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Abstract 
Technological advances have enabled the joint analysis of multiple molecular layers at            
single cell resolution. At the same time, increased experimental throughput has facilitated            
the study of larger numbers of experimental conditions. While methods for analysing            
single-cell data that model the resulting structure of either of these dimensions are beginning              
to emerge, current methods do not account for complex experimental designs that include             
both multiple views (modalities or assays) and groups (conditions or experiments). Here we             
present Multi-Omics Factor Analysis v2 (MOFA+), a statistical framework for the           
comprehensive and scalable integration of structured single cell multi-modal data. MOFA+           
builds upon a Bayesian Factor Analysis framework combined with fast GPU-accelerated           
stochastic variational inference. Similar to existing factor models, MOFA+ allows for           
interpreting variation in single-cell datasets by pooling information across cells and features            
to reconstruct a low-dimensional representation of the data. Uniquely, the model supports            
flexible group-level sparsity constraints that allow joint modelling of variation across multiple            
groups and views. 

To illustrate MOFA+, we applied it to single-cell data sets of different scales and designs,               
demonstrating practical advantages when analyzing datasets with complex group and/or          
view structure. In a multi-omics analysis of mouse gastrulation this joint modelling reveals             
coordinated changes between gene expression and epigenetic variation associated with cell           
fate commitment.  
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Introduction 
Single-cell methods have provided unprecedented opportunities to assay cellular         
heterogeneity. This is particularly important for studying complex biological processes,          
including the immune system, embryonic development and cancer ​1–4​. 

Following the establishment of the first scalable single-cell RNA sequencing (scRNA-seq)           
methods, other molecular layers are increasingly receiving attention, including single-cell          
assays for DNA methylation ​5–9 and chromatin accessibility ​10–12​. More recently, technological            
advances enabled multiple biological layers to be probed in parallel in the same cells ​12,13​,               
including: single-cell genome and transcriptome (G&T-seq) ​14​, single-cell DNA methylation          
and transcriptome (scM&T-seq) ​15​, single-cell chromatin accessibility and transcriptome         
(sci-CAR) ​16 and single-cell Nucleosome, Transcriptome and Methylation (scNMT-seq) ​17​,          
among others ​18–24​. These experimental techniques provide the basis for studying regulatory            
dependencies between transcriptomic and (epi)-genetic diversity at the single-cell level.  

However, from a computational perspective, the integration of single-cell assays remains           
challenging owing to high degrees of missing data, inherent assay noise, and the scale of               
modern single-cell datasets, which can potentially span millions of cells. Previously, we            
introduced Multi-Omics Factor Analysis (MOFA), a statistical framework that addresses          
some of these challenges. However, the inference framework of MOFA is not designed to              
cope with increasingly-large scale datasets. Moreover, while MOFA is already devised to            
account for multiple views, the model makes strong assumptions about the dependencies            
across cells and in particular cannot account for additional structure between cells, e.g.             
batch, donors or conditions. By pooling and contrasting information across studies or            
experimental conditions, it would be possible to obtain more comprehensive insights into the             
complexity underlying biological systems ​25–29​.  

Other methods that have been proposed for integrating different data modalities include            
Seurat (v3) and LIGER, two strategies based on dimensionality reduction and manifold            
alignment ​30,31​. Both methods anchor independent datasets from related populations of cells            
by exploiting the existence of a common feature space (for example matching gene             
expression and corresponding promoter accessibility). MOFA+, in contrast, is aimed at a            
different problem and allows for integrating data modalities via a common sample space (i.e.              
measurements derived from the same set of cells), where the features may be distinct              
across views. 

 

Model description 
In a previous study, we developed Multi-Omics Factor Analysis (MOFA), a statistical            
framework for the integrative analysis of multiple data modalities​32​. Using a Bayesian Group             
Factor Analysis framework, MOFA infers a low-dimensional representation of the data in            
terms of a small number of (latent) factors that capture the global sources of variability               
(​Figure 1a ​). While the model is applicable to single-cell assays, MOFA and related factor              
models have critical limitations, including their scalability and simplistic assumptions on the            
structure of the data. In particular, these models do not provide a principled approach for               
integrating multiple groups and views within the same inference framework. 
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In MOFA+ we address these challenges by i) developing a stochastic variational inference             
framework amenable to GPU computations, enabling inference with potentially millions of           
cells and ii) incorporating priors for flexible, structure regularisation, thus enabling joint            
modeling of groups of samples and multiple views. 

Briefly, the inputs to MOFA+ are multiple datasets where features have been aggregated             
into non-overlapping sets of views and where cells have been aggregated into            
non-overlapping sets of groups (​Figure 1a ​). Views generally correspond to different data            
modalities or omics (i.e. RNA expression, DNA methylation and chromatin accessibility), and            
groups to different experiments, batches or conditions. Importantly, the probabilistic          
framework underlying MOFA+ naturally handles missing values. During model training,          
MOFA+ infers K latent factors (per group) with associated feature weight matrices (per view)              
that explain the major axes of variation across the datasets. Importantly, the model provides              
sparsity-inducing priors to account for the structure of the data and to encourage sparse              
solutions to deliver interpretable solutions. After training, the model output enables a wide             
range of downstream analyses (​Figure 1b​), including variance decomposition, inspection of           
feature weights, inference of differentiation trajectories, and clustering, among others. 

For technical details and mathematical derivations, we refer the reader to the ​Methods and              
the ​Appendix. A comparison of the model features with other factor analysis models is              
provided in ​Table S1 ​. 
 

Model validation using simulated data 

First, we validated the new features of MOFA+ using simulated data drawn from its              
generative model. The simulated data represented a range of dataset sizes with differing             
numbers of views and groups. 

First, to assess the utility of stochastic variational inference, we trained different models             
either using conventional (deterministic) variational inference (VI), or using stochastic          
variational inference (SVI). Across a wide range of hyperparameter settings (see ​Methods ​)            
we observed that SVI yields Evidence Lower Bounds (i.e., values of the objective function)              
that are consistent with those obtained from conventional inference (​Figure S1 ​). However,            
the GPU-accelerated SVI implementation in MOFA+ achieved up to a ~20 fold increase in              
speed compared to VI, with the most dramatic speedups observed for large datasets. This              
inference scheme facilitates the application of MOFA+ to datasets comprising hundreds of            
thousands of cells using commodity hardware (​Figure S2 ​). 
Next, we assessed the group-wise sparsity prior, by assessing to what extent it facilitates the               
identification of factors with simultaneous differential activity between groups and views.           
Indeed, when simulating data where factors explain differing amounts of variance across            
groups and across views, MOFA+ was able to more accurately reconstruct the true factor              
activity patterns than MOFA v1 or standard Bayesian Factor analysis (​Figure S3 ​). 
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Integration of a heterogeneous time-course single-cell RNA-seq       
dataset  
To illustrate the ability of MOFA+ to model multiple groups, we considered a time course               
scRNA-seq dataset (a single view), consisting of ​16,152 cells that were isolated from             
multiple mouse embryos at embryonic days (E) 6.5, E7.0 and E7.25 (two biological             
replicates per stage). In this dataset, embryos are expected to contain similar            
subpopulations of cells but also to exhibit transcriptional differences due to variation in the              
rate of the developmental progression. As a proof of principle, we used MOFA+ to              
disentangle stage-specific variation from variation that is shared across all samples. For this             
purpose, we considered the six batches of cells (two replicates for each of the three               
embryonic stages) as different groups in the MOFA+ model. 

MOFA+ identified 10 robust factors (Methods, ​Figure S4)​, capturing between 35% and 55%             
of the total transcriptional variance per embryo (​Figure 2a ​). Some factors recapitulate the             
existence of post-implantation developmental cell types, including extra-embryonic (ExE) cell          
types (Factor 1 and Factor 2) and the transition of epiblast cells to nascent mesoderm via a                 
primitive streak transcriptional state (Factor 4; ​Figure 2b-c and Figure S5 ​). Consistently, the             
top weights for these factors are enriched for lineage-specific gene expression markers,            
including ​Ttr and ​Apoa1 for ExE endoderm, ​Rhox5 and ​Bex3 for ExE ectoderm, and ​Mesp1               
and ​Phlda2 for nascent mesoderm​33​. Other factors correspond to the formation of            
mesoderm-derived subpopulations that emerge from the caudal primitive streak after E7.0,           
including mesenchymal cells (Factor 9, ​Figure S6 ​). MOFA+ also detects technical variation            
due to metabolic stress that affects all batches in a similar fashion (Factor 3, ​Figure S7 ​).  
When inspecting the factor activity across development, we observe that the percentage of             
variance explained by Factor 1 is not correlated with developmental progression, indicating            
that commitment to ExE endoderm fate occurs early in the embryo and that the proportion of                
this cell type remains relatively constant from E6.5 to E7.25. In contrast, the amount of               
variance explained by Factor 4 increases over time (​Figure 2d​), consistent with a higher              
proportion of cells committing to mesoderm after ingression through the primitive streak.  

All together, this application shows how MOFA+ can identify biologically meaningful structure            
in scRNA-seq datasets with multiple groups. Interpretability is achieved at the expense of             
limited information content per factor (due to the linearity assumption). Nevertheless, the            
MOFA factors can be used as input to other methods that learn compact nonlinear manifolds               
that discriminate cell types (​Figure 2e ​) and enable the reconstruction of pseudotime            
trajectories​34,35​. 

 

Identification of context-dependent methylation signatures     
associated with cellular diversity in the mammalian cortex 
As a second use case, we considered how MOFA+ can be used to investigate variation in                
epigenetic signatures between populations of neurons. This application illustrates how a           
multi-group and multi-view structure can be defined from seemingly uni-modal data, which            
can then be used to test specific biological hypotheses. 
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We analysed 3,069 cells isolated from the frontal cortex of young adult mice, where DNA               
methylation was profiled using single-cell bisulfite sequencing ​7​. Recent studies have          
demonstrated that neurons contain significant levels of non-CpG methylation (mCH), an           
epigenetic mark that has been historically dismissed as a methodological artifact of            
incomplete bisulfite conversion ​36–39​.  

Here we used MOFA+ to dissect the degree of coordination between mCH and mCG              
signatures in different regions of the brain. As input data we quantified mCH and mCG levels                
at gene bodies, promoters and putative enhancer elements (Methods). Each combination of            
genomic and sequence context (e.g., mCG at enhancer elements) was defined as a             
separate view. To explore the influence of the neuron’s location we grouped cells according              
to their cortical layer: Deep, Middle or Superficial (​Figure S8 ​).  

The sparseness of DNA methylation data results in large amounts of missing values, which              
hampers the use of conventional dimensionality reduction techniques such as PCA or NMF             
34,35,40​. By contrast, the probabilistic framework underlying MOFA+ naturally accounts for           
missing values ​32​.  

MOFA+ identifies 5 robust factors (Methods; ​Figure S9 ​) that explain the structured            
heterogeneity across genomic contexts and cortical layers. Factor 1, the major source of             
variation, is linked to the existence of inhibitory and excitatory neurons. This factor shows              
significant mCG activity across all cortical layers, mostly driven by coordinated changes in             
enhancer elements, but to some extent also gene bodies (​Figure 3a,b​). Consistently, the top              
weights in the mCG:gene body view are enriched for genes whose RNA expression has              
been shown to discriminate between the two classes of neurons, including ​Neurod6 and             
Nrgn ​7​. In addition, this analysis identifies novel genes with differential gene body mCG              
levels that may have yet unknown roles in defining the epigenetic landscape of neuronal              
diversity, including ​Vsig2 ​, ​Taar3 ​ and ​Cort​ (​Figure S10 ​).  
Factor 2 captures genome-wide differences in global mCH levels (R=0.99), which is            
moderately correlated with differences in global mCG levels (R=0.32) (​Figure S11 ​). Factor 3             
captures heterogeneity linked to the increased cellular diversity along cortical depth, with the             
Deep layer displaying significantly more diversity of excitatory cell types than the Superficial             
layer (​Figure 3a,c ​). Again, we observe that the MOFA+ factors are a suitable input to learn                
non-linear manifolds and reveal the existence of subpopulations of both excitatory and            
inhibitory cell types (​Figure 3d​). Notably, the MOFA+ factors are significantly better at             
identifying subpopulations than the conventional approach of using Principal Component          
Analysis with imputed measurements (​Figure S12 ​). 
Interestingly, in addition to the dominant mCG signal, MOFA+ connects Factor 1 and Factor              
3 to variation in mCH, which could suggest a role of mCH in cellular diversity. We                
hypothesise that this can be supported if the genomic regions that show mCH signatures are               
different than the ones marked by the conventional mCG signatures. To investigate this, we              
correlated the mCH and mCG feature weights for each factor and genomic context (​Figure              
3e and Figure S13 ​). In all cases we observe a strong positive dependency, indicating that               
mCH and mCG signatures are spatially correlated and target similar loci. 

Taken together, this result supports the hypothesis that mCH and mCG tag the same              
genomic loci and are associated with the same sources of variation, suggesting that the              
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presence of mCH may be the result of non-specific ​de novo methylation as a by-product of                
the establishment of mCG​36​. 

 

MOFA+ reveals molecular signatures of lineage commitment during        
mammalian embryogenesis 
As a final application, we considered a complex dataset with multiple sample groups and              
views. The dataset consists of a multi-omic atlas of mouse gastrulation where scNMT-seq             
was used to simultaneously profile RNA expression, DNA methylation and chromatin           
accessibility in 1,828 cells at multiple stages of development ​41​. In this dataset MOFA+              
provides a method for delineating coordinated variation between the transcriptome and the            
epigenome and for detecting at which stage(s) of development it occurs. 

As input to the model we quantified DNA methylation and chromatin accessibility values over              
two sets of regulatory elements: gene promoters and enhancer elements (distal H3K27ac            
sites ​41–43​). RNA expression was quantified over protein-coding genes. After data processing            
(​Methods ​), separate views were defined for the RNA expression and for each combination             
of genomic context and epigenetic readout. Cells were grouped according to their            
developmental stage (E5.5, E6.5 and E7.5), reflecting the underlying experimental design           
(​Figure S14 ​). Notably, the epigenetic readouts are extremely sparse, with, on average, only             
18% and 10% of cells having recorded data at a gene promoter for DNA methylation and                
chromatin accessibility, respectively. In this context, methods that pool information across           
cells and features are essential for robust inference. 

MOFA+ identifies 8 robust factors with a minimum variance explained of 1% in the gene               
expression view. The first factor captured the formation of ExE endoderm, a cell type that is                
present across all stages (​Figure 4a ​), in agreement with our previous results using the              
independently generated transcriptomic atlas of mouse gastrulation (​Figure 2 ​). MOFA+ links           
Factor 1 to changes across all molecular layers. Notably, the distribution of weights for DNA               
methylation are skewed towards negative values (at both enhancers and promoters),           
indicating that ExE endoderm cells are characterised by a state of global demethylation,             
consistent with previous studies ​44​. 

The next factors captured the molecular variation associated with the emergence of the             
primary germ layers at E7.5: mesoderm (Factor 2, ​Figure 4b​), and embryonic endoderm             
(Factor 4, ​Figure S15 ​). Again, for both factors, MOFA+ connects the transcriptome variation             
to changes in DNA methylation and chromatin accessibility. Yet, in striking contrast to Factor              
1, the variance decomposition analysis and the distribution of weights indicate that the             
epigenetic dynamics are mostly driven by enhancer elements. Little coordinated variation is            
observed in promoters (​Figure 4b​), even for genes that show strong differential expression             
between germ layers (​Figure S16 ​). These results are in agreement with other studies that              
pinpointed distal regulatory elements as a major target of epigenetic modifications during            
embryogenesis ​45–47​.  

The remaining factors capture variation that is mostly driven by the RNA expression, whose              
etiology can be related to the existence of morphogenic gradients (Factor 8, ​Figure S17 ​),              
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the emergence of other cellular subpopulations during gastrulation (Factor 7, ​Figure S18 ​)            
and cell cycle (Factor 6, ​Figure S19 ​). 
In conclusion, the MOFA+ output suggests that independent cell fate commitment events            
undergo different modes of epigenetic variation. While some lineages manifest global           
changes in the epigenetic landscape (ExE endoderm, Factor 1), other cell types are             
associated with the emergence of local epigenetic patterns that are driven by specific             
genomic contexts (embryonic endoderm and mesoderm, Factors 2 and 4). 

 

Discussion 
As single-cell technologies mature, they are applied to generate data sets of increasing             
complexity, with highly structured and sparse measurements ​16,17,24,48,49​. Consequently, there          
is a need for integrative computational frameworks that can robustly and systematically            
interrogate the data generated in order to reveal the underlying sources of variation ​25​.  

In this study we introduced MOFA+, a generalisation of the MOFA framework ​32 that              
facilitates analysis of large-scale datasets with complex multi-group and/or multi-view          
experimental designs. From a technical perspective, MOFA+ provides two major features:           
first, GPU-accelerated stochastic variational inference ensures scalability to potentially         
millions of cells; second, structured sparsity priors provide a principled inference framework            
to jointly analyse multiple data sets. Additionally, MOFA+ inherits all the features from its              
predecessor, including a natural approach for handling missing values as well as the             
capacity to perform inference with non-Gaussian readouts ​32​.  

Although MOFA+ represents an important step forward in the analysis of single-cell omics             
data, it has some limitations. First, it requires multi-modal measurements from the same set              
of cells. This contrasts with other integrative frameworks such as Seurat ​31 or LIGER ​30​,               
which anchor data sets based on the assumption of a common feature space (e.g. matching               
gene expression and promoter accessibility). Second, the model is not currently able to             
capture strong non-linear relationships (​Figure S20 ​). We speculate that this could be            
addressed by combining MOFA with concepts from variational autoencoders, as recently           
proposed for the analysis of scRNA-seq data ​50–52​. Third, the model assumes independence             
between features in its prior distributions, despite the fact that genomic features are known              
to interact via complex regulatory networks​53​. 

To facilitate adoption of the method, we deploy MOFA+ as open-source software with             
multiple tutorials and a web-based analysis workbench, to support for a large variety of              
downstream analysis, enabling a user-friendly in-depth characterisation of structured         
single-cell data. 
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Methods 

Multi-Omics Factor Analysis v2 model (MOFA+) 

The input to MOFA+ is a list of matrices, each matrix containing a predefined group of cells                 
(group) and a predefined set of features (view, see Figure 1 for a visual representation). 

We introduce the following notation: M for the number of views, D​m for the number of                
features in the ​m​-th view, G for the number of groups, N​g for the number of samples in the                   
g ​-th group and K for the number of factors.  

As in the original version of MOFA ​32​, the underlying master equation is the standard matrix                
factorisation framework: 

 

● Y​gm​ denotes the matrix of observations for the ​m​-th view and the ​g ​-th group.  
● W​m​ denotes the weight matrix for the ​m​-th view 
● Z​g​ ​denotes the factor matrix for the ​g ​-th group 
● ε ​gm denotes the residual noise for the ​m​-th view and the ​g ​-th group. The specific form                

of the noise can be tailored to the nature of the data type ​32 

The factor matrix ​Z​g ​has dimensionality (N​g​,K) and contains the low-dimensional           
representation of the samples from the ​g ​-th group. The weight matrix ​W​m ​has dimensionality              
(D​m​,K) and contains an association score for each feature with each factor. The noise matrix               
ε ​gm ​contains the unexplained variance (i.e. noise) for each feature in each group. 

The model is formulated in a probabilistic Bayesian setting. We introduce prior distributions             
on all unobserved variables of the model in order to induce specific regularisation criteria, as               
described below.  

Interpretation of the factors  

The MOFA+ Factors capture global sources of variability in the data. The factors matrices              
express how much the MOFA+ Factors are active within the various groups of cells.              
Mathematically, each factor orders cells along a one-dimensional axis centered at zero.            
Samples with different signs have opposite effects along the inferred axis of variation. Cells              
that remain centered at zero represent either an intermediate phenotype or no phenotype at              
all associated with the factor under consideration. 

Interpretation of the weights 

The weights matrices provide a score for how strong each feature relates to each factor,               
hence allowing a biological interpretation of the MOFA+ Factors. Genes with no association             
with the factor have values close to zero, while genes with strong association with the factor                
have large absolute values. The sign of the loading indicates the direction of the effect: a                
positive loading indicates that the feature has higher levels in the cells with positive factor               
values, and vice versa. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2019. ; https://doi.org/10.1101/837104doi: bioRxiv preprint 

https://paperpile.com/c/jWHyNM/m7O1
https://paperpile.com/c/jWHyNM/m7O1
https://doi.org/10.1101/837104
http://creativecommons.org/licenses/by-nd/4.0/


Model regularisation 

The regularisation of the weights and the factors is critically important for enabling MOFA to               
perform inference with structured data sets.  
In the original version of MOFA, structured priors were applied to the weights to enable               
inference and interpretable outputs of multi-view data sets (i.e. structured features but not             
samples were facilitated). In MOFA+ we generalised this by introducing a symmetric            
regularisation for both the factors and weights, hence accounting for structure in both the              
sample and the feature space (see appendix for mathematical details). The main purpose is              
to enable the identification of factors that are active in different subsets of both groups and                
views.  
The first level of sparsity uses an Automatic Relevance Determination prior to explicitly             
model differential activity of factors across views and/or across groups. The second level of              
sparsity uses a spike-and-slab prior to simultaneously push individual weights and factors to             
zero. This effectively encourages sparse solutions where factors are (potentially) associated           
with a small number of active features and/or active within small subsets of samples. Using               
feature-wise sparsity priors helps disentangling technical and biological sources of variability           
54​. 

Noise model 

MOFA+ supports a variety of different likelihood models to enable integration of diverse             
combinations of data types. These include a Gaussian noise model for continuous data, a              
Poisson model for count data and a Bernoulli model for binary data. This feature is inherited                
from MOFA ​32​. 

Statistical variational inference 

In MOFA, inference was performed using mean-field variational Bayes ​55–57​. While this            
framework is typically faster than sampling-based Monte Carlo approaches, it becomes           
prohibitively slow when applied to large single-cell datasets. In MOFA+ we implemented a             
stochastic version of the algorithm ​57,58 that can be accelerated by performing computation             
using GPUs.  
 
The use of stochastic variational inference comes at the cost of introducing additional             
hyperparameters: batch size (number of cells used to compute the gradients), learning rate             
(step size) and forgetting rates (rate of decay of the learning rate). While we find the                
hyperparameters to be robust across a variety of simulated data (​Figure S1 ​), their             
optimisation is likely to be important in some contexts. By default we use GPU-powered              
standard variational inference if the full data set fits in the GPU. Otherwise, we perform               
stochastic variational inference using a batch size of 50%, a learning rate of 0.5 and a                
forgetting rate of 0.25. 
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Variance decomposition 

Once the model is trained, we can quantify how much of the observed variance is explained                
by each factor ​k in each group ​g and in each view ​m​. This is estimated using a coefficient of                    
determination: 

 

Gene set enrichment analysis  

Gene set enrichment analysis was performed using the Reactome gene sets​59​. For every             
gene set G, we evaluate its significance via a parametric t-test, where we contrast the               
weights of the foreground set (features that belong to the set G) versus the background set                
(the weights of features that do not belong to the set G). Resulting P-values were adjusted                
for multiple testing for each factor using the Benjamini–Hochberg procedure ​60​. Significant           
enrichments were at a false discovery rate of 1%.  

10x: data processing 

The gastrulation scRNA-seq atlas was obtained from ​33 and is available in the Gene              
Expression Omnibus under accession GSE87038. Cells were subset to stages E6.5, E7.0            
and E7.25. Cells from stage E6.75 were not included in the analysis because they consist of                
a single biological replicate. Gene expression counts were normalised using ​scran ​61​. The            
5,000 most overdispersed genes after regressing out the stage effect were selected prior to              
fit the model. Details on the quality control and data preprocessing can be found in ​33​. 

Ecker: data processing 

The mouse brain DNA methylation data was obtained from ​7 and is available in the Gene                
Expression Omnibus under accession GSE97179. DNA methylation was quantified over          
genomic features using a binomial model where the number of successes is the number of               
reads that support methylation (or accessibility) and the number of trials is the total number               
of reads. A CpG methylation rate was calculated for each genomic feature and cell using a                
maximum likelihood approach. The rates were subsequently transformed to M-values​62 and           
modelled with a Gaussian likelihood.  
As input to MOFA+ we filtered genomic features with low coverage (at least 3 CpG               
measurements or at least 10 CH measurements) and we selected the intersection of the top               
5000 most variable sites across the different genomic and sequence contexts (see ​Figure             
S8 ​). Details on the quality control and data preprocessing can be found in ​7​. 

scNMT: data processing 

The gastrulation scNMT-seq multi-omics data was obtained from ​41​and is available in the             
Gene Expression Omnibus under accession GSE121708 
Gene expression counts were quantified over protein-coding genes using featureCounts​63          
with the Ensembl gene annotation 87 ​64​. The read counts were log-transformed and            
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size-factor adjusted, and modelled with a Gaussian likelihood. As input to MOFA+, we             
filtered genes with a dropout rate higher 90% and we subsetted the top 5,000 most variable                
genes (after regressing out the stage effect). In addition, batch effects and the dropout rate               
per cell were regressed out prior to fitting the model. 
DNA methylation and chromatin accessibility data were quantified over genomic features           
using a binomial model where the number of successes is the number of reads that support                
methylation (or accessibility) and the number of trials is the total number of reads. A CpG                
methylation or GpC accessibility rate for each genomic feature and cell was calculated by              
maximum likelihood. The rates were subsequently transformed to M-values​62 and modelled           
with a Gaussian likelihood. As input to MOFA+ we filtered genomic features with low              
coverage (at least 3 CpG and 5 GpC measurements) and we selected the top 2500 most                
variable sites per combination of genomic context and data modality (see ​Figure S14 ​) 
Details on the quality control and data preprocessing can be found in ​41​. 

Software availability 

An open-source implementation of MOFA+ is available from        
https://github.com/bioFAM/MOFA2 ​, which includes vignettes to reproduce the analyses        
presented in this article. 
Also, we deploy an interactive web-based platform to facilitate the exploration of MOFA+             
models (​Figure S21 ​). This is available from ​https://github.com/gtca/mofaplus-shiny 
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Figure 1: Multi-Omics Factor Analysis v2 (MOFA+) provides an unsupervised framework for the

integration of multi-group and multi-view single-cell data.

(a) Model overview: the input consists of multiple data sets structured into M views and G groups.
Views consist of non-overlapping sets of features that can represent different assays. Analogously,
groups consist of non-overlapping sets of samples that can represent different conditions or exper-
iments. Missing values are allowed in the input data. MOFA+ exploits the dependencies between
the features to learn a low-dimensional representation of the data (Z) defined by K latent factors that
capture the global sources of molecular variability. For each factor, the weights (W) link the high-
dimensional space with the low-dimensional manifold and provide a measure of feature importance.
The sparsity-inducing priors on both the factors and the weights enable the model to disentangle vari-
ation that is unique to or shared across the different groups and views. Model inference is performed
using GPU-accelerated stochastic variational inference.
(b) The trained MOFA+ model can be queried for a range of downstream analyses: 3D variance de-
composition, quantifying the amount of variance explained by each factor in each group and view,
inspection of feature weights, visualisation of factors and other applications such as clustering, infer-
ence of non-linear differentiation trajectories, denoising and feature selection.
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Figure 2: Integration of heterogeneous scRNA-seq experiments reveals stage-specific tran-

scriptomic signatures associated with cell type commitment in mammalian development.

(a) The heatmap displays the fraction of variance explained for each factor (rows) in each group (pool
of mouse embryos at a specific developmental stage, columns). The bar plots show the variance ex-
plained per group with all factors.
(b-c) Characterisation of Factor 1 as extra-embryonic (ExE) endoderm formation (b) and Factor 4 as
Mesoderm commitment (c). In each panel the top left plot shows the distribution of factor values for
each batch of embryos. Cells are coloured by cell type. Line plots (top right) show the distribution of
gene weights, with the top five genes with largest (absolute) weight highlighted. The bottom beeswarm
plots represent the distribution of factor values, with cells coloured by the expression of the genes with
highest weight.
(d) Line plots show the amount of variance explained (%, averaged across the two biological repli-
cates) for each factor as a function of time. The value of each replicate is shown as grey dots.
(e) Dimensionality reduction using t-SNE on the 10 inferred factors. Cells are coloured by cell type.
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Figure 3: MOFA+ reveals context-dependent DNA methylation signatures associated with cel-

lular diversity in the mammalian cortex.

(a) Variance explained for each factor across the different groups (cortical layer, x-axis) and views
(genomic context, y-axis). For simplicity, only the first three factors are shown.
(b-c) Characterisation of (b) Factor 1 as the two major neuron populations and (c) Factor 3 as in-
creased cellular diversity of excitatory neurons in deep cortical layers. The beeswarm plots show the
distribution of factor values for each group, defined as the neuron’s cortical layer. In the left plot, cells
are coloured by neuron class. In the middle and right plots the cells are coloured by average mCG and
mCH levels (%), respectively, of the top 100 enhancers with the largest weights.
(d) UMAP projection of the MOFA factors. Each dot represents a cell, coloured by maximally resolved
cell type assignments.
(e) Correlation of enhancer mCG weights (x-axis) and mCH weights (y-axis) for Factor 1 (top) and
Factor 3 (bottom).
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Figure 4: MOFA+ integrates multi-modal scNMT-seq experiments to reveal epigenetic signa-

tures associated with lineage commitment during mammalian embryogenesis.

(a-b) Characterisation of Factor 1 as ExE endoderm formation and Factor 2 as Mesoderm commit-
ment. Top left plot shows the variance explained by the factor across the different views (rows) and
groups (embryonic stages, as columns). Bottom left plot shows the distribution of factor values for
each stage, coloured by cell type assignment. Histograms display the distribution of DNA methylation
and chromatin accessibility weights for promoters and enhancer elements.
(c) Dimensionality reduction using t-SNE on the inferred MOFA factors. Cells are coloured by cell type.
(d) Same as (c), but cells are coloured by Factor 1 values (top left) and Factor 2 values (bottom left);
by the DNA methylation levels of the enhancers with the largest weight in Factor 1 (top middle) and
Factor 2 (bottom middle); by the chromatin accessibility levels of the enhancers with the largest weight
in Factor 1 (top right) and Factor 2 (bottom right).
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Figure S1. Validation of stochastic variational inference using simulated data. 
Data is simulated from the generative model with the following parameters: M=3 views, G=3              
groups, D=1,000 features (per view), N=100,000 samples (per group) and K=25 factors. 
(a) Line plots display the iteration number of the inference (x-axis) and the log- Evidence               
Lower Bound (ELBO) on the y-axis. Panels correspond to different values of batch sizes              
(10%, 25%, 50% of the data) and initial learning rates (0.05, 0.25, 0.5, 0.75). Colors               
correspond to different forgetting rates (0.05, 0.25, 0.5, 0.75, 1.0). The dashed horizontal line              
indicates the ELBO achieved using standard variational inference.  
(b) Bar plots display the forgetting rate (x-axis) and the total variance explained (%) in the                
y-axis. Panels correspond to different values of batch sizes (10%, 25%, 50% of the data)               
and initial learning rates (0.05, 0.25, 0.5, 0.75). The dashed line indicates the variance              
explained (%) achieved using standard variational inference.  
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Figure S2. Evaluation of convergence speed for stochastic variational inference using           
simulated data. 
Data is simulated from the generative model with increasing sample size from 1,000 to              
100,000. The other parameters are fixed to M=3 views, G=3 groups, D=1,000 features (per              
view), and K=25 factors. Bar plots show the training time for standard variational inference              
(VI) and for stochastic variational inference (SV). Colors represent stochastic models trained            
with different batch sizes (10%, 25% or 50%). Learning rate and forgetting rate             
hyperparameters were both fixed to 0.5. VI models were fit using a single E5-2680v3 CPU.               
SVI models were fit using an Nvidia GTX 1080Ti GPU. 
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Figure S3. Validation of group-wise ARD prior in the factors using structured            
simulated data. 
Data is simulated from the MOFA+ generative model with the following parameters: M=2             
views, G=2 groups, D=1,000 features, N=1,000 samples and K=10 factors. We incorporate            
structure in the simulation process by turning some factors off in random sets of views and                
groups. The task of MOFA+ is to recover the true factor activity structure given a random                
initialisation. 
We compared three models: Bayesian Factor Analysis (no sparsity priors), MOFA v1 (only             
view-wise sparsity prior) and MOFA+ (view-wise and group-wise sparsity prior). 
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(a) Fraction of correctly assigned sparsity patterns for each model. If the difference between              
the simulated and the inferred variance explained pattern was less than 0.1%, the pattern              
was assigned as correct. The box plots show median levels and the first and third quartile                
out of 10 trials. Whiskers show 1.5x the interquartile range. 
(b) Representative example of the resulting variance explained patterns. The first row of             
heatmaps correspond to view 0 and the second row to view 1. In each heatmap, the first                 
column corresponds to group 0 and the second column to group 1. Rows correspond to the                
inferred factors. The colour scale displays the fraction of variance explained by a given factor               
in a given view and group. The heatmaps displayed in columns one to three show the                
solutions yielded by different models (Bayesian Factor Analysis; MOFA; MOFA+). The           
ground truth is shown in the right panel.  
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Figure S4: Robustness analysis of MOFA+ factors from the gastrulation scRNA-seq           
data set 
The optimisation procedure of MOFA+ is not guaranteed to find a consistent optimal solution              
at every trial, and factors can vary between different model instances. To assess the              
consistency of factors we trained models under different random parameter initialisations           
and computed the Pearson correlation between factors within and between trials. 
(a) shows the correlations of factors within a trial. In MOFA there is no orthogonality               
constraints, but in order to maximise the variance explained factors are expected to be              
largely uncorrelated. 
(b) shows a heatmap of the Pearson correlation coefficients between every pair of factors in               
different trials. Each diagonal block represents a factor that is consistently learnt across             
multiple trials, suggesting that all 10 factors are robust (i.e. consistently found in all trials). 
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Figure S5. Characterisation of Factor 2 as extra-embryonic (ExE) ectoderm formation. 
(a) Distribution of factor values per batch of embryos, where each dot represents a single               
cell, coloured by cell type ​1  
(b) Distribution of gene weights, with the top six genes with largest (absolute) weight              
highlighted. 
(c) Distribution of factor values per batch of embryos, with cells coloured by the expression               
of the genes with highest weight. 
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Figure S6. Characterisation of Factor 9 as mesenchyme formation. 
(a) Distribution of factor values per batch of embryos, where each dot represents a single               
cell, coloured by cell type ​1​.  
(b) Distribution of gene weights, with the top ten genes with largest (absolute) weight              
highlighted. 
(c) Distribution of factor values per batch of embryos, with cells coloured by the expression               
of the genes with highest weight. 
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Figure S7. Characterisation of Factor 3 as metabolic stress. 
(a) Distribution of factor values per batch of embryos, coloured by cell type ​1​. 
(b) Distribution of gene weights, with the top six genes with largest (absolute) weight              
highlighted. 
(c) Distribution of factor values per batch of embryos, with cells coloured by the expression               
of the genes with highest weight. 
(d) Gene set enrichment analysis applied to the Factor 3 weights (Methods) 
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Figure S8: Overview of the single-cell DNA methylation data set. ​The tile plot shows the               
structure of the input data in terms of views (rows) versus groups (columns), with associated               
dimensionalities (D for features, N for samples). The color displays the fraction of missing              
values for each combination of sample and view. 
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Figure S9: Robustness of MOFA factors from the single-cell DNA methylation data set 
The optimisation procedure of MOFA is not guaranteed to find a consistent optimal solution              
at every trial, and factors can vary between different model instances. To assess the              
consistency of factors we trained models under different random parameter initialisations           
and computed the Pearson correlation between factors within and between trials. 
(a) shows the correlations of factors within a trial. In MOFA there is no orthogonality               
constraints, but in order to maximise the variance explained factors are expected to be              
largely uncorrelated. 
(b) shows a heatmap of the Pearson correlation coefficients between every pair of factors in               
different trials. Each diagonal block represents a factor that is consistently learnt across             
multiple trials, suggesting that all 5 factors are robust (i.e. consistently found in all trials). 
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Figure S10: Inspection of gene body mCG weights for Factor 1. 
(a) Cumulative distribution of gene body mCG weights (x-axis) for Factor 1. Each dot              
corresponds to one gene, sorted by rank (y-axis) The weights provide a measure of feature               
importance, hence the higher the weight in absolute value, the higher the association             
between the feature and the factor (in this case, excitatory vs inhibitory neurons). The sign of                
the weight indicates the direction of the variability; positive weights indicate higher mCG in              
cells with positive Factor 1 values (inhibitory cells, see Figure 3b), whereas negative weights              
indicate lower mCG in cells with negative Factor 1 values (excitatory cells, see Figure 3b). 
(b) Box plots comparing the distribution of gene body mCG levels (%) between excitatory              
and inhibitory neurons for the top 5 genes with the highest positive (top) or negative (bottom)                
weight. For each gene, a nominal p-value is reported using a t-test. 
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Figure S11: Characterisation of Factor 2 as differences in global mCH levels. 
(a) Beeswarm plots show the distribution of Factor 2 values for each cortical layer. Cells are                
coloured by neuron class. 
(b) Correlation of Factor 2 values (x-axis) with global mCG levels (%, left) and global mCH                
levels (%, right). The blue line shows the linear regression fit. 
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Figure S12. Benchmarking MOFA+ factors and Principal Components as input to           
non-linear dimensionality reduction methods for DNA methylation data 
Plots display UMAP (bottom) or t-SNE (top) projections when using as input MOFA+ factors              
(left) or principal components (right). Each dot represents a cell, coloured by cell type              
assignments​2​. 
Conventional implementations of Principal Component Analysis (​irlba R package) do not           
handle missing values; missing values are thus imputed using feature-wise means. 
To ensure a fair comparison we used the same number of PCs and MOFA+ Factors (K=15) 
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Figure S13. mCH signatures are redundant to mCG signatures across multiple           
genomic contexts. 
Scatter plots show the correlation between mCG weights (x-axis) and mCH weights (y-axis)             
for all combinations of factors (columns) and genomic contexts (rows). The blue lines display              
linear regression fits (​all p-values<10 ​-16​)​. For each case we observe a significant positive             
correlation, indicating that the two DNA methylation signatures are not independent.  
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Figure S14. Overview of multi-omic atlas of mouse gastrulation generated using           
scNMT-seq.  
(a) Structure of the input data in terms of views (x-axis) versus samples (y-axis). Each panel                
corresponds to a different group (embryonic stage). Grey bars represent missing views. 
(b) Structure of the missing values in the data. For each cell and view, the colour displays                 
the fraction of missing values. 
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Figure S15: Characterisation of Factor 4 as Embryonic endoderm commitment. 
(a) Variance explained by Factor 4 in each group (embryonic stage, as columns) and view               
(rows). 
(b) Distribution of Factor 4 values per group (embryonic stage, x-axis), with cells coloured by               
cell type assignment​3​.  
(c-d) Histograms display the distribution of (c) DNA methylation and (d) chromatin            
accessibility weights for promoters and enhancer elements. 
(e) Distribution of RNA weights. The top genes with the highest (absolute) weight are              
labeled. 
(f) Dimensionality reduction using t-SNE on the inferred MOFA factors. Cells are coloured by              
Factor 4 values. 
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Figure S16: Promoters of genes that display significant differential RNA expression           
between germ layers do not show differential epigenetic dynamics. 
Box and violin plots show the distribution of RNA expression (log2 counts, green), DNA              
methylation (%, red) and chromatin accessibility (%, blue) levels per germ layer at E7.5.              
Each dot corresponds to a single cell. For each gene a genomic track is shown on the top.                  
The promoter region that is used to quantify DNA methylation and chromatin accessibility             
levels (2kb upstream and downstream of the TSS) is highlighted in yellow. 
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Figure S17: Characterisation of Factor 8 as anterior-posterior axis formation in           
response to signalling cues. 
(a) Variance explained by Factor 8 in each group (embryonic stage, columns) and view              
(rows). 
(b) Distribution of Factor 8 values per group (embryonic stage, x-axis) with cells coloured by               
cell type.  
(c) Distribution of RNA weights for Factor 8. The top genes with the highest (absolute)               
weight are labeled. 
(d) Distribution of Factor 8 values per group (embryonic stage, x-axis), with cells coloured by               
the expression of ​T​ (left) and ​Lefty2 ​ (right) 
(e) Gene set enrichment analysis applied to the Factor 8 weights. 
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Figure S18: Characterisation of Factor 7 as Primitive Streak formation. 
(a) Variance explained by Factor 7 in each group (embryonic stage, columns) and view              
(rows). 
(b) Distribution of Factor 7 values per group (embryonic stage, x-axis), with cells coloured by               
cell type.  
(c) Distribution of RNA weights for Factor 7. The top genes with the highest (absolute)               
weight are labeled. 
(c) Distribution of Factor 7 values per stage, with cells coloured by the expression of ​Fst (left)                 
and ​Fgf8 ​ (right) 
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Figure S19: Characterisation of Factor 6 as Cell Cycle. 
(a) Variance explained by Factor 6 in each group (embryonic stage, columns) and view              
(rows). 
(b) Distribution of Factor 6 values per group (embryonic stage, x-axis), with cells coloured by               
the inferred cell cycle state using ​cyclone ​4​. 
(c) Gene set enrichment analysis applied to the Factor 6 weights. 
(d) Cumulative distribution of RNA weights for Factor 6. The top genes with the highest               
(absolute) weight are labeled. 
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Figure S20: MOFA has limited ability to detect strong non-linear relationships 
Data is simulated from the (linear) generative model with the following dimensionalities: M=1             
views, G=1 groups, D=8 features, N=1,000 samples and K=1 factors. Data was simulated             
without noise, but for the first four features we introduced different classes of non-linearities:              
sigmoid(x), cos(x), sin(x) and log(abs(x)) functions, respectively. 
(a) Fraction of variance explained per feature 
(b) Predicted (orange) and observed (green) measurements versus Factor values. 
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Figure S21: Screenshot of the interactive web-based platform to explore MOFA+           
models. 
The platform is implemented in shiny R from Rstudio and it is available in              
https://github.com/gtca/mofaplus-shiny 
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