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Abstract

We examine the practical identifiability of parameters in a spatiotemporal reaction-diffusion model of a scratch assay.

Experimental data involves fluorescent cell cycle labels, providing spatial information about cell position and temporal

information about the cell cycle phase. Cell cycle labelling is incorporated into the reaction–diffusion model by

treating the total population as two interacting subpopulations. Practical identifiability is examined using a Bayesian

Markov chain Monte Carlo (MCMC) framework, confirming that the parameters are identifiable when we assume the

diffusivities of the subpopulations are identical, but that the parameters are practically non-identifiable when we allow

the diffusivities to be distinct. We also assess practical identifiability using a profile likelihood approach, providing

similar results to MCMC with the advantage of being an order of magnitude faster to compute. Therefore, we suggest

that the profile likelihood ought to be adopted as a screening tool to assess practical identifiability before MCMC

computations are performed.
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1. Introduction

Combined cell migration and cell proliferation leads to moving fronts of cells, often called cell invasion [1], which

is essential for tissue repair and wound healing [2]. While sophisticated experimental techniques are continually

developed to interrogate cell invasion, traditional scratch assays remain widely used because they are simple, fast and

inexpensive [3]. Scratch assays involve growing (Figure 1a-b) and then scratching (Figure 1c) a cell monolayer, and

imaging a small region around the scratch as the wounded area closes (Figure 1d-e).

The first mathematical models to interpret experimental observations of cell invasion were reaction–diffusion

models [4]. Sherratt and Murray [5] modelled a wound-healing-type assay using the Fisher-Kolmogorov model, and

many subsequent studies have related solutions of mathematical models to experimental observations, including Maini

et al. [2], Sengers et al., [6] and Nardini et al. [7]. By matching the solution of a mathematical model with certain

experimental observations, these studies provide both parameter estimates and mechanistic insight.

One challenge of using scratch assays is that there is no standard, widely accepted experimental protocol. There

are many differences in: (i) the initial monolayer density [8]; (ii) the width and shape of the scratch [1, 9]; and,

(iii) the experimental timescale [3]. These differences make it is difficult to compare different experiments, and it is

unclear whether different mathematical models of varying complexity (i.e. varying numbers of unknown parameters

or varying the model structure) are required under different experimental protocols.

It is reasonable to argue that simple experimental data ought to be modelled using simple mathematical models

with a small number of unknown parameters, and that more sophisticated mathematical models with additional pa-

rameters should be used only when greater amounts of experimental data are available. However, it is difficult to use

this kind of qualitative reasoning to justify particular decisions about how complicated a mathematical model ought

to be. Methods of identifiability analysis [10–19, 22] provide more systematic means to determine the appropriate

model complexity relative to available data. A model is identifiable when distinct parameter values imply distinct dis-

tributions of observations, and hence when it is possible to uniquely determine the model parameters using an infinite

amount of ideal data [23–26]. In the systems biology literature that focuses on models formulated as ordinary differ-

ential equations, identifiability has also been referred to as structural identifiability [18, 19]. Working with ordinary

differential equations that describe temporal processes, it is possible to formally analyse the structural identifiabil-

ity [18–21]. In contrast, here we work with reaction–diffusion partial differential equations since we are interested in

spatiotemporal processes. In this case, formal analysis of structural identifiability is more difficult and so we explore

structural identifiability numerically (Supplementary Material).

In contrast to predictive performance measures, like Akaike’s Information Criterion (AIC) [27], identifiability

analysis focuses on distinguishing parameter values and, as a result, understanding underlying mechanisms. Shmueli

characterises this general difference as the choice of whether to ‘explain or predict’ [28]. The formal definition of

identifiability requires an infinite amount of ideal data. Thus, in addition to the strict technical concept of (structural)

identifiability, the terms practical identifiability [15] and estimability [23, 26] are used to describe whether it is possible
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Figure 1: Experiments in a 6-well plate (a) are initiated with a uniform cell monolayer (b). A scratch is made (c), and the 1296 µm × 1745 µm
field of view is observed between t = 0 h (d) and t = 48 h (e). The cell cycle is labelled using fluorescent ubiquitination-based cell cycle indicator
(FUCCI) [29] so that cells in G1 phase fluoresce red and cells in S/G2/M phase fluoresce green (f). A freely-cycling cell in G1 phase (red) will
transition into S/G2/M phase (green) at rate kr > 0. A freely-cycling cell in S/G2/M phase (green) will divide into two cells in G1 phase (red) at
rate kg > 0, provided there is sufficient space to accommodate division (g). Images of the field–of–view at t = 0, 16, 32 and 48 h (h–k), with the
nondimensional densities of G1 (red) and S/G2/M (green) subpopulations shown as a function of space and time (l–o). Scale bars in (l–o) show
200 µm.
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to provide reasonably precise estimates using finite, non-ideal data.

Since practical identifiability is a finite, non-ideal data concept, it depends more strongly on the inferential frame-

work adopted and is less clearly defined in the literature than structural identifiability. We consider practical identifi-

ability analysis to encompass a set of precision-based pre-data planning and post-data analysis tools similar to those

advocated by Cox [30], Bland [31] and Rothman and Greenland [32]. This is consistent with the systems biology

literature [10–17, 22], where it is typically characterised in terms of the ability to provide finite, sufficiently precise

interval estimates at various levels of confidence or credibility given finite amounts of non-ideal, real data. This is the

approach we take here; we consider both the typical precision achieved under repeated simulation of ideal synthetic

data (Supplementary Information) and the post-data, realised precision given real data (Main Document).

In systems biology, experimental data often take the form of time series describing temporal variations of molec-

ular species in a chemical reaction network and these data are modelled using ordinary or stochastic differential

equations [33]. Here, we focus on applying methods of practical identifiability analysis to spatiotemporal partial dif-

ferential equation models, which represent both spatial and temporal variations in quantities of interest. It is instructive

to consider both a Bayesian inference framework [13, 14] and profile likelihood analysis [15, 16].

Bayesian inference is widely adopted within the mathematical biology community [34–39]. A drawback of the

Bayesian approach is that it can be computationally expensive, particularly when Markov chain Monte Carlo (MCMC)

methods are used to sample the distributions of interest. In contrast, profile likelihood analysis is a more standard

tool of statistical inference [30, 40], but is far less familiar within the mathematical biology community. Being

optimisation-based, profile likelihood can be computationally inexpensive.

Here we consider data from a scratch assay where cells are labelled using two fluorescent probes to show real-

time progression through the cell cycle [29]. Such labelling allows us to describe the total population of cells as two

subpopulations according to the two cell cycle labels [41]. This experimental approach provides far more information

than a standard scratch assay without cell cycle labels. We model the experiments using a system of reaction–diffusion

equations that are an extension of the Fisher–Kolmogorov model. Using this data and this model, we explore the

practical identifiability of the model parameters using both Bayesian inference and profile likelihood.

One of the main outcomes of this work is that, instead of performing potentially computationally expensive

Bayesian inference to assess practical identifiability and determine parameter estimates, we show that a profile likeli-

hood analysis can provide a fast and reliable preliminary assessment of practical identifiability. Both analysis methods

provide good insight into the identifiability of the spatiotemporal models considered here. In summary, we consider

a minimal model scratch assay data generated using fluorescent cell cycle labelling and show that it is practically

identifiable, whereas a simple extension of that model is not, despite the fact that numerical experiments indicate that

it is structurally identifiable in the limit of infinite data. In all cases, the Bayesian analysis is consistent with profile

likelihood results. However, the profile likelihood analysis is an order of magnitude faster to implement.
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2. Experimental data

We consider a scratch assay performed with the 1205Lu melanoma cell line with FUCCI labelling [29]. The

scratch assay is initiated by seeding 1205Lu melanoma cells into 6-well plates and allowing sufficient time for the

cells to attach, begin to proliferate (Figure 1a), and to form an approximately uniform monolayer (Figure 1b). A

scratch is made in the monolayer (Figure 1c) and a small region of the experiment is imaged (Figure 1c-d) [41].

The geometry of the experiment means that the distribution of cells in the imaged region is independent of vertical

position, and so we treat the cell density as a function of horizontal position, x, and time, t [41]. The boundaries

around the imaged region are not physical boundaries and cells are free to migrate across these boundaries. Since the

density of cells is approximately constant away from the scratch, the net flux of cells locally across each boundary of

the imaged region is approximately zero [41].

Cells in G1 phase fluoresce red and cells in S/G2/M phase fluoresce green (Figure 1f). We represent FUCCI

labelling by treating the total population as two subpopulations: (i) red cells in G1, and (ii) green cells in S/G2/M.

Cells in G1 (red) transition into S/G2/M cells (green) at rate kr > 0. This red-to-green transition does not involve

any change in cell number so we assume this transition is unaffected by the availability of physical space. Cells in

S/G2/M (green) undergo mitosis at rate kg > 0 to produce two daughter cells in G1 (red) (Figure 1f). Since the green-

to-red transition involves the production of two daughter cells we assume this transition only occurs provided there is

sufficient space.

Images of the experiment (Figure 1h-k) show that cells move into the initially–scratched region while simultane-

ously progressing through the cell cycle. At the beginning of the experiment the scratch is approximately 500 µm

wide, and by the end of the experiment the initially-vacant wound space becomes occupied as cells have migrated

into the gap. Visual examination of the density of cells away from the scratched region shows that the cell density

increases with time, and this is driven by cell proliferation. To quantify these visual observations we note that each

experimental image is 1296 µm wide, and we discretise each image into 24 equally–spaced columns of width 54 µm.

We count the number of red cells and green cells per column, divide by the area of the column and by the theoretical

maximum packing density of 0.004 cells/µm2 [41] to give an estimate of the nondimensional density of red cells and

green cells per column. Assuming that each experimental density estimate represents the centre of each column, we

plot these data (Figure 1l–o) shows the spatial variation in density of G1 (red) and S/G2/M (green) cells as a function

of space and time.

We summarise the experimental data using the following notation. Our observations are vectors containing the

observed nondimensional density of red cells, ro
i , and the observed nondimensional density of green cells, go

i , per

column at each position xi and time ti, i.e.

(ro, go, x, t)i = (ro
i , g

o
i , xi, ti). (1)

We use an explicit superscript ‘o’ to distinguish (noisy) observations of r and g from their modelled counterparts

introduced below, while we assume that the space and time coordinates x and t, respectively, are noise-free. In
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particular we use

yo
i = (ro, go)i and si = (xi, ti), (2)

to denote the ith combined vector of observations of r and g, and the ith combined vector of spatiotemporal coordinates

x and t, respectively. Observations are taken at 24 equally–spaced spatial locations, where the spacing between the

observations is 54 µm, at four equally–spaced time points, t = 0, 16, 32 and 4 h. Thus yo consists of 24 × 4 = 96

observations of both of r and g, giving N = 24× 4× 2 = 192 measurements of cell density in total. Experimental data

are provided (Supplementary Material).

3. Mathematical model

We treat our mathematical model as having two components: (i) a deterministic spatiotemporal process model

governing the dynamics of the experiment; and, (ii) a probabilistic observation model. This approach invokes the

reasonable assumption that observations are noisy versions of a deterministic latent model [13]. We describe both

models and note that the same model components are used in the Bayesian and the profile likelihood analyses.

3.1. Process model

A reasonably simple process model for the FUCCI scratch assay can be written as

∂r(x, t)
∂t

= Dr
∂2r(x, t)
∂x2 − krr(x, t) + 2kgg(x, t)

[
1 − r(x, t) − g(x, t)

]
, (3)

∂g(x, t)
∂t

= Dg
∂2g(x, t)
∂x2 + krr(x, t) − kgg(x, t)

[
1 − r(x, t) − g(x, t)

]
, (4)

where Dr > 0 is the diffusivity of cells in G1, Dg > 0 is the diffusivity of cells in S/G2/M, kr > 0 is the rate at

which cells in G1 transition into S/G2/M, and kg > 0 is the rate at which cells in S/G2/M undergo mitosis to produce

two cells in G1 [41]. The solution of Equations (3)–(4), r(x, t) and g(x, t), are taken to represent the (continuous)

underlying mean densities, while ro
i , g

o
i represent noisy observations of these mean densities at the measurement

locations si = (xi, ti).

The process model has four parameters: θ = (Dr,Dg, kr, kg). Given suitable initial conditions, r(x, 0) and g(x, 0),

and parameter values θ, Equations (3)–(4) are solved numerically (Supplementary Material).

Despite the abundance of experimental data in Figure 1 and the apparent simplicity of Equations (3)–(4), it is

unclear whether these experimental data are sufficient estimate the four parameters: θ = (Dr,Dg, kr, kg). Therefore,

we also consider a simpler model whereby we set D = Dr = Dg, implying that cells in G1 diffuse at the same rate as

cells in S/G2/M. This simpler model is characterised by three parameters: θ = (D, kr, kg).

3.2. Observation model
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We assume that observations yo
i are noisy versions of the latent model solutions, y(si, θ). A standard approach

in the mathematical biology literature is to further assume that this observation error is independent and identically–

distributed (iid), and that this noise is additive and normally–distributed, with zero mean and common variance σ2 [8,

13]. Therefore, we have

yo
i | θ ∼ N(y(si, θ), σ2I), (5)

where I is the 2×2 identity matrix. Since our main interest is in θ = (Dr,Dg, kr, kg), we directly specify σ = 0.05 [8,

13], and we will discuss this choice later.

4. Practical identifiability analysis

We consider two approaches for practical identifiability analysis. The first is based on Bayesian inference and

MCMC, and follows the approach outlined by Hines et al. [13]. The second approach is based on profile likelihood

and follows Raue et al. [15]. Both approaches have been considered in the context of identifiability of non-spatial

models, and, as we will show, the same ideas can deal with models of spatiotemporal processes.

As discussed by Raue et al. [42], estimation results from MCMC and profile likelihood are typically similar in the

case of identifiable parameters (and in the low-dimensional setting), but can be very different in the presence of non-

identifiability. In particular, Raue et al. [42] demonstrate that results from MCMC can be potentially misleading in

the presence of non-identifiability. On the other hand, Hines et al. [13] and Seikmann et al. [14] argue that appropriate

MCMC diagnostics can indicate the presence of non-identifiability. Hence we use both methods and consider the

extent to which they agree.

4.1. Parameter bounds

Before outlining the identifiability methodologies, we note that the parameters in Equations (3)–(4) have a physical

interpretation and we can formulate some biologically–motivated bounds. Practical identifiability, given observed

data, can be evaluated by comparing the width of (realised) interval estimates relative to these simple bounds.

Previous estimates of melanoma cell diffusivity in similar experiments found that typical values are often less than

1000 µm2 /h [43] so we take conservative bounds on Dr and Dg to be 0 < Dr,Dg < 2000 µm2 /h. Bounds on kr and

kg can be inferred from previous experimental measurements. The duration of time 1205Lu melanoma cells remain

in the G1 phase varies between 8–30 h, whereas the time 1205Lu melanoma cells remain in the S/G2/M phase varies

between 8–17 h [29]. These measurements imply 0.033 < kr < 0.125 /h and 0.059 < kg < 0.125 /h, so we take

conservative bounds on kr and kg to be 0 < kr, kg < 0.2 /h.

4.2. Bayesian inference

Following Hines et al. [13] we take a Bayesian approach to assess parameter identifiability. Bayesian inference

relies on Bayes’ theorem, written here as

p(θ | yo) ∝ p(yo | θ)p(θ), (6)
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where p(yo | θ) is the likelihood function, p(θ) is the prior and p(θ | yo) is the posterior. The posterior distribution is

the inferential target; this summarises the information about the parameter θ in light of the observed data, yo, and the

prior information specified by p(θ). The likelihood function represents the information contributed by the data, and

corresponds to the probabilistic observation model in 5 evaluated at the observed data.

We explore the parameter space θ by sampling its posterior distribution using a Metropolis-Hastings MCMC

algorithm [13]. The Markov chain starts at position θi, and a potential move to θ∗ is accepted with probability α,

α = min
[
1,

p(θ∗ | yo)
p(θi | yo)

]
. (7)

This Markov chain tends to move toward regions of high posterior probability, but it also provides a mechanism

to move away from local minima by allowing transitions to regions of lower posterior probability. The Markov

chain produced by this algorithm explores the parameter space in proportion to the posterior probability and pro-

vides a finite number of independent, identically distributed samples from the posterior distribution. Proposals in the

MCMC algorithm are made by sampling a multivariate normal distribution with zero mean and covariance matrix

Σ . When θ = (Dr,Dg, kr, kg) we specify Σ = diag(102, 102, 10−6, 10−6) , whereas when θ = (D, kr, kg) we specify

Σ = diag(102, 10−6, 10−6) .

Poor identifiability in a Bayesian setting using MCMC is typically characterised by poorly converging chains,

label-switching, multimodal or overly-broad distributions, and similar phenomena that can be diagnosed either graph-

ically or by computing various diagnostic statistics [13, 14]. We discuss these diagnostic methods in more detail in

the Results section.

4.3. Profile likelihood

Here we describe how a profile likelihood identifiability analysis can be undertaken. This is based on the same

likelihood as above, p(yo | θ), but here we will present results in terms of the normalised likelihood function, denoted

L(θ; yo) =
p(yo | θ)

supθ p(yo | θ)
. (8)

This is considered as a function of θ for fixed data yo. It is also common to take the likelihood as only defined up

to a constant, but here we fix the proportionality constant by presenting results in terms of the normalised likelihood

function as above.

We assume our full parameter θ can be partitioned into an interest parameter ψ and nuisance parameter λ, i.e.

θ = (ψ, λ). These can also be considered functions ψ(θ) and λ(θ) of the full parameter θ, specifying the partition

components. Here we will restrict attention to a scalar interest parameter and a vector nuisance parameter, i.e. multiple

scalar nuisance parameters. Then the profile likelihood for the interest parameter ψ can be written as [30, 40]

Lp(ψ; yo) = sup
λ
L(ψ, λ; yo). (9)

In Equation (9), λ is ‘optimised out’ for each value of ψ, and this implicitly defines a function λ∗(ψ) of optimal λ

values for each value of ψ. For example, given the full parameter θ = (Dr,Dg, kr, kg), we may consider the diffusion
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constant of red cells as the interest parameter and the other parameters as nuisance parameters, i.e. ψ(θ) = Dr and

λ(θ) = (Dg, kr, kg). This would give

Lp(Dr; yo) = sup
(Dg,kr ,kg)

L(Dr,Dg, kr, kg; yo). (10)

Given the assumption of normally distributed errors, and assuming a fixed, common standard deviation σ, profiling

reduces to solving a series of nonlinear least squares problems, one for each value of the parameter of interest, by

using log-density functions. Additional details and example calculations are provided in the Supplementary Material.

We implement this optimisation using MATLAB’s lsqnonlin function with the ‘trust-region-reflective’ algorithm

to implement bound constraints [44]. For each value of the interest parameter, taken over a sufficiently fine grid,

the nuisance parameter is optimised out and the previous optimal value is used as the starting guess for the next

optimisation problem. Uniformly–spaced grids of 50 points, defined between previously–discussed lower and upper

bounds are used. Results are plotted in terms of the normalised profile likelihood functions; cubic interpolations are

used to define the profiles for all parameter values. Solutions did not exhibit any notable dependence on initial guesses.

The likelihood function is often characterised as representing the information that the data contains about the

parameters, and the relative likelihood for different parameter values as indicating the relative evidence for these

parameter values [40, 45, 46]. As such, a flat profile is indicative of non-identifiability, therefore a lack of information

in the data about a parameter [15]. In general, the degree of curvature is related to the inferential precision [15, 16, 42].

Likelihood-based confidence intervals can be formed by choosing a threshold-relative profile likelihood value, which

can be approximately calibrated via the chi-square distribution (or via simulation). We use a threshold of 0.15 as a

reference, which corresponds to an approximate 95% confidence interval for sufficiently regular problems [40]. The

points of intersection were determined using the interpolated profile likelihood functions.

5. Results and Discussion

Here we consider the results of the above methods of identifiability analysis under the two scenarios introduced

previously. In Scenario 1 we consider Equations (3)–(4) under the assumption that both subpopulations have the same

diffusivity, Dr = Dg = D, so that θ = (D, kr, kg). In Scenario 2 we consider the same model without this assumption

so that θ = (Dr,Dg, kr, kg). We first consider the Bayesian analysis using MCMC, and then the profile likelihood

analysis. All units of diffusivities are µm2/h and all units for rate parameters are /h.

5.1. Bayesian analysis

As we are focused on the question of identifiability, here we use uniform priors on all parameters. This is a natural

choice when we are interested in identifiability since we want to focus on the information about the parameter values

inherent within the data rather than from some imposed prior [13].
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In the first scenario where Dr = Dg = D, we see rapid convergence of the Markov chain for D, kr and kg (Figure

2a-c). Importantly, after the Markov chain moves away from the initial location, θ0, it remains within the previously–

stated conservative bounds. Additional results in the Supplementary Material confirm similar results for different θ0.

A plot matrix representation of the univariate and bivariate marginal densities is given (Figure 2d-i) [47] where the

univariate marginals (Figure 2d, g, i) are unimodal and approximately symmetric. The univariate posterior modes

are θ̄ = (705, 0.0266, 0.0727), confirming that each component lies within the biologically–feasible range, and the

univariate 95% credible intervals are relatively narrow. A posterior predictive check [47] with 30 randomly sampled

parameter choices from the converged region of the Markov chain provides visual confidence in the MCMC results

and the appropriateness of the model (Figure 2j-m) [47]. Additional comparison of the experimental data and solution

of the model parameterised with θ̄ also confirms this (Supplementary Material). In summary, setting D = Dr = Dg,

our model parameters appear to be identifiable according to the Bayesian approach.
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Figure 2: Typical Markov chain iterations, of length 51,000, for D, kr and kg in (a)–(c), respectively. In this case the Markov chain is initiated with θ0 = (500, 0.05, 0.05). Results in (d)–(i) show a
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modes are D̄ = 707 µm2 /h, k̄r = 0.0266 /h, and k̄g = 0.0727 /h, and the 95% credible intervals are D ∈ [455, 1007], kr ∈ [0.0187, 0.0362] and kg ∈ [0.0628, 0.0727]. In the univariate marginals the
95% credible intervals are shown in red dashed vertical lines, in the bivariate marginals the region of maximum density is shown in the darkest shade. Results in (j)–(m) superimpose 30 solutions
of Equations (3)–(4) where θ is randomly sampled from the Markov chain. MCMC results use σ = 0.05.
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In the second scenario, where Dr , Dg, the Markov chains for Dr, Dg, kr and kg (Figure 3a-d) are very different to

the first scenario. The Markov chains for kr and kg remain within biologically–feasible bounds. However, the Markov

chains for Dr and Dg often move beyond the previously-stated conservative bounds with no obvious convergence.

Additional results for different choices of θ0 (Supplementary Material) indicate that these poor results for Dr and

Dg are consistent across a number of choices of θ0. A plot matrix representation confirms that we obtain well–

behaved posterior distributions for kr and kg, but that the results for Dr and Dg are problematic since the univariate

posterior distributions are not unimodal and the 95% credible intervals are relatively wide (Figure 3e–n). A posterior

predictive check with 30 randomly sampled parameter choices from the latter part of the Markov chain are provided

for completeness (Figure 3o–r). The posterior predictive check compares model predictions with the experimental

data, with additional comparisons using the posterior median (Supplementary Material). However, these comparisons

are less useful since they are based on parameters arising from a Markov chain that has not settled to a well-defined

posterior. In summary, without assuming Dr = Dg, our model parameters are practically non-identifiable according to

the Bayesian approach.
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Figure 3: Typical Markov chain iterations, of length 51,000, for Dr , Dg, kr and kg in (a)–(d), respectively. In this case the Markov chain is initiated with θ0 = (228, 803, 0.0334, 0.0790). Results in
(e)–(n) show a plot matrix representation of the univariate marginals and bivariate marginals estimated using the final 50,000 iterations of the Markov chain in (a)–(d). For the univariate distribution
the posterior modes are D̄r = 758 µm2 /h, D̄g = 1203 µm2 /h, k̄r = 0.0259 /h, and k̄g = 0.0703 /h. The 95% credible intervals are Dr ∈ [86, 1100], Dg ∈ [104, 1939], kr ∈ [0.0188, 0.0371]
and kg ∈ [0.0617, 0.0863]. In the univariate marginals the 95% credible intervals are shown in red vertical dashed lines, in the bivariate marginals the region of maximum density is shown in the
darkest shade. Results in (o)–(r) superimpose 30 solutions of Equations (3)–(4) where θ is randomly sampled from the Markov chain. MCMC results use σ = 0.05.
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5.2. Profile likelihood analysis

Here we consider the results from our profile likelihood analysis. Each profile corresponds to taking a partic-

ular parameter as the interest parameter and the remaining parameters as nuisance parameters to be optimised out.

More general partitions into an interest parameter and nuisance parameters are also considered in the Supplementary

Material. Here we present results for Scenario 1 (Figure 4a–c) and results for Scenario 2 (Figure 4d–f).

In the first scenario where Dr = Dg = D, we see regular shaped profiles with clearly defined peaks for D, kr and kg

(Figure 4a-c). These results are very similar to those obtained from the Bayesian analysis using MCMC, both in terms

of interval estimates and maximum likelihood estimates. The maximum likelihood estimates are θ∗ = (D∗, k∗r , k
∗
g) =

(691, 0.0289, 0.0719).

In the second scenario, where Dr , Dg, we see very similar estimates for kr and kg. The diffusivities, Dr and

Dg, are much less well-determined, however. In particular, the profile-likelihood-based confidence interval for Dg

covers the entire range of the previously-stated conservative bounds, while that for Dr only excludes a negligible part

of this region. Thus, while kr and kg are well identified, Dr and Dg are not. These results are again very similar to

those obtained from the Bayesian analysis using MCMC, though the diffusivity estimates are even more conservative

here. The maximum likelihood estimates are θ∗ = (D∗r ,D
∗
g, k
∗
r , k
∗
g) = (612, 842, 0.0290, 0.0717). We also generated

profiles for the difference Dr − Dg (Supplementary Material). The associated interval encompasses a broad range

of values, including zero, but also includes very large positive and negative values. This is consistent with a lack

of practical identifiability of Dr − Dg. Despite the fact that the diffusivities are practically non-identifiable with our

relatively abundant experimental data, further experimentation with synthetic data indicates that all parameters are, in

fact, strictly identifiable provided sufficient data (Supplementary Material).

In both cases the results of the profile likelihood analysis is consistent with the MCMC-based Bayesian analysis.

However, the profiles are far cheaper to compute than full MCMC posterior distributions. For example, each profile

here was computed in less than one minute on a standard laptop whereas the MCMC analysis took approximately 30

minutes of computation. Each optimisation for a given value of the target parameter in the profile analysis took less

than one second to solve, and profiles can be computed in parallel.
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Figure 4: Profile likelihoods. Each profile likelihood is computed using a grid of 50 equally-spaced points; cubic interpolation is used for display
and to determine confidence intervals. Approximate 95% confidence intervals are indicated based on a relative likelihood threshold of 0.15 [40].
Results for the first scenario where Dr = Dg = D (a-c), and results for the second scenario where Dr , Dg (d-f). In (d) the profile likelihood for
Dg and Dr are in red (solid) and green (dashed), respectively. Interval estimates are: D ∈ [439, 1018], kr ∈ [0.0212, 0.0366], kg ∈ [0.0601, 0.0853]
for D = Dr = Dg. Maximum likelihood estimates are: D∗, k∗r , k∗g = 691, 0.0289, 0.0719 for D = Dr = Dg. Interval estimates are: Dr ∈ [1.4, 1647],
Dg ∈ [0, 2000] (i.e. the whole interval), kr ∈ [0.0209, 0.0373], kg ∈ [0.0597, 0.0861] for Dr , Dg. Maximum likelihood estimates are: D∗r , D∗g, k∗r ,
k∗g = 612, 842, 0.0290, 0.0717 for Dr , Dg.

6. Conclusions and Outlook

In this work we assess the practical identifiability of a spatiotemporal reaction–diffusion model of a scratch assay

where we have access to a relatively large amount of experimental data. In the literature, most scratch assays are

reported by providing single images at the beginning and the conclusion of the experiment without making measure-

ments of spatial distributions of cell density at multiple time points (e.g. Fattahi et al. [48]; Wang et al. [49]). In

contrast, we consider detailed cell density measurements of two subpopulations at four time points with a relatively

high spatial resolution of cell density at 24 spatial locations. This means that we work with 24 × 4 × 2 = 192 mea-

surements of cell density. Given this data set, a key decision when using a mathematical model is to determine how

complicated the model ought to be. We first explored this question through a Bayesian, MCMC-based framework,

and then with a profile likelihood–based approach.

MCMC–based Bayesian analysis is relatively common in the systems biology literature for temporal models [34].

Bayesian MCMC approaches for spatiotemporal models are less common, but increasingly of interest. While it is
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established that practical parameter identifiability can often be diagnosed using an MCMC framework, many appli-

cations of Bayesian MCMC in the mathematical biology literature never explicitly consider the question of practical

identifiability [35]. Furthermore, MCMC can be misleading in the presence of true non-identifiability [42], as can

other methods such as the Bootstrap or Fisher-information-based approaches [16]. Even assuming that MCMC can

reliably determine non-identifiability, MCMC can be computationally expensive, especially for models with large |θ|.

Thus we also assess identifiability using an optimisation-based, profile likelihood approach. In contrast to previous

work on temporal data and temporal processes, here we apply this approach to spatiotemporal reaction–diffusion

models and spatiotemporal data. Algorithms to are available on GitHub.

A key feature of our study is that we consider two slightly different modelling scenarios. In the first scenario we

assume D = Dr = Dg so that the diffusivity of cells in G1 phase is identical to the diffusivity of cells in the S/G2/M

phase. In this case there are three unknown parameters, θ = (D, kr, kg). In contrast, for the second scenario we do not

invoke this assumption, and there are four unknown parameters, θ = (Dr,Dg, kr, kg). Despite the relative abundance

of experimental data and the apparent simplicity of the reaction-diffusion model, we find that the parameters are

identifiable in the first scenario but are practically non-identifiable in the second.

Our results show that the profile likelihood provides similar results to the Bayesian MCMC approach, with the

advantage of being an order of magnitude faster to implement. Typical MCMC results in Figures 2–3 require approx-

imately 30 minutes of computation time whereas the profile likelihood results in Figure 4 require approximately one

minute to compute on a standard laptop (DELL, Intel Core i7 Processor, 2.8GHz, 16GB RAM). Both methods indi-

cate practical non-identifiability of the diffusivities in the second scenario. As mentioned, however, profile likelihood

has previously been shown to be more reliable in the presence of true non-identifiability [16, 42]; this is an important

consideration as the reaction–diffusion models we used here are already relatively simple and neglect certain mecha-

nisms. Potential mechanisms that might be incorporated in further extended model include cell-cell adhesion [7, 50]

or directed motion such as chemotaxis [51, 52].

Visual inspection of the posterior predictive check in Figure 2 shows that while the overall comparison between

the model and the experimental data is reasonable, there are some minor discrepancies, such as in the G1 (red)

subpopulation near the centre of the scratch at t = 32 h, suggesting some model inadequacy. This observation is

consistent with the fact that we neglect some mechanisms that could potentiaily improve the quality of the match.

Had we taken a more standard approach without considering an identifiability analysis, we might have been tempted

to extend Equations (3)–(4) to improve the quality of match between the data and the solution of the model. Such

extensions (e.g. adhesion, chemotaxis), while conceptually straightforward to implement, involve increasing the

dimension of the parameter space. We caution against naively implementing such extensions since our analysis shows

that even the simpler models we consider are not always practically identifiable even with the extensive data set that

we work with here. A profile likelihood analysis of particular, lower-dimensional interest parameters within a more

complex model may still be feasible, however.

There are many ways our analysis could be extended, in terms of the process model, the observation model and
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the experimental model. A key assumption here is that the observation model is Gaussian with a fixed variance.

While this is a standard assumption [8, 13], one possible extension would be to treat the observation model parameter

σ as a variable to be estimated at the same time as the process model parameters θ. Another extension would be to

recognise that since we are dealing with count data, a multinomial observation model could be more appropriate. Both

of these extensions could be dealt with directly in the same MCMC framework but the profile likelihood optimisation

problems would become slightly more complicated than simple least squares. In terms of the process model, a further

extension would be to apply the same reaction–diffusion models in a different geometry. For example, data reported

by Jin et al. [53] use a different experimental approach to produce square and triangular–shaped scratches. While

the same reaction–diffusion models to those used here could be used to model Jin et al.’s [53] experiments, such

models would need to be solved in two spatial dimensions because of the difference in initial condition [54]. This

extension could be handled by the same MCMC and the same profile likelihood approaches without increasing the

dimension of the parameter space. However, this extension would increase the computational effort required to solve

the reaction–diffusion model and this would amplify the computational advantage of the profile likelihood method

over the Bayesian MCMC approach. In terms of the experimental model, in this work we use cell cycle labelling

with two colours, red and green. More advanced cell cycle labelling technologies, such as FUCCI4 [55, 56], are now

available, and these technologies label the cell cycle with four fluorescent colours [55, 56]. Data from a scratch assay

where cells are labelled with FUCCI4 could be interpreted with an extended system of reaction–diffusion equations,

similar to Equations (3)–(4). Such an extended system of equations would be similar to Equations (3)–(4), but the

dimensionality of the parameter space would increase. With four colours we would have the possibility of working

with four distinct cell diffusivities and four distinct rate parameters, thereby doubling the size of the parameter space,

hence we leave this for future consideration.
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