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Abstract 
 
In the UniProt Knowledgebase (UniProtKB), publications providing evidence for a 
specific protein annotation entry are organized across different categories, such as 
function, interaction and expression, based on the type of data they contain. To provide 
a systematic way of categorizing computationally mapped bibliography in UniProt, we 
investigate a Convolution Neural Network (CNN) model to classify publications with 
accession annotations according to UniProtKB categories. The main challenge to 
categorize publications at the accession annotation level is that the same publication 
can be annotated with multiple proteins, and thus be associated to different category 
sets according to the evidence provided for the protein. We propose a model that divides 
the document into parts containing and not containing evidence for the protein 
annotation. Then, we use these parts to create different feature sets for each accession 
and feed them to separate layers of the network. The CNN model achieved a F1-score 
of 0.72, outperforming baseline models based on logistic regression and support vector 
machine by up to 22 and 18 percentage points, respectively. We believe that such 
approach could be used to systematically categorize the computationally mapped 
bibliography in UniProtKB, which represents a significant set of the publications, and 
help curators to decide whether a publication is relevant for further curation for a 
protein accession. 

Introduction 
Due to the deluge of research data created at ever-increasing rates, the scientific 
community is shifting towards and relying on curated resources [1]. Biocurated 
resources provides scientists with structured, computable-form knowledge bases 
extracted from unstructured biological data, particularly published manuscripts, but 
also other sources, such as experimental data sets and unpublished data analysis results 
[2]. The UniProt Knowledgebase (UniProtKB) aims to collect functional information 
on proteins with accurate, consistent and rich annotation. In addition to capturing the 
amino acid sequence, protein name, taxonomic data and citation information, it includes 
literature-based information about different topics, such as function and subcellular 
location. UniProtKB combines reviewed UniProtKB/Swiss-Prot entries, to which data 
have been added by expert biocurators, with unreviewed UniProtKB/TrEMBL entries, 
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which are annotated by automated systems, including rule-based [3]. The reviewed 
section represents less than 1% of the knowledgebase. Biocurators select a subset of the 
available literature for a given protein, representing the landscape of knowledge at a 
given time [4].  
 
Given the extent of the datasets processed by biocurators, commonly in the range of 
thousands to millions of publications, the scalability of biocuration in life sciences has 
been often scrutinized [5].Text mining [6] has been proposed as one solution to scale 
up literature-based curation, especially to assist biocuration tasks via information 
retrieval, document triage, named entity recognition (NER) and relation extraction 
(RE), and resource categorization [7][8][9][10]. Textpresso Central, for instance, 
provides a curation framework powered with natural language processing (NLP) to 
support curators in search and annotation tasks in Wormbase and other databases [11]. 
Similarly, BioReader focus on the classification of candidate articles for triage [12]. 
Providing positive and negative examples, the framework is able to automatically select 
the best classifier among a range of classification algorithms, including support vector 
machine (SVM), k-nearest neighbours and decision tree. Tagtog leverages manual user 
annotation in combination with automatic machine-learned annotation to provide 
accurate identification of gene symbols and gene names in FlyBase [13]. Text mining 
has also supported more specific curation tasks, such as protein localization. LocText, 
for example, implements a NER and RE for proteins based on SVM, achieving 86% 
precision (56% F1-score) [14]. To address the common issue of class imbalance in 
biocuration, an ensemble of SVM classifiers along with random under-sampling were 
proposed for automatically identifying relevant papers for curation in the Gene 
Expression Database [15]. 
 
More recently, with the success of deep learning in image and text processing 
applications [16], deep learning models have been increasingly applied to biocuration. 
Deep learning classification and prediction models for text - the main use-cases in 
biocuration - are heavily supported by neural language models, such as word2vec [17] 
and Global Vectors (GloVe) [18], and lately by Embeddings from Language Models 
(ELMo) [19] and Bidirectional Encoder Representations from Transformers (BERT) 
[20]. Lee et al. used a convolutional neural network (CNN) model, supported by 
word2vec representations, in the triage phase of genomic variation resources, 
outperforming the precision of SVM models up to 3% [21]. This approach increased 
the precision by up to 1.8 times when compared to query-based triage methods of 
UniProtKB. Similarly, Burns et al. use a combination of CNN and recurrent neural 
network (RNN) models to scale-up the triage of molecular interaction publications [22].  
 
To capture the breadth of publications about proteins and make it easily available to 
users, UniProt compiles additional bibliography from three types of external sources – 
databases, community and text mining – which complements the curated literature set 
with additional publications and adds relevant literature to entries not yet curated 
[4][23]. UniProtKB publications in reviewed entries are categorised on eleven pre-
defined topics – Expression, Family & Domains, Function, Interaction, Names, 
Pathology & Biotech, PTM / Processing, Sequences, Structure, Subcellular Location, 
and Miscellaneous – based on the annotation they contribute to the protein entry, e.g., 
a paper that is the evidence source for the protein catalytic activity will be included in 
the category Function (Figure 1). On the other hand, to automatically categorize 
additional publications, UniProtKB uses the information from the underlying external 
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sources (usually, databases). For example, the literature provided by the iPTMnet 
database is under the PTM / Processing category. Nevertheless, this approach is limited 
as it does not cover optimally all types of evidence available for the specific protein in 
the publication, other than PTM / Processing in this case. In fact, in publications 
imported from a number of sources, such as model organism databases, it is not possible 
to categorise unless the source provides the information. 
 
Differently from classical text classification problems, it is often the case in biocuration 
where the same document can be associated to different class sets depending on the 
biological entity considered. For example, in UniProtKB, the same publication can be 
categorised into an entry set of the knowledge base for a protein A and into another 
entry set for protein B based on the evidence contained for each protein in the document. 
Standard document classification models cannot be generalised to this scenario as the 
input features are the same (i.e., the document) while the output classes are different 
(i.e., the entry set). To provide a systematic way of classifying the set of additional 
publications into the different UniProtKB annotation topics, in this paper we propose a 
model based on CNN to classify single publications into different class sets depending 
on the biological entity of interest. We use candidate evidence sentences, selected based 
on availability of protein information, to create different feature sets out of a unique 
document. These feature sets are then embedded into a continuous word representation 
space and used as input for a deep neural network-based classifier. We compare the 
effectiveness of the deep learning-based model with baseline classifiers based on 
logistic regression and SVM models. 
 

 
 
Figure 1. UniProt Knowledge annotation process. Manually protein-annotated 
documents (Swiss-Prot) are associated to UniProt Entry categories (Function, Name & 
Taxonomy, etc.) according to the type of information available in the publication, 
which are useful to organise the annotations within the knowledge base. A much larger 
set of publications (TrEMBL) is then automatically annotated according to their source 
characteristics. 
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Materials and methods 
To classify publications into the UniProtKB protein entry categories, we developed a 
text mining pipeline based on a CNN model, so called UPCLASS. The UPCLASS 
classification model was trained and evaluated using a large expert curated literature 
dataset available from UniProtKB. In this section, we describe the methods used to 
automatically and systematically classify scientific articles in the knowledge base.  

Candidate sentences for annotation evidence  
A key challenge for classifying publications according to the UniProtKB entry 
categories is that, for the same document, a few to thousands of proteins can be 
annotated with different categories based on the evidence provided in the text. For 
example, as shown in Figure 2, if for protein A there are evidences in the article for the 
Sequence and Function categories, and for protein B, there is evidence only for the 
Function category, the publication will be annotated with different class sets for the 
different protein entries in knowledge base. However, since only a few articles are 
expert annotated per protein, usually with little redundancy on the type of information 
it brings to the knowledge base (i.e., an UniProtKB entry category), the protein itself 
cannot be directly used as a learning feature for a category because it is not an 
informative feature. In a classical document classification scenario, in which a label set 
is associated to a single document or to a document-accession pair, the classifier would 
always receive as input the same set of informative features (i.e., the document) 
independent of the labels associated to the pair document-accession. Thus, the classifier 
would not be able to learn the actual classes associated to the document-accession pair, 
as the triplet document-accession à categories tends to appear only once in the 
knowledge base.  
 

 
 
Figure 2. Synthetic annotation example illustrating how a single publication can be 
associated to different sets of UniProtKB entry categories.  
 
To overcome this limitation, we developed a model where a document is dismembered 
into “positive” and “negative” sentences, based on whether they provide or do not 
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provide evidences for the protein entry classification. Positive sentences are then 
concatenated to create a “positive” document for the respective protein annotation. The 
remaining sentences, i.e., the negative sentences, are similarly concatenated to create a 
“negative” document. Hence, as shown in Figure 3, different feature sets can be created 
out of a single document for each pair document-accession and be properly associated 
to their specific annotation categories. 
 

 
 
Figure 3. k-nearest (k=0) sentences containing candidate evidences for the protein 
annotation are concatenated to create a “positive” document. Similarly, sentences that 
do not contain evidence for the category are concatenated to create a “negative” 
document. 
 
We hypothesize that the evidence for annotations is provided in the k-nearest sentences 
to the sentence where the protein (or its coding gene) is mentioned. Indeed, as shown 
by Cejuela et al. [14], the k-1 sentences accounts for 89% of all unique relationships in 
the case of protein location evidence. To identify the candidate evidence sentences, 
occurrence of protein features, such as accession identifier, protein name 
(recommended, alternative and short), gene name and their synonyms, are searched in 
the sentences. For example, for the accession number O95997, we search in the 
publication sentences for the strings “PTTG1_HUMAN” (accession), “Securin” 
(recommended name), “Esp1-associated protein” (alternative name), “Pituitary tumor-
transforming gene 1 protein” (alternative name), “Tumor-transforming protein 1” 
(short name), “hPTTG” (short name), “PTTG1” (gene name), “EAP1” (gene synonym), 
“PTTG” (gene synonym) and “TUTR1” (gene synonym). If at least one match is found, 
the sentence is added to the positive pool. Subsequent sentences are further 
concatenated to form the “positive” document for the accession, O95997 in this case. 
These proteins features are available directly from the “Names & Taxonomy” section 
of the UniProtKB for each accession number. 

Classifier model 
As illustrated in Figure 4, we use a three-layer CNN architecture for our machine 
learning classifier.  The model has two branches, which receive the positive and 
negative documents separately. The architecture comprises three main building blocks: 
i) an input block (light blue), composed by an embedding layer (width=1500), which 
receives the document tokens and the pre-trained word vectors from a word2vec model 
trained on 106 Medline abstracts with protein information; ii) a CNN block (orange), 
composed by three CNN layers with 128 channels, kernel width equal to 5, and ReLU 
activation, followed by a batch normalisation layer, which exposes a max pooling 
output followed by a drop-out layer (drop-out rate of 50%); and iii) a dense block (dark 
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blue), composed by two dense layers, the first layer (width=128) receives the 
concatenated output of the CNN branches as input, followed by an output layer 
(width=11) with a softmax activation function. The outputs of the CNN branches are 
then concatenated and fed to the dense layer. The model was trained in 50 epochs with 
early stopping set for 5 consecutives epochs without improvement in the validation set. 
The model was implemented using the Keras framework in Python 3. 
 

 
 
Figure 4. Outline of the UPCLASS CNN-based classification architecture with an 
embedding layer, three CNN layers followed by two dense layers. The “positive” 
sentences (accession in) are concatenated and fed to one branch of the model (“in” 
branch). The leftover sentences (accession out) are used to create the “negative” 
document and fed to the other branch of the model (“out” branch). 

Training and test collection 
To train our model, we used an expert annotated collection of ~483k examples available 
from UniProtKB. In total, the collection contains ~201k unique manuscripts with an 
average of 2.4 proteins annotated per article (min=1, max=9329). The training 
collection was divided randomly in 76% for the train set (~368k samples), 12% for the 
dev set (~56k samples) and 12% for the test set (~58k samples). The division took into 
account the constraint that a publication should not be split in different sets, as the it is 
common the case when a protein is annotated for a category in a publication, other 
proteins share the same annotation. Full text publications were extracted from PubMed 
Central when available; otherwise, MEDLINE abstracts were used. In total, 96% of the 
collection was composed only by abstracts, with 5% of full text articles in the train set, 
6% in the dev set and 8% in the test set. 
 
In Table 1, the distribution of examples per category in the training collection is 
presented. As previously discussed, indeed the number of unique examples labelled per 
protein accession varies on average from 1.2 for the Names category to 2.2 for the PTM 
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/ Processing category. On the other hand, for categories like Names, PTM / Processing 
and Sequences there is less than one unique document per accession, i.e., it is often the 
case that a few proteins for these classes are annotated in the same publication. 
Moreover, we can notice that there is a concentration of samples in some classes, in 
particular Sequences, which is present in more than 45% of the examples, while 
Structure, Names and Family & Domains are present in 5% or less.  
 

UniProtKB entry 
category 

Examples Unique 
accessions 

Unique 
documents 

Expression 53274 35128 34446 

Family & Domains 4910 3807 3310 

Function 105417 49896 72674 

Interaction 60252 28318 30646 

Names 11334 9130 1100 

Pathology & Biotech 39870 23573 32410 

PTM / Processing 69080 31142 17335 

Sequences 217879 130288 109333 

Structure 25569 14257 19553 

Subcellular Location 48876 31866 28793 

Miscellaneous 111454 52724 16812 

Total 483159 163913 201358 
 
Table 1. Distribution of categories in the manually annotated training collection from 
UniProtKB. Examples: number of document-accession examples annotated with a 
category in the training collection. Unique accessions: number of unique accessions 
annotated with a category in the training set. Unique document: number of unique 
publications annotated with a category in the training set. 

Pre-processing and word embeddings 
In the pre-processing phase, we treat the training collection and the protein features 
(name, gene, etc.) through an NLP pipeline. First sentences are split using a Punkt 
sentence tokenizer. Then, stopwords are removed, characters are converted to lower 
case and non-alphanumerical characters are suppressed. The resulting tokens are 
stemmed and stem words smaller than 2 characters are removed. Finally, numerical 
sequences are replaced by the token _NUMBER_. Table 2 shows an example of the 
resulting sentences after passing the manuscript through the pre-processing pipeline. 
 
The word embedding weights were pre-trained in a pararaph2vec to model using the 
train set collection [24]. The motivation was that, in addition to adapt to the pre-
processed text, as showed by Diaz et al., locally trained word embeddings provide 
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superior word representation [25]. Two paragraph2vec models were trained – DBOW 
(Distributed Bag of Words) and DMC (Distributed Memory Concatenated) – through 
100 epochs with word and document vector size of 200 and window of 10, the optimal 
values found during the training phase for the classification models. The gensim Python 
library was used to the train the pararaph2vec models. 
 
Original text Pre-processed sentences 
YddV from Escherichia coli (Ec) is a 
novel globin-coupled heme-based oxygen 
sensor protein displaying diguanylate 
cyclase activity in response to oxygen 
availability. In this study, we quantified 
the turnover numbers of the active 
[Fe(III), 0.066 min(-1); Fe(II)-O(2) and 
Fe(II)-CO, 0.022 min(-1)] [Fe(III), 
Fe(III)-protoporphyrin IX complex; 
Fe(II), Fe(II)-protoporphyrin IX 
complex] and inactive forms [Fe(II) and 
Fe(II)-NO, &lt;0.01 min(-1)] of YddV 
for the first time. 

yddv escherichia coli ec novel globin 
coupl heme base oxygen sensor protein 
display diguanyl cyclas activ respons 
oxygen avail 
 
studi quantifi turnov number activ fe iii 
_NUMBER_ min fe ii fe ii co 
_NUMBER_ min fe iii fe iii 
protoporphyrin ix complex fe ii fe ii 
protoporphyrin ix complex inact form fe 
ii fe ii _NUMBER_ min yddv first time 

 
Table 2. Resulting sentences after passing through the pre-processing pipeline. 

Evaluation criteria 
Results are reported using standard multi-label classification metrics - Precision, Recall 
and F1-score - and are compared to a baseline model based on logistic regression. 
Student’s t-test are used to compare the classifier models and results are deemed 
statistically significant for p-value < .05. As most of the publications contain more than 
one annotation per protein and they are often classified into the same classes, e.g., a 
paper containing structure information for several proteins, the predictions might not 
be independent for each sample. Thus, we report results for real curation use-cases but 
also considering only one unique random annotation per publication. Finally, it is also 
important to notice that a system that provides automatic annotations to knowledge 
bases should aim first at high precision. Nevertheless, in our case, we expect the 
classifier to go beyond the coverage provided by standard provenance classification, 
and, hence, demonstrate also high recall. 

Results 
Table 3 shows the performance of the classification models used to categorize 
document-protein accession pairs according to UniProtKB entries. Three classification 
models were assessed - logistic regression (baseline), SVM and CNN - in two versions: 
“not tagged” and “tagged”. The “not tagged” version of the logistic regression and SVM 
classifiers received as input a 400-dimensional feature vector created from the 
concatenated output of the DBOW and DMC paragraph2vec models applied to a pre-
processed publication. The “tagged” version received as input an 800-dimensional 
feature vector, 400 for the positive document and 400 for the negative document, 
created by tagging protein features against the publication sentences. Similarly, the 
CNN “not tagged” model received a 1500 token vector per document in the embedding 
layer while the CNN “tagged” model received a 1500 token vector for each branch of 
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the model (positive and negative). The token weights for the embedding layer of the 
CNN models were provided by the trained DBOW document embedding model. 
 
Overall, the CNN tagged model achieved the highest performance in terms of the F1-
score metrics, outperforming all the other models for both micro and macro averages 
(p < .05). It outperformed the baseline logistic regression classifier in absolute values 
by 12% and by 9% for the micro and macro F1-score metrics, respectively. The SVM 
tagged model achieved the highest micro precision and the CNN not tagged model 
achieved the highest macro precision (p < .05), both at the expense of recall. Similarly, 
recall performance varies depending on how the results are aggregated. Micro recall is 
highest for the CNN not tagged model and macro recall is highest for the CNN tagged 
model. Since some of the categories had relatively few examples in the training set, the 
macro average metrics provide better insights on how the models are able to deal with 
class imbalance, as the macro metrics treat all classes equally, independent of their 
frequency in the training set. To this end, the CNN tagged model has an outstanding 
performance, increasing the F1-score metric by 7% when compared to the CNN not 

tagged model. 
 
Model Micro     Macro     
  Precision Recall F1-score Precision Recall F1-score 
Logistic not 
tagged 0.63 0.42 0.50 0.55 0.42 0.50 

Logistic 
tagged 0.55 0.66 0.60 0.48 0.60 0.53 

SVM not 
tagged 0.74 0.43 0.54 0.56 0.28 0.37 

SVM tagged 0.75* 0.38 0.50 0.64 0.25 0.36 
CNN not 
tagged 0.67 0.76* 0.71 0.68* 0.46 0.55 

CNN tagged 0.69 0.74 0.72* 0.60 0.63* 0.62* 
 
Table 3. Micro and macro average results for the not tagged and tagged models 
obtained from the test set of 58k records. Highest results are showed in bold. * 
statistically significant improvement. 
 
As publications are often annotated for several proteins (thousands in some cases), the 
pairs document-accession are not necessarily independent samples. Thus, we modified 
the test set to contain only one sample of a document per unique category set. Accession 
with the same annotation for a publication were randomly suppressed from the 
collection. This resulted in a test set of ~26k records, a reduction of 55% when 
compared to the original set of ~58k samples. The results of these tests are shown in 
Table 4. There was a relevant drop in performance for the CNN models, e.g., 4% and 
6% in micro average F1-score for the not tagged and tagged models, respectively, and 
an overall relative improvement in relation to the CNN models for the logistic and SVM 
models. Nevertheless, the CNN models still outperform the baseline and SVM when 
considered the F1-score metrics. The best model in this setting is now the CNN not 

tagged, with F1-scores of 0.67 and 0.54 for the micro and macro averages, respectively. 
Thus, for an individual independent classification, the CNN not tagged classifier is 
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likely to provide the best answer while for a collection with the similar distribution to 
UniProtKB’s categories, the CNN tagged model provides the best results. 
 
Model Micro   Macro   
  Precision Recall F1-score Precision Recall F1-score 
Logistic not 
tagged 0.56 0.68 0.61 0.45 0.56* 0.50 

Logistic 
tagged 0.59 0.66 0.62 0.46 0.53 0.49 

SVM not 
tagged 0.73 0.43 0.54 0.62* 0.25 0.36 

SVM tagged 0.75* 0.45 0.56 0.61 0.27 0.38 
CNN not 
tagged 0.64 0.71* 0.67* 0.54 0.54 0.54* 

CNN tagged 0.65 0.66 0.66 0.55 0.49 0.52 
 
Table 4. Micro and macro average results for the not tagged and tagged models 
obtained from the test set of unique document à categories pairs (around 26k samples). 
Highest results are showed in bold. * statistically significant improvement. 

Prediction comparison for the not tagged and tagged models 
Out of the ~22k unique publications in the test set, around 7k (31%) were labelled with 
two or more category sets. In Table 5, we show three non-exhaustive examples, 
highlighting the different outcomes for the not tagged and tagged CNN classifiers for 
such cases. For the first publication, PMID 11847227, five distinct category sets were 
annotated for to the different accessions. As expected, the not tagged model associated 
only one type of category set to all document-accession pairs while the tagged model 
changed the predicted classes according to the accession features. This led to an 
increase in the micro average F1-score from 0.37 for the not tagged to 0.73 for the 
tagged results. On the second example, PMID 15326186, both models behave similarly, 
providing only one set of categories, independent of the accession information. This 
situation is usually seen for the tagged model when the classifier is not able to tag 
accession information in the document or all sentences in the abstract contains a protein 
feature token. Thus, a unique set of features, i.e., the publication vector, is used for 
classification. Finally, on the third example, PMID 10427773, the tagged model has 
more false positive predictions, lowering its precision when compared to the not tagged 
model by 2% (F1-score of 0.83 and 0.81, respectively). 
 
PMID Accession Gold standard Prediction 

 
 

  not tagged tagged 
11847227 Q9BTW9 function function, pathology & 

biotech, sequences 
function 

11847227 O75695 function, interaction, 
miscellaneous 

function, pathology & 
biotech, sequences 

function, interaction 

11847227 Q15814 function, pathology & 
biotech 

function, pathology & 
biotech, sequences 

function 

11847227 Q9Y2Y0 interaction function, pathology & 
biotech, sequences 

function, interaction 
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11847227 P36405 interaction, pathology 
& biotech 

function, pathology & 
biotech, sequences 

function, interaction 

15326186 A7E3N7 expression expression, function expression, function 
15326186 Q8NFA2 expression, function expression, function expression, function 
15326186 Q672J9 expression, function, 

sequences 
expression, function expression, function 

15326186 Q672K1 expression, sequences expression, function expression, function 
15326186 Q8CJ00 function expression, function expression, function 
10427773 Q9SAA2 expression expression, sequences expression, sequences 
10427773 Q9SXJ6 expression, sequences expression, sequences expression, sequences 
10427773 Q9S834 expression, sequences expression, sequences expression, sequences, 

subcellular location 
10427773 Q9XJ36 expression, sequences expression, sequences expression, sequences 
10427773 Q9SXJ7 expression, sequences, 

subcellular location 
expression, sequences expression, sequences 

10427773 Q9XJ35 expression, sequences, 
subcellular location 

expression, sequences expression, subcellular 
location 

10427773 P42762 expression, subcellular 
location 

expression, sequences expression, sequences 

10427773 P62126 sequences expression, sequences expression, sequences 
 
Table 5. Examples of prediction output for the CNN not tagged and tagged models. 
While the CNN not tagged model provides only one type of output independent of the 
accession evidence in the publication, the tagged model attempts to predict the 
categories according to the accession features. For brevity, only unique examples of 
document à categories pairs are shown. 

Classifier performance analyses 
As showed in Figure 5, to understand the impact of the different categories in the 
classifier performance, we analysed the precision-recall curve for the CNN tagged 
model (other classifiers show similar curves). Three categories have mean average 
precision (MAP) above 75%: Sequences, Structure and Miscellaneous. On the other 
hand, three categories have MAP lower than 50%: Expression, Family & Domains and 
Pathology & Biotech. The correlation between the number of examples in the training 
set and the category performance is only moderate (r = 0.53). Indeed, the Structure 
category, for example, is only present in 5% of the training examples, however it has 
one of the highest MAP. Differently, the Expression category is present in 11% of the 
examples (the median value among the categories) but has one of the lowest MAP. The 
Family & Domains category, which has only 1% of the training set records, was not 
learned by the classifier (MAP = 0.07). However, the Names category has 2% of the 
examples and a MAP ten times higher (MAP = 0.73). Hence, the class imbalance alone 
is not enough to explain the difference in performance among the categories.  
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Figure 5. Precision-recall curves for the UniProtKB categories obtained from the CNN 
tagged classification. Mean average precision is shown in parentheses. Black horizontal 
dashed line: performance of a random classifier. 
 
In Figure 6, the classifier prediction as a result of the input size is shown. Documents 
with size around 4k bytes contained only the abstract section and composed more than 
95% of the test set. The remaining 5% were composed by full text documents or with 
at least some extra sections in addition to abstract, as figure and table captions. The 
correlation of the classifier performance and the size of the publication (or the type of 
annotated publication: abstract or full text) is very weak (r = 0.09). Thus, it seems that 
most of the evidence for the categories are provided in the abstract, apart from the 
Expression, Family & Domains and Pathology & Biotech categories, which have a 
MAP lower than 0.5. 
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Figure 6. Classifier precision as a function of the publication size. There is no 
correlation between the size of the input size and precision. Circle size: number of 
publications within a size bin. Yellow points: high precision and lower ratio between 
publication size and the max publication size in the test set. Purple points: low precision 
and higher ratio between the publication size and the max publication size in the test 
set. 
 
Finally, on Figure 7 we show the micro average precision results of the CNN tagged 
classifier for the 19 most common organisms in the test set. For the organisms with 
higher precision, Drosophila melanogaster (DROME), Schizosaccharomyces pombe 
(SCHPO), and Oryza sativa subsp. Japonica (ORYSJ), the majority of the protein entry 
annotations belong to a few classes (median frequency of classes of less than 2%). 
These organisms were mostly annotated for Sequences and Subcellular Location 
categories (~60% or more of the annotations), which had overall high to moderate-to-
high precision performance, respectively, as shown in Figure 5. Conversely, organisms 
with well distributed annotations among the 11 categories in the test set (median 
distribution of ~9%) had the poorest precision scores: Arabidopsis thaliana (ARATH), 
Candida albicans (CANAL), and Dictyostelium discoideum (DICDI). The low 
performing categories are likely to have impacted negatively the precision of these 
organisms.  
 

 
 
Figure 7. Micro average precision performance per organism. Higher precision for 
organisms happens when there is a concentration of categories. Black dashed horizontal 
line: mean organism precision. 

UniProtKB category evidence annotation 
To measure the performance of the tagging method for detecting candidate evidence 
sentences, we compared sentences from 20 manually annotated abstracts with the 
positive and negative sentences created by our naïve string-matching algorithm. In 
total, 61 sentences distributed among 7 categories - Expression, Function, Interaction, 
Pathology & Biotech, PTM / Processing, Sequence and Subcellular Location - were 
tagged as positive. The algorithm achieved micro precision of 0.42 (28 out of 67 
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sentences) and micro recall of 0.46 (28 out of 61 sentences). For 4 abstracts (20%), no 
positive sentence was detected. In this case, the whole abstract was considered as 
positive. For the other 5 articles (25%), no true positive sentence was tagged. After 
assessing the classification performance for this test set (F1-score of 0.70), there was 
no correlation between the detection of candidate sentences and the prediction of the 
individual document-accession pairs (r = 0.02). 

Discussions 
We investigated the use of a supervised CNN classifier to automatically assign 
categories to document-accession pairs curated in the UniProtKB to help scaling up 
publication categorization into the knowledge base entry categories. The classifier was 
trained and evaluated using a collection of 483k document-accession pairs annotated 
biocurator experts. To overcome the issue of multiple category sets associated to a 
single publication, we proposed an effective strategy to tag publication sentences with 
protein features and create different feature sets out of a single document entry. Results 
showed statistically significant improvements upon models that use only the 
publication as classification features, improving F1-score up to 12% (micro) when 
compared to the logistic regression baseline and up to 7% (macro) when compared to 
the not tagged CNN version. 
 
While for some database resources it has been shown that expert curation can keep up 
with the exponential growth of the scientific literature [4], scaling-up biocuration 
remains a challenge. A key success factor for UniProtKB’s scalability, for example, is 
that the set of expert curated literature in the knowledge base focus on non-redundant 
annotations for proteins. It relies on external sources for the contribution of additional 
literature and on UPCLASS for its classification. Indeed, the implementation of 
UPCLASS has enabled the classification of more than 30 million document-accession 
pairs according to the entry categories, which were previously displayed as unclassified 
in UniProtKB [3]. UPCLASS is publicly available as a web service through the URL 
address: http://goldorak.hesge.ch/bioexpclass/upclass/. 
 
In addition to direct classification, models as provided by UPCLASS could be used in 
other automatic phases of the biocuration process, such as document triage, helping 
curators to reduce the search scope. In the context of UniProtKB curation workflow, it 
could be used to prioritize UniProtKB entries that are unreviewed proteins with 
publications in the additional bibliography belonging to some category of interest, or 
to update reviewed entries that lack Function annotation, for example, but for which 
there are papers in the additional bibliography section classified by UPCLASS in the 
Function category. In [10], UPCLASS was used in a question-answer model to classify 
the type of search questions and their respective result sets in biomedical metadata 
repositories, e.g., search for gene expression data or search for protein sequencing data. 
While this approach did not lead to improvements in information retrieval performance 
of datasets, further investigation is needed, in particular in a context where the type of 
classification material is aligned with the training set type. Overall, given the 
outstanding results provided by the CNN models when compared to the baseline model 
but even to more powerful frameworks, such as SVM, we expect that such models could 
be extended to other literature curation domains, for example, in prior art search and 
classification of patents [26][27]. 
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Classification performance per category, document size and organism 
We analysed the performance of the CNN tagged classifier according to three 
dimensions: category, document size and annotated organism. Despite the good 
performance of the classification models, there is still room for improving precision for 
some of the UniProtKB classes. Several attempts were made to increase UPCLASS 
outcome using imbalanced learning methods, such as under sampling and Tomek links 
[28]. However, they did not lead to overall improvement. An alternative would be to 
use a classifier ensemble, as proposed in [15]. However, this approach is too expensive 
for deep learning models due to the learning cost. We also tried to change the number 
of k-nearest sentences in the tagged models, but it did not lead to positive changes in 
performance either. It would be interesting to explore the addition of expert 
categorisation rules, in particular of UniProtKB mapping rules, as a strategy to increase 
performance while keeping the training complexity relatively low. The analyses of the 
classification precision according to the size (or type) of the document shows that there 
is no correlation between these two dimensions. While it might be counter-intuitive, 
several works have demonstrated that for classification tasks, the performance of 
abstracts are at least equivalent to full texts, when not better [29]. Yet, it could be 
relevant to explore the use of different classifiers for abstracts and for full texts. Finally, 
performance analyses according to annotated organism shows that better prediction 
outcome are mostly a result of high-performing class annotations being concentrated 
on some organisms. Thus, it seems that the classification precision for organisms is not 
related to the way they are curated. 

Correlation between correctly tagged sentences and classification 
results 
We used a collection of 20 manually annotated documents at the sentence level to assess 
the performance of the string-matching method based on protein features to tag 
evidence sentences. When measuring the impact on the classifier’s performance, results 
show that there is no correlation between correctly tagged sentences and correctly 
predicted categories. We have two hypotheses for this lack of correlation. First, we 
believe that just splitting the sentences that contain accession information would be 
sufficient for the classifier to more effectively learn the category features. Even if the 
sentences did not have exactly the evidence used by biocurators, the most important 
would be to recall sentences with protein information. Indeed, while the correlation of 
the classifier’s precision with the tagging method precision is only 0.02, the correlation 
between the classifier’s precision and the number of positive tagged sentences is 0.26. 
Notice that there is only a marginal improvement from the not tagged to tagged model 
if we consider micro average F1-score (0.71 to 0.72). Thus, the recall increase in 
positive sentences would provide the edge for the tagged model. The second and 
straightforward hypothesis is that the lack of correlation is related to the small size of 
the annotated set. To investigate both assumptions, a larger annotated set would be 
needed, and it is out of the scope of this paper. 

Limitations 
Abstract composes the majority of the collection used in the experiments. Nevertheless, 
a large body of the annotation evidence is expected to be found in the methods and 
results sections of full text articles. The logistic regression and SVM methods used the 
whole document in the classification; however, compressed in a 200-vector, which 
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were the best value found during the training phase. On the other hand, for the CNN 
models the documents were truncated in 1500 tokens (1500 for each branch in the 
tagged model) due to performance reasons, which limit they comparison with the 
baselines. 
 
In UniProtKB, a single article can be annotated for many proteins, sometimes with the 
same class. Hence, the prediction results are not independent, biasing the assessment. 
We tried to mitigate this issue by creating a test set with unique document à categories 
pairs; however, examples in this set still cannot be considered as fully independent, as 
one document can be associated to class sub-sets, e.g., PMID à [Function] and PMID 
à [Function, Sequences]. 

Conclusion 
To provide a systematic way of categorizing computationally mapped publications in 
UniProtKB, in this paper we investigated the use of a supervised CNN classifier for 
assigning categories to pairs of document-protein accessions. To overcome the issue of 
multiple category sets associated to a single publication, we proposed an effective 
strategy to tag publication sentences with protein features and create different feature 
sets out of a single document entry, which are then fed to different CNN layers. Results 
showed statistically significant improvements upon models that use only the 
publication as classification features, improving F1-score up to 22% and 12% when 
compared to a logistic regression baseline for the micro and macro averages, 
respectively. Moreover, our results show that text classification supported by CNN 
models provided an effective way for classifying publications according to the 
UniProtKB entry categories. As future work, we will investigate whether the 
classification performance for underperforming classes can be improved by adding 
expert knowledge into the model. Furthermore, we want to explore whether sentence 
used as evidence for categorisation can be relocated automatically from the classifier 
model. 

Funding 
ELIXIR-EXCELERATE is funded by the European Commission within the Research 
Infrastructures programme of Horizon 2020, grant agreement number 676559. 
 
Conflict of interest. None declared. 

References 
[1] S. G. Oliver, A. Lock, M. A. Harris, P. Nurse, and V. Wood, “Model organism 

databases: Essential resources that need the support of both funders and users,” 
BMC Biology. 2016. 

[2] International Society for Biocuration, “Biocuration: Distilling data into 
knowledge.,” PLoS Biol., vol. 16, no. 4, p. e2002846, 2018. 

[3] UniProt Consortium, “UniProt: a worldwide hub of protein knowledge.,” 
Nucleic Acids Res., vol. 47, no. D1, pp. D506–D515, Jan. 2019. 

[4] S. Poux et al., “On expert curation and scalability: UniProtKB/Swiss-Prot as a 
case study.,” Bioinformatics, vol. 33, no. 21, pp. 3454–3460, Nov. 2017. 

[5] A. Freitas and E. Curry, “Big Data Curation,” in New Horizons for a Data-

Driven Economy, J. M. Cavanillas, E. Curry, and W. Wahlster, Eds. Cham: 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 14, 2019. ; https://doi.org/10.1101/842062doi: bioRxiv preprint 

https://doi.org/10.1101/842062
http://creativecommons.org/licenses/by/4.0/


Springer International Publishing, 2016, pp. 87–118. 
[6] M. Allahyari et al., “A Brief Survey of Text Mining: Classification, Clustering 

and Extraction Techniques,” Jul. 2017. 
[7] C. C. Huang and Z. Lu, “Community challenges in biomedical text mining 

over 10 years: Success, failure and the future,” Brief. Bioinform., 2016. 
[8] A. Singhal et al., “Pressing needs of biomedical text mining in biocuration and 

beyond: Opportunities and challenges,” Database. 2016. 
[9] E. Pasche et al., “Customizing a variant annotation-support tool : an inquiry 

into probability ranking principles for TREC precision medicine,” Proc. 

Twenty-Sixth Text Retr. Conf. (TREC 2017), p. 8 p., 2017. 
[10] D. Teodoro, L. Mottin, J. Gobeill, A. Gaudinat, T. Vachon, and P. Ruch, 

“Improving average ranking precision in user searches for biomedical research 
datasets.,” Database (Oxford)., vol. 2017, no. bax083, Jan. 2017. 

[11] H. M. Müller, K. M. Van Auken, Y. Li, and P. W. Sternberg, “Textpresso 
Central: A customizable platform for searching, text mining, viewing, and 
curating biomedical literature,” BMC Bioinformatics, 2018. 

[12] C. Simon, K. Davidsen, C. Hansen, E. Seymour, M. B. Barnkob, and L. R. 
Olsen, “BioReader: A text mining tool for performing classification of 
biomedical literature,” BMC Bioinformatics, 2019. 

[13] J. M. Cejuela et al., “tagtog: interactive and text-mining-assisted annotation of 
gene mentions in PLOS full-text articles.,” Database (Oxford)., vol. 2014, p. 
bau033, 2014. 

[14] J. M. Cejuela et al., “LocText: Relation extraction of protein localizations to 
assist database curation,” BMC Bioinformatics, 2018. 

[15] X. Jiang, M. Ringwald, J. A. Blake, C. Arighi, G. Zhang, and H. Shatkay, “An 
effective biomedical document classification scheme in support of biocuration: 
addressing class imbalance.,” Database (Oxford)., vol. 2019, 2019. 

[16] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature. 2015. 
[17] T. Mikolov, “Efficient Estimation ofWord Representations in Vector Space 

Tomas,” IJCAI Int. Jt. Conf. Artif. Intell., 2015. 
[18] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word 

representation,” in EMNLP 2014 - 2014 Conference on Empirical Methods in 

Natural Language Processing, Proceedings of the Conference, 2014. 
[19] M. Peters et al., “Deep Contextualized Word Representations,” 2018. 
[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of 

Deep Bidirectional Transformers for Language Understanding,” Oct. 2018. 
[21] K. Lee et al., “Scaling up data curation using deep learning: An application to 

literature triage in genomic variation resources,” PLoS Comput. Biol., 2018. 
[22] G. A. Burns, X. Li, and N. Peng, “Building deep learning models for evidence 

classification from the open access biomedical literature,” Database (Oxford)., 
2019. 

[23] R. Ding et al., “eGenPub, a text mining system for extending computationally 
mapped bibliography for UniProt Knowledgebase by capturing centrality,” 
Database (Oxford)., 2017. 

[24] Q. Le and T. Mikolov, “Distributed representations of sentences and 
documents,” in 31st International Conference on Machine Learning, ICML 

2014, 2014. 
[25] F. Diaz, B. Mitra, and N. Craswell, “Query expansion with locally-trained 

word embeddings,” in 54th Annual Meeting of the Association for 

Computational Linguistics, ACL 2016 - Long Papers, 2016. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 14, 2019. ; https://doi.org/10.1101/842062doi: bioRxiv preprint 

https://doi.org/10.1101/842062
http://creativecommons.org/licenses/by/4.0/


[26] D. Teodoro, J. Gobeill, E. Pasche, P. Ruch, D. Vishnyakova, and C. Lovis, 
“Automatic IPC encoding and novelty tracking for effective patent mining,” in 
Proceedings of the 8th NTCIR Workshop Meeting, 2010. 

[27] D. Teodoro, J. Gobeill, E. Pasche, D. Vishnyakova, P. Ruch, and C. Lovis, 
“Automatic prior art searching and patent encoding at CLEF-IP ’10,” in CEUR 

Workshop Proceedings, 2010. 
[28] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior 

of several methods for balancing machine learning training data,” ACM 

SIGKDD Explor. Newsl., 2004. 
[29] E. Pasche et al., “Assisted Knowledge Discovery for the Maintenance of 

Clinical Guidelines,” PLoS One, vol. 8, no. 4, p. e62874, Apr. 2013. 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 14, 2019. ; https://doi.org/10.1101/842062doi: bioRxiv preprint 

https://doi.org/10.1101/842062
http://creativecommons.org/licenses/by/4.0/

