be optimized to maximize the variance explained by using individual-463 

level phenotype data. We confirmed that association statistics (i.e. coefficients) from the fixed 464 

threshold of 1×10-6 was fairly concordant with those from best P values (Pearson’s r = 0.85 465 

and P = 2.5×10-13 in BioBank Japan, and r = 0.93 and P = 1.3×10-9 in UK Biobank). 466 

Nevertheless, we consider that further implementation of the methodology for optimally 467 

harmonizing PRSs across different cohorts is still warranted. Fifth, it is possible that spouse-468 
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pairs in biobanks might have caused a subtle bias the GWAS and PRSs-lifespan association 469 

if assortative mating exists35.  Sixth, although we exhaustively checked the cohort-level 470 

overlap across biobanks and previous GWASs used in this study, we could not completely 471 

exclude the possibility of individual-level overlap, which would be technically difficult to detect 472 

as a general point in large-scale genetic studies. Last, the statistical power in the association 473 

study with lifespan was limited, partly due to a relatively short follow-up period. This was 474 

particularly the case in UK Biobank, which is a recently launched population-based cohort, 475 

and only a small number of people have died during the follow-up period. We complemented 476 

this point by utilizing parental lifespan data in UK Biobank as a secondary analysis. Since the 477 

participants of the biobanks in this study are ongoingly followed-up, the larger number of 478 

mortality records in the future would provide us with an opportunity to further validate the 479 

robustness of our results. 480 

In conclusion, through trans-ethnic biobank collaboration, we demonstrated that blood 481 

pressure and obesity were genetically associated with the lifespan of the current generation 482 

on a global scale. A comparison across different populations and the integration with deep 483 

phenotype data further pinpointed a group of individuals who would be expected to benefit 484 

most from the intervention of these traits. With global biobanks’ ongoing efforts—enrolling 485 

individuals from diverse background and collecting granular phenotype along with health 486 

outcomes—we have shown a potential application of genetics to improve population health 487 

by providing information of common and modifiable risk factors driving our health outcomes.  488 

  489 
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Methods 509 

Study Populations, genotyping and imputation 510 

BioBank Japan 511 

Clinical information and genotype data were obtained from BioBank Japan (BBJ) project10,12, 512 

which is a prospective biobank that collaboratively collected DNA and serum samples from 513 

12 medical institutions in Japan and recruited approximately 200,000 participants, mainly of 514 

Japanese ancestry, with the diagnosis of at least one of 47 diseases. All the participants 515 

provided written informed consent approved from ethics committees of RIKEN Center for 516 

Integrative Medical Sciences, and the Institute of Medical Sciences, the University of Tokyo. 517 

Detailed participant information is summarized in Supplementary Table 1a. 518 

We genotyped participants with the Illumina HumanOmniExpressExome BeadChip or a 519 

combination of the Illumina HumanOmniExpress and HumanExome BeadChips. The quality 520 

control (QC) of participants and genotypes was described elsewhere36. In this project, we 521 

analyzed 179,066 participants of Japanese ancestry as determined by the principal 522 

component analysis (PCA)-based sample selection criteria. The genotype data was further 523 

imputed with 1000 Genomes Project Phase 3 version 5 genotype (n = 2,504) and Japanese 524 

whole-genome sequencing data (n = 1,037)36 using Minimac3 software. After the imputation, 525 

we excluded variants with an imputation quality of Rsq < 0.7 or those with a minor allele 526 

frequency (MAF) < 1%. 527 

 528 

UK Biobank 529 

The UK Biobank project is a population-based prospective cohort that recruited 530 

approximately 500,000 people aged between 40–69 years from 2006 to 2010 from across 531 
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the United Kingdom (summary in Supplementary Table 1b; see URLs). Deep phenotype 532 

data, such as electronic medical records, lifestyle indicators and bioassays, and genotype 533 

data were available for most of the participants. The genotyping was performed using either 534 

the Applied Biosystems UK BiLEVE Axiom Array or the Applied Biosystems UK Biobank 535 

Axiom Array. The genotypes were further imputed using a combination of the Haplotype 536 

Reference Consortium, UK10K, and 1000 Genomes Phase 3 reference panels by IMPUTE4 537 

software. The detailed characteristics of the cohort were previously extensively described34. 538 

    In this project, we analyzed 361,194 individuals of white British genetic ancestry as 539 

determined by the PCA-based sample selection criteria (see URLs). We excluded the 540 

variants with (i) INFO score ≤ 0.8, (ii) MAF ≤ 0.0001 (except for missense and protein-541 

truncating variants annotated by VEP37, which were excluded if MAF ≤ 1 × 10-6), and (iii) 542 

HWE P ≤ 1 × 10-10.  All of the analyses were conducted via application 31063. 543 

 544 

FinnGen 545 

FinnGen is a public-private partnership project combining genotype data from Finnish 546 

biobanks and digital health record data from Finnish health registries (see URLs). Six 547 

regional and three country-wide Finnish biobanks participate in FinnGen. Additionally, data 548 

from previously established population and disease-based cohorts are utilized. Participants’ 549 

health outcomes are followed up by linking to the national health registries (1969–2016), 550 

which collect information from birth to death. We used the genotype and phenotype data of 551 

135,638 participants in this study, excluding population outliers via PCA (summary in 552 

Supplementary Table 1c). These individuals were genotyped with the FinnGen1 553 

ThermoFisher array and previous cohorts were genotyped with various genotyping arrays. 554 
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The genotype data was imputed using whole genome sequencing data from 3,775 Finnish 555 

individuals by beagle4.1 software (see URLs)38. After the imputation, we excluded variants 556 

with an imputation INFO score < 0.8 or MAF < 0.0001. 557 

 558 

 559 

Survival analysis of clinical phenotypes 560 

We used Cox proportional hazard models to test the association of clinical phenotypes with 561 

lifespan (age at death) in BioBank Japan as described elsewhere39. In order to obtain and 562 

compare the HRs for the all-cause mortality across the traits, we scaled each trait to have 563 

zero mean and unit variance by Z-score transformation. The primary analyses included 564 

adjustment for sex, the 47-disease status and the top 20 principal components, which were 565 

supposed to account for possible confounders and population stratification. Additional 566 

summaries of clinical phenotypes and the number of samples without missing values are 567 

described in Supplementary Table 3. We next performed the same survival analyses in 20 568 

clinical phenotypes where individual-level phenotype data was available in UK Biobank 569 

(Supplementary Table 7). We used Cox proportional-hazard models to test the association 570 

of these clinical phenotypes with lifespan (age at death) with an adjustment for sex and the 571 

top 20 principal components as covariates. 572 

 573 

 574 

Genome-wide association studies 575 

BioBank Japan 576 
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In order to derive population-specific PRSs of BioBank Japan, we first split the cohort into ten 577 

sub-groups. We then conducted GWASs for 45 quantitative traits within each of the ten sub-578 

groups. We performed the linear regression assuming the additive effect of the imputed 579 

dosage of each variant by PLINK40. For individuals taking anti-hypertensive medications, we 580 

added 15 mmHg to their sBP and 10 mmHg to their dBP and derived their MAP and pulse 581 

pressure (PP) using the adjusted sBP and dBP. We also added smoking status as a covariate 582 

for blood pressure-related traits. Other trait-specific covariates, adjustment for medications, 583 

and sample exclusion criteria are described in Supplementary Table 13 and elsewhere41. 584 

We next meta-analyzed the statistics from nine sub-groups by the inverse-variance method 585 

assuming the fixed-effect ten times, with keeping one sub-group away from the meta-analysis 586 

for PRS derivation and validation each time (a 10-fold leave-one-group-out [LOGO] meta-587 

analysis approach). Before performing LOGO, we excluded genetically related individuals 588 

from the cohort, based on PI_HAT > 0.125, as calculated by PLINK software. We note that 589 

we adopted this strategy to obtain precise estimates of the HR, not to maximize R2 value, 590 

which will be maximized when we have the largest GWAS samples. We applied LD Score 591 

Regression (LDSC)42 to the meta-analyzed summary statistics to estimate the heritability and 592 

potential population stratification. We also performed cross-trait LDSC43 to compare the 593 

statistics from the LOGO GWAS (meta-analysis of 9 subgroup GWASs) and those from the 594 

conventional GWAS (using all the individuals in the cohort).  The summary results of the 595 

GWASs are described in Supplementary Table 4. 596 

 597 

UK Biobank 598 
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We applied the ten-fold LOGO approach to 20 clinical phenotypes for which individual-level 599 

phenotype data in UK Biobank was available (Supplementary Table 7). We performed 600 

GWASs using the linear regression model in Hail v0.2 (see URLs) with covariates including 601 

age, age2, sex, and the top 20 principal components. For blood pressure traits, we added 15 602 

mmHg and 10 mmHg to sBP or dBP, respectively, if individuals are taking anti-hypertensive 603 

medication and derived the MAP and PP using the adjusted sBP and dBP. We also added 604 

smoking status as a covariate for blood pressure-related traits. We again performed cross-605 

trait LDSC43 to compare the statistics from the LOGO GWAS and those from the conventional 606 

GWAS, for which we used summary statistics from Dr. Benjamin Neale’s lab (see URLs). 607 

The summary results of the meta-analyzed GWASs are described in Supplementary Table 608 

8. For the additional 13 traits among the remainder of the 25 traits investigated in BioBank 609 

Japan, we were able to collect independent large-scale GWAS summary statistics of 610 

European ancestry, either from publicly available websites or upon request to the authors. 611 

The information of these 13 GWASs is described in Supplementary Table 6. 612 

 613 

FinnGen 614 

We did not perform within-cohort GWASs for the FinnGen cohort because the availability of 615 

individual-level phenotype data was limited. For the 20 traits where we performed LOGO in 616 

UK Biobank, we referred to UK Biobank GWAS summary statistics from all 361,194 white 617 

British individuals. With the exception of C-reactive protein (CRP), for 12 traits among the 13 618 

traits where we used independent GWAS summary statistics in UK Biobank, we utilized the 619 

same GWAS summary statistics, as we confirmed that there was no apparent cohort overlap 620 

with FinnGen (Supplementary Table 6). For CRP, since the GWAS of Ligthart et al. included 621 
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the FINRISK Study, which was also involved in FinnGen, we additionally performed GWAS 622 

in UK Biobank individuals (n = 353,466). When performing CRP GWAS in UK Biobank, we 623 

excluded the individuals with autoimmune or inflammatory diseases.  624 

 625 

 626 

Construction of Polygenic Risk Scores 627 

BioBank Japan 628 

By referring to the effect sizes and P values of ten summary results from meta-analyzed 629 

GWASs of nine sub-group GWASs, we derived the PRSs of individuals in the one withheld 630 

sub-group using a clumping and thresholding method. First, we performed LD clumping on 631 

the meta-analyzed GWAS summary statistics with PLINK software using 5,000 randomly 632 

selected  BioBank Japan participants as the LD reference. Briefly, we first used PLINK to 633 

clump all the variants using the following flags: --clump-p1 1 --clump-p2 1 --clump-r2 0.1 --634 

clump-kb 1000. We then computed PRSs for variants meeting the following P value 635 

thresholds: 5×10-8, 5×10-7, 1×10-6, 1×10-4, 1×10-3, 1×10-2, 5×10-2, 0.1, 0.2, 0.5, and 1. In the 636 

one withheld sub-group, we derived PRSs by multiplying the dosage of risk alleles for each 637 

variant by the effect size in the GWAS and summing the scores across all the selected 638 

variants. We quantified the trait variance explained by the derived PRSs in individuals within 639 

the withheld sub-group, by calculating the adjusted R2 attributable to the PRSs from nested 640 

models, in which the full linear model was the trait value ~ PRS + all covariates and the 641 

nested model dropped only the PRS term (Supplementary Table 5).  642 

 643 

UK Biobank and FinnGen 644 
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For the clinical phenotypes for which the individual clinical data was available (20 traits in UK 645 

Biobank), we derived the PRSs in the same manner as described above for BioBank Japan 646 

(the ten-fold LOGO approach and deriving the PRSs in the one withheld group using the 647 

weights from the meta-analyzed summary statistics of nine sub-group GWASs by a clumping 648 

and thresholding approach). The variance explained by the derived PRSs is described in 649 

Supplementary Table 10. For the remaining 13 traits, we used a clumping and thresholding 650 

method on the collected large-scale GWAS summary statistics. Then, we derived the PRSs 651 

in the entire cohort referring to the weights and selected variants from the clumping and 652 

thresholding results. As noted above, we basically followed the original QC policy that had 653 

been adopted within each of the cohorts, and thus PRSs of UK Biobank and FinnGen could 654 

have included the rarer variants when compared with those of BioBank Japan (MAF > 0.0001 655 

vs. MAF ≥ 0.01). We confirmed that both the performance of the PRSs and the result of 656 

downstream analyses did not substantially change, even when we restricted the variants 657 

used for calculating the PRSs to those with MAF ≥ 0.01 (i.e. the correlation r of these statistics 658 

exceeded 0.97) in UK Biobank and FinnGen. 659 

 660 

 661 

Survival Analysis using PRSs 662 

BioBank Japan 663 

We used Cox proportional-hazard models to test the association of the derived PRSs of 664 

clinical phenotypes with the length of lifespan (age at death) in the withheld sub-group. For 665 

the within-BioBank Japan analysis, we selected PRSs from the P value threshold of the best 666 

predictive capacity that had the largest variance explained by the PRS. We note that the 667 
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threshold selection was based on the predictive capacity of the trait under investigation and 668 

not based on the result of the association of PRSs with lifespan. For the trans-biobank 669 

analysis, since there were no individual-level data available for some of the traits, optimization 670 

of the P value thresholds for all the traits was technically challenging. We thus selected PRSs 671 

from the P value threshold of 1.0×10-6, which was supposed to account for the polygenic 672 

architecture of complex traits while avoiding potential biases in PRS predictions induced by 673 

the large number of non-significant variants44. The PRSs for each trait in each sub-group 674 

were scaled to have zero mean and unit variance by Z-score transformation so as to obtain 675 

and compare the effect sizes across the investigated phenotypes. We used Cox proportional-676 

hazard models to test the association of the scaled PRS of each trait in each sub-group with 677 

lifespan, with adjustment for sex, the 47-disease status and the top 20 principal components. 678 

We performed Schoenfeld residual tests45 to examine the proportional hazards assumption 679 

for the Cox regression. No apparent correlation between the Schoenfeld residuals and time 680 

was statistically and visually confirmed. We further meta-analyzed the association statistics 681 

from each of the ten sub-groups by the inverse variance method. A sex-stratified association 682 

study (Supplementary Figure 4a) was conducted by using the same Cox proportional-683 

hazard models within male and female participants, except that we excluded sex from 684 

covariates.  685 

To describe a standardized survival curve, we compared HRs for participants at the 686 

highest genetic risk (fifth quintile of PRSs) with those at an intermediate risk (quintiles 2 to 4) 687 

or the lowest risk (first quintile) as described previously46, which were standardized to the 688 

mean of all the covariates (Supplementary Figure 7). For the PRS of systolic blood pressure 689 

(sBP), we also analyzed the interaction effects with lifestyle factors recorded in the cohort. 690 
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The lifestyle factors were obtained from the questionnaire to the participants, which asked 691 

them about their usual frequency of consumption or exercise of an investigated trait by 692 

selecting one from four categorical values. The answered values were converted to the 693 

quantitative values so that they represented the mean value of each category, except for the 694 

two binary lifestyle traits (whether the participant has ever smoked cigarettes and whether 695 

the participant currently drinks alcohol) (Supplementary Table 12). All the survival analyses 696 

were performed using the survival package in R software, version 3.3.0 (see URLs).  697 

 698 

UK Biobank and FinnGen 699 

For the quantitative traits where the individual level-data was available (20 traits in UK 700 

Biobank), we performed the same 10-fold survival analyses followed by meta-analysis as 701 

explained above in BioBank Japan. For the remaining traits, we performed the survival 702 

analyses on the entire cohort to test the association of the public GWAS-based PRS of each 703 

trait with lifespan. As described above, we adopted the P value threshold of 1×10-6 for the 704 

derivation of PRSs for the cross-biobank comparison. We included the same covariates used 705 

in the GWASs for each cohort, except for age and age2, in the Cox proportional hazard 706 

models. A sex-stratified association study (Supplementary Figure 4b and c) was conducted 707 

by using the same Cox proportional-hazard models within male and female participants, 708 

except that we excluded sex from the covariates. 709 

As a secondary analysis, we performed a replication study of the association of sBP PRS 710 

on lifespan by using parental lifespan data in UK Biobank to validate the result of primary 711 

analysis with larger statistical power. To perform an association test of individuals’ genotype 712 

with  their father’s and mother’s survival, we separately calculated Martingale residuals of 713 
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the Cox model under a null model, scaled up to give a residual trait with a 1:1 correspondence 714 

with the HR, and tested its association with genotype dosage as described previously47.  715 

For the PRS of BMI, we also analyzed the interaction effects with lifestyle factors 716 

recorded in UK Biobank. We collected the individual-level data of smoking status (ever 717 

smoked and smoking cessation), alcohol intake, coffee intake, and regular physical activity, 718 

and tested the effect of the interaction term between the BMI PRS and each of the lifestyle 719 

factors on lifespan. 720 

We finally performed a fixed-effect meta-analysis of the PRS-lifespan association studies 721 

from BioBank Japan, UK Biobank, and FinnGen, by inverse variance method. To estimate 722 

the years of life gained or lost from PRS-lifespan associations, we converted the effect size 723 

from the Cox proportional hazard models into the years gained based on the following 724 

equation as described preciously39,47; 725 

Years	gained = 10 × {−𝑙𝑜𝑔4(𝑐𝑜𝑥	ℎ𝑎𝑧𝑎𝑟𝑑	𝑟𝑎𝑡𝑖𝑜)} 726 

The association results of the trans-ethnic PRS meta-analysis including the years of life 727 

gained/lost are described them in Supplementary Table 9. 728 

 729 

 730 

Trans-ethnic Mendelian Randomization study 731 

We conducted two-sample Mendelian randomization (MR) study to see the effect of each of 732 

33 biomarkers on the outcome (i.e. lifespan) across three cohorts.  733 

For the traits where we performed LOGO in PRS calculation (i.e. 33 traits in BioBank 734 

Japan and 20 traits in UK Biobank), we randomly split the cohort into half, and assigned them 735 

to the GWAS group (discovery) and the MR group (validation). For the selection of variants 736 
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to be used as instrumental variables, we performed GWASs within the GWAS group for these 737 

traits with the same covariates described earlier, and selected independent genetic variants 738 

with PGWAS < 1.0×10-6 for each trait (lead variants at significant loci at least +- 500 kb distant 739 

from each other). We next performed association study of these genetic variants with lifespan 740 

within the MR group, by using the same Cox proportional-hazard model described earlier. By 741 

using these genetic variants and association estimates, we obtained the effect estimate of 742 

the exposure (biomarker) on the outcome (lifespan) by pooling all MR estimates using the 743 

fixed-effects inverse-variance weighted method48.  744 

For the traits where we used independent GWAS summary statistics in PRS calculation 745 

(i.e. 13 traits in UK Biobank and 33 traits in FinnGen), we selected independent genetic 746 

variants with PGWAS < 1.0×10-6 from these statistics. We next performed association study of 747 

these genetic variants with lifespan in a whole cohort, by using the same Cox proportional-748 

hazard model. These estimates are used to obtain the MR effect estimate by inverse-variance 749 

weighted method. 750 

We finally performed the fixed-effect meta-analysis of these effect estimate in MR from 751 

each of the three cohorts. 752 

 753 

754 
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