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ABSTRACT 15 

Observational learning is a fundamental cognitive ability present in several species, where 16 

a naïve animal imitates a goal-directed behavior from the observation of a congener which 17 

acts as a demonstrator. Recent evidence in bat and rats suggests that hippocampal place 18 

cells of an observer may generate a spatial representation of the locations visited by a 19 

demonstrator, during spatial navigation. However, it is still unclear whether this hippocampal 20 

neural activity is critical for the process of observational learning or if the patterns of activity 21 

during observation differ from those emerging from the execution of a spatial memory task 22 

previously observed. To test this idea, we assess the role of the hippocampus by 23 

pharmacological reversible inactivation during the observation of a spatial learning task, 24 

demonstrating a critical role for this structure in observational learning. Then we recorded 25 

the neuronal activity of principal pyramidal cells of the same animal when it was observing 26 

or solving the memory task, and two different representation of the space emerged after 27 

observation or navigation. This evidences demonstrated that the hippocampus is necessary 28 

for observational learning and indicated that the observed and executed hippocampal 29 

representation are different, confirming the idea that the hippocampus could represent the 30 

position of others in the space, and use this information to improve his behavioral 31 

performance.  32 
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INTRODUCTION 34 

Observational learning is the ability of an individual to imitate a goal-directed behavior from 35 

the observation of a congener that acts as a demonstrator. This ability ensures the 36 

transference of adaptative behaviors through generations in different species (Bandura 37 

1969, Zentall 1996, Heyes and Galef, 1996, Galef 1988, Marler and Tamura, 1964; Fiorito 38 

and Scotto, 1992). In rodents, observational learning has been demonstrated in operant 39 

conditioning (Heyes and Dawson, 1990), fear conditioning (Jeon et al., 2006) and spatial 40 

navigation tasks (Leggio et al., 2000). A characteristic feature of this learning is that the 41 

observer does not necessarily repeat the behavior of the demonstrator in a movement-to-42 

movement way. Observers develop their own repertoire of movements to achieve the same 43 

goal that the demonstrator, suggesting that the observer understands the meaning or aim 44 

of the behavior displayed by the demonstrator (Tomasello M., 1996). A neurophysiological 45 

substrate for this cognitive ability could be the generation of internal representation or 46 

cognitive map (Tolman, 1948) in the brain of the observer concerning the demonstrator 47 

behavior. 48 

Place cells in the hippocampus provide a neurophysiological framework for a cognitive map, 49 

which emerges during spatial navigation and underlies the learning and memory process 50 

(O’Keefe and Nadel, 1978). Place cells increase their firing rate in specific locations (place 51 

field) of the environment traveled by the animal (O´Keefe and Dostrovski, 1971), and 52 

subsequently, multiple place fields generate a complete representation of the environment 53 

explored by an animal, the spatial or cognitive map (O’Keefe and Nadel, 1978, Barnes et 54 

al., 1997). This hippocampal cognitive map is flexible enough to generate multiple 55 

representations of multiple experiences of the animal, through the remapping phenomenon 56 

(Leutgeb et al., 2005). The generation of a cognitive map has been widely described for 57 

rodent navigation, and recent evidence has indicated that hippocampal CA1 cells of an 58 

observer animal may code for the position of a demonstrator (Denjo et al. 2018, Omer et al. 59 
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2018). Trained rats and bats were challenged to choose a left or right path in a two-60 

alternative maze based on the direction taken by a demonstrator. Electrophysiological 61 

recording during the observation of this task showed that a subset of neurons (social place 62 

cells) encodes the position of the demonstrator. Even though this evidence strongly 63 

suggests that the hippocampus may be relevant for the establishment of observational 64 

learning, a causal relationship between the hippocampus and the capacity to learning by 65 

observation has not been clearly explored. 66 

In the present study, we developed an observational learning spatial memory task, where 67 

naïve animals, without any experience in the task, observed a well-trained demonstrator, to 68 

determine the role of the hippocampus in observational learning. After reversible inactivation 69 

of the hippocampus during observation, we establish a causal relationship between 70 

hippocampal activity and observational learning. By using high-density electrophysiology in 71 

the behaving rats, we determine the main differences in the activity of social place cells 72 

during observation and typical place cells during task execution.  73 

  74 
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METHODS   75 

Subjects. Fifty-eight adult male Sprague-Dawley rats were used. All animals were obtained 76 

from our institutional Animal Care Facility; weighing 270-320g. They were individually 77 

housed with ad libitum access to water and food, at least the other was indicated, in a 78 

temperate room (23°C) and light/dark cycles of 12/12 hrs, ZT0=7:00 AM. Surgical and 79 

experimental procedures were carried out in accordance with the National Institute of Health 80 

(USA) Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23, 81 

revised 1996). The institutional Biosafety and Ethical Committee (CBA# 0770, FMUCH, 82 

University of Chile) approved these experimental protocols, which minimized the number of 83 

rats used and their suffering. 84 

Animal groups: For behavioral experiments, we used 33 animals that were divided into two 85 

groups as follow: 86 

Group 1, Demonstrators: 14 rats were used as a demonstrator of a spatial learning task. 87 

Seven of them were highly experimented demonstrators who were pretrained to solve the 88 

task 3 days before the test (pretrained group). The other seven rats were also demonstrators 89 

but without any experience or pretraining to solve the maze (Naïve group). 90 

Group 2, Observers: 19 rats were used as observers and were initially habituated in the 91 

observational platform of the maze Fig. 1A, (see section Spatial learning task for details) 92 

during three consecutive days. The fourth day this observer animal group were divided on 93 

those that watched a pretrained demonstrators (observers of a pretrained group, n=6), and 94 

those observers that watched a naïve demonstrator (observers of a naïve group, n=5) and 95 

the remaining observers did not watch any demonstrator (control group, n=8). 96 

Comprehensive animal group details are indicated in Fig. 1B and Fig. S1. 97 
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Twenty-five additional animals undergo surgical procedures, 18 animals were bilaterally 98 

implanted with injections cannulas targeting the hippocampal dorsal CA1 region, and seven 99 

rats were implanted with a seven tetrodes-hyperdrive array for in vivo electrophysiological 100 

recording of CA1 neuronal activity. 101 

Spatial learning task: To test spatial learning we used a modified version of the oasis maze, 102 

a dry land version of the Morris water maze (Clark et al., 2005, Martinez et al., 2016). The 103 

apparatus consisted of an open field arena of 140 cm in diameter, elevated 50 cm from the 104 

floor, with a wall of 20 cm of height. Twenty equidistantly evenly spaced wells were 105 

distributed over the arena. The rats were water-deprived for 23 hours to enhance motivation 106 

and pretrained to seek for water (200 µl water drop) inside of the wells during three 107 

consecutive days, up to the animals were able to find the 100% of baited wells for 15-20 108 

minutes session per day. Twenty, fifteen and five wells were daily baited during the 109 

pretrained period. After the pretraining, the task consisted of 15 trials of 1 minute each with 110 

only one baited well, preserving the position of the well along with the task. The starting 111 

position of the animal was changed on each trial to avoid the development of stereotyped 112 

procedural behavior, and after each trial the rat was enclosed with a black carboard-cylinder 113 

of 22 cm in diameter and 27 cm in height over the arena and gently moved to a new starting 114 

position, with the aim of preventing handling during task execution. The trial started after the 115 

cylinder was removed and ended when the rat reaches the rewarded well or one minute 116 

elapsed, 20 to 30 seconds of the inter-trial interval was included, where the animal was 117 

gently moved to a new starting position Fig. 1A. 118 

Observational learning task. An elevated platform (50 cm of the floor, 35 cm in diameter and 119 

40 cm of height walls) built on transparent polymethacrylate and a grid mesh floor, was in 120 

the center of the oasis maze arena (Figure 1A). The observer rats were placed in the 121 

elevated platform while a demonstrator solves the task in the oasis arena. Thirty consecutive 122 
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trials of observation were conducted. Immediately after the observation, the observer rats 123 

were challenged to solve the maze. 124 

Pharmacological inactivation of the hippocampus. Observer animals were chronically 125 

implanted with bilateral drug infusion cannulas (23 ga guide cannula, 33 ga injection 126 

cannula, Plastics One, Inc, VA, USA), targeting the dorsal CA1 region of the hippocampus 127 

to reversibly inactivate the hippocampal neuronal activity. One injection of 0.5 µl of 128 

bupivacaine (0.75% v/v, Abbott Laboratories, IL, USA) or vehicle (saline, NaCl 0,9%) was 129 

infused by using a 10 µl Hamilton syringe at a rate flow of 0.5 µl/min. After injection, we 130 

leave the cannula in the site for one additional minute to allow proper drug diffusion, 131 

experimental animal groups detailed in Fig S2. 132 

Surgical procedures. All rats implanted with cannulas or electrophysiological recording 133 

electrodes were anesthetized with 2.5% of Isoflurane/Oxygen mixture gas for induction and 134 

1.5% for maintenance at a flow rate of 1 l/min. Antibiotic (Enrofloxacin, 19 mg⁄kg, i.p.; Bayer) 135 

and anti-inflammatory (Ketophen 0.2 mg⁄kg, i.p.; Rhodia Merieux) were administered at the 136 

end of surgery and during three additional days. The animal was fixed in a stereotaxic frame, 137 

a small incision in the scalp and a craniotomy was made. The electrodes or cannulas were 138 

implanted through the craniotomy. All implants were fixed to the skull with five anchor jewelry 139 

stainless steel screws and dental acrylic. One of the skull screws was used as an animal 140 

ground for electrophysiological recording. Eighteen rats were implanted with cannula guide 141 

at 3.3 mm posterior to bregma; ± 2.5 mm lateral, with a 20º angle respect to the midline and 142 

1.2 mm in dept, following the Paxinos’s rat atlas coordinates (Paxinos and Watson 1998). 143 

The injection cannula was 1mm longer than the cannula guide. Seven rats were chronically 144 

implanted with a hyperdrive consisting of six independent movable tetrodes. The six tetrodes 145 

were targeted to the dorsal CA1 region at 3.3 mm posterior to bregma, 1.8 mm lateral to the 146 
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midline and ~2.2mm in dept, following the Paxinos’s rat atlas coordinates (Paxinos and 147 

Watson 1998). 148 

Electrophysiological data acquisition and data analysis. Electrophysiological signals were 149 

recorded from each of the 24 wires (six tetrodes) simultaneously. The tetrodes (Wilson and 150 

McNaughton 1993) were made by twisting four 17 µm nichrome insulated wires (AM 151 

systems, USA), gold plated to the impedance of 0.5-1 MΩ. Each tetrode was independently 152 

lowered to the target area, at a rate of no more than 320 µm/day, until appropriate signals 153 

could be recorded. The leads of the tetrodes were connected to a unity-gain headstage, and 154 

all the data were collected using analog-32 Channels, Cheetah recording System 155 

(Neuralynx, Bozeman, MA, USA). Single unit data from each tetrode was amplified, 156 

bandpass filtered (600–6,000 Hz) and digitized at a rate of 32 kHz. LFP signals were 157 

acquired with the same system, filtered between 0.1-450 Hz and digitized at a rate of 2 kHz. 158 

Single neurons were isolated offline using automatic cell sorting software KlustaKwik (by K. 159 

Harris) and manually supervised with the software MClust (by D. Redish). All spikes clusters 160 

with more than 1% of interspike intervals lower than 2 ms were considered as multi-units 161 

and discarded for further analysis (Valdes et al., 2015). The animal behavior was video 162 

recording simultaneously with the electrophysiological recording. 163 

Hippocampus cell classification and place cell determination. We obtained 380 neurons from 164 

7 rats in 10 experimental sessions. Putative pyramidal and interneurons were classified in 165 

agree with their firing rate and waveform: units with a firing rate lower than 0.25 Hz during 166 

observation or navigation were discarded since its low firing rate does not support further 167 

analysis (n=41). Neurons with a firing rate higher than 10 Hz and a peak-to-through 168 

waveform ratio close to 1 were considered putative interneurons and discarded for further 169 

analysis (n=17), all the rest of neurons (n=322) were classified as potential pyramidal cells. 170 
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We build rate maps for all pyramidal neurons by dividing the oasis maze arena into 48x48 171 

bins (~3.2 x 4.2 cm each bin) and computing the instantaneous firing rate on each bin (spikes 172 

per occupancy). During the observation phase of the task, we used the occupancy of the 173 

demonstrator rat, and for the navigation phase the occupancy of the observer while it was 174 

solving the maze. The firing rate of each neuron was normalized as follow: 175 

< 𝐹𝑅𝑖 > =  
𝐹𝑅𝑖 − min (𝐹𝑅)

max(𝐹𝑅) − min (𝐹𝑅)
 176 

With FRi= Firing rate at bin (i) and maximum and min of the firing rate (FR) during the 177 

analyzed epochs. Then, the information per spike index (IPS) of each neuron during 178 

observation and navigation was calculated based on (Skaggs et al., 1993; Robbe and 179 

Buzsaki, 2009): 180 

𝐼𝑃𝑆 ≈ ∑ 𝑃𝑖 ∙ (
𝐹𝑅𝑖

𝐹𝑅
)

𝑛

𝑖

∙ 𝑙𝑜𝑔2 (
𝐹𝑅𝑖

𝐹𝑅
) 181 

Where i is the bin number, Pi is the probability of occupancy at the bin i, FRi is the firing rate 182 

in the bin i and FR is the overall mean firing rate. The IPS computing was using the non-183 

normalized values of FRi. The IPS calculated for each pyramidal neuron was compared with 184 

a randomized IPS, that was calculated by bootstrapping the spiking time of each spike train 185 

time series, preserving the interspike interval (ISI). This procedure was conducted 1,000 186 

times, then all those IPS higher than the mean ± 2SD of the randomized IPS were 187 

considered as pyramidal cells with significant spatial information content over the chance. 188 

Those cells which have an IPS higher than chance during observation were classified as 189 

social place cells, those neurons with a significant IPS during navigation were classified as 190 

canonical place cells, those cells which support the previous criteria on both phases of the 191 

task (observation and navigation) were classified as common cells. 192 

Sparsity was calculated as (Jung et al., 1994):  193 
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𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =  
(∑ 𝑃𝑖 ∙ 𝐹𝑅𝑖)2

(∑ 𝑃𝑖 ∙ 𝐹𝑅𝑖
2)

 194 

Where Pi is the probability of occupancy of bin i and FRi is the firing rate in the bin i. 195 

Spatial correlation. Rate maps for those neurons classified as social place cells and place 196 

cells for the same experimental session were compared by vectorizing the 48x48 rate maps 197 

and computing the bin-by-bin Pearson correlation index between observation and navigation 198 

phases (Leutgeb et al., 2005). We discarded all those bins that in both phases showed no 199 

activity. The spatial correlation of each neuron was compared with the spatial correlation of 200 

the observation rate map and the navigation rate map of other neurons (spatial correlation 201 

by chance). Then spatial correlation lower than 2SD of the spatial correlation computed by 202 

chance indicates completely unrelated rate maps (Fyhn et al., 2007). 203 

Place field firing rate overlap. Differences in maximum firing rates between the phase of 204 

observation and navigation were evaluated by computing the overlap score of the firing rates 205 

for each neuron classified as social place cell and canonical place cells. Overlap score for 206 

each neuron was calculated as the ratio between higher maximum firing rate of observation 207 

or navigation phases of the task, to get values in the interval of 0 to1, where 1 indicates no 208 

difference and values closer to 0 indicates a greater difference between the two phases of 209 

the task (Leutgeb et al., 2005). To statistically determine rate overlap (rate remapping), we 210 

computed the overlap score between each common cell during observation and all other 211 

common cells during navigation to estimate the overlap by chance, then we consider rate 212 

remapping when the overlap score is higher than 2SD of the overlap computed by chance. 213 

Population vector analysis. A population vector analysis was performed (Leutgeb et al., 214 

2005, Roux et al., 2017) to evaluate the similarity between observation and navigation 215 

representation at the neural population level. To this, a stack of the firing rates of each bin 216 

of all common cells of a same experimental session was adjusted in a 3D matrix, where the 217 

x- and y-axis represents the position in the maze and the z-axis corresponded to the firing 218 
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rate of each neuron, in both phases of the task (observation and navigation). For each bin, 219 

the population vector (PV) corresponded to the distribution of normalized firing rates of 220 

different neurons in the same bin. Then, we calculated the Pearson (bin-by-bin) correlation 221 

index for each PV between observation and navigation and compared this distribution of PV 222 

correlation with a random-generated distribution obtained after shuffling the position of 223 

different neurons in the z-axis of each bin, for each experimental phase. This randomization 224 

was iterated 1000 times, and the distributions of raw and random-generated PV correlations 225 

were compared.   226 

Theta band power spectral density analysis. The theta band (4-12 Hz) power spectral 227 

density was calculated using the fast Fourier Transform with the multitaper method (Mithra 228 

and Bokil, 2007). The tetrode with the best LFP signal (highest amplitude and low noise) 229 

was selected for the analysis. Raw power spectral density values were normalized by its 230 

maximum and minimum values for statistical comparison among task phases, experimental 231 

sessions, and animals. A spectrogram in the 0.1-20 Hz band built with the multitaper method 232 

using chronux toolbox in MATLAB (http://chronux.org/, Mithra and Bokil, 2007) with K=5 and 233 

TW=3, without subsampling the continuous signal. 234 

Statistics. All statistical analysis was performed using the software GraphPad Sigma 6.01. 235 

All results were expressed as mean ± s.e.m. The electrophysiological analysis was 236 

performed by using custom-made MATLAB (Mathworks, Inc) routine. In all cases, the 237 

normality of the data was assessed with the Kolmogorov test before to compute any 238 

statistical comparison. Then, we used non-parametric tests when the data did not fit the 239 

normal distribution. The statistical significance was fitted to a p-value <0.05. 240 

The comparison of different behavioral variables was mainly performed by using one-way 241 

ANOVA followed by a multiple comparisons Holm-Sidak posthoc test, or Kruskal Wallis test 242 

followed by Dunn’s posthoc. The correlation between distance ratio and latency and the 243 
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progression of the task (‘trials’) was evaluated by Pearson correlation index or Spearman 244 

rank-correlation coefficient. 245 

The comparison among mean/max firing rate, information per spike index and sparsity was 246 

performed using a Mann-Whitney rank-sum test. For firing rate maps comparison, the 247 

Pearson correlation index bin-by-bin was used. For the max firing rate comparison in the 248 

same neuron during different epochs of the task (common neurons), we used the Wilcoxon 249 

paired rank-sum test. Finally, the theta range (4-12Hz) power spectral density in rest, 250 

observation and navigation, were compared using the Friedman test followed by Dunn’s 251 

comparison. 252 

  253 
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RESULTS 254 

Naïve rats improve their performance in a spatial navigation task trough observation. 255 

To evaluate the ability of rats to learn by observation, we implemented a modified version of 256 

the spatial learning task (Oasis maze), where naïve animals can observe a demonstrator 257 

and then execute the same task (Fig. 1A-B). We used three parameters to evaluate spatial 258 

learning performance: hit rate (percentage of successful trials, Fig. 1C); distance ratio (ratio 259 

between traveled distance and the optimal distance) and latency (time spent by the animals 260 

to get the rewarded well). Distance ratio and latency were used to evaluate spatial learning 261 

as a progressive decrease of each variable through the trials. The Naïve animals (Fig 1C, 262 

“N” in red) showed the lowest hit rate and not progression across trials for distance ratio 263 

(Fig. 1D, in red, r=-0.18, p=0.51) or latency (Fig 1E, in red, ρ=-0.48, p=0.07), in the oasis 264 

maze. In contrast the pretrained animals (cyan on Fig 1C-E) showed the highest hit rate 265 

(Fig. 1C, “Pre-t”, in cyan) and proper progression of learning through trials for distance ratio 266 

(Fig 1D, cyan, r=-0.72, p=0.0024) and latency (Fig 1E, cyan, r=-0.76, p=0.0011). Those 267 

animals which observed a pretrained demonstrator (observer of a pretrained, Fig 1C-E in 268 

green), showed a higher hit rate (Fig 1C, “Obs pre-t”, in green) and significant progression 269 

in distance ratio (Fid 1D, green ρ=-0.67, p=0.008) and latency (Fid 1E, green, r=-0.57, 270 

p=0.026) while those animals which observe a not pretrained animal (observer of a not-271 

pretrained, Fig 1C-E, in black) did not show any significant improvement in their spatial 272 

learning performance with a low hit rate (Fig 1C, “Obs N”, in black) and no progression in 273 

distance ratio (Fig. 1D, in black, r=-0.029, p=0.92) or latency (Fig. 1E, in black, ρ =-0.07, 274 

p=0.5). As an additional control, rats only habituated to the platform without any observation 275 

of a demonstrator showed no significant learning performance in all the variables previously 276 

indicated (Fig. S3). 277 
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To rule out the possibility that poor spatial learning could be explained by low displacement 278 

in the arena or even immobility, we analyzed the total path length traveled through trials and 279 

the mean velocity of each animal for each group (Fig S4). Pretrained rats showed the lower 280 

total path length (61.82±9.73 cm) and the highest velocity (18.39±0.52 cm/sec) compared 281 

with rats that did not show progress in learning (Not pretrained, 96.28±6 m and 11.06±0.28 282 

cm/sec; Observer of a not pretrained, 97.82±4 m and 11.54±0.41 cm/sec, Fig. S4). This 283 

result indicates that those animals which did not properly solve the task explored the arena 284 

even more than those which solved it. Then, the absence of learning could not be explained 285 

due to immobility or absence of exploration in the maze. These results indicate that only 286 

those animals which have the chance to observe an experimented pretrained demonstrator 287 

improve their learning performance. Conversely, those animals which watched a naïve 288 

demonstrator, solving the task for the first time or they only were habituated to the platform, 289 

display poor performance in the oasis maze. The observational learning could not be 290 

attributable to the mere presence of a congener in the arena or the habituation to the 291 

observational platform.   292 

Hippocampal inactivation abolishes observational learning 293 

To determine whether the hippocampal activity is necessary for observational learning, we 294 

pharmacologically inactivated the dorsal CA1 region during observation and evaluated its 295 

impact on observational learning performance. Animals were bilaterally injected with 0.5 µl 296 

of bupivacaine 0.75% v/v. This sodium channel blocker was used since it has an in vivo half-297 

life about 40 minutes (Catterall and Mackie, 2012), which matches with the duration of the 298 

observation phase of our task, allowing us to differentiate the requirement of hippocampal 299 

activity exclusively during observation, without affecting the functionality of this structure in 300 

the subsequent phase of spatial learning during the task execution.  301 
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Two groups of observer rats were injected with bupivacaine, or saline during the period of 302 

observation. Immediately after drug injection, both groups observed the behavior of a 303 

pretrained demonstrator in the same conditions as before. To discard any remnant effect of 304 

bupivacaine in the functionality of hippocampus during the testing period of navigation, we 305 

included a third control group of previously pretrained animals in the oasis maze and injected 306 

with bupivacaine 40 minutes before solving the task (control), but without observation (detail 307 

of animal groups in Fig. S2).  308 

Observer rats injected with saline showed 52.22 ± 7.78 % of hit rate, which was higher than 309 

the bupivacaine-injected animals which showed a 13.33 ± 5.16 % of hit rate (Fig. 2A, 310 

p=0.0013). Control-injected animals, in turn, showed the highest hit rate among all groups 311 

(Fig. 2A, 81.11 ± 6.07 %, p=0.0062 vs. saline and bupivacaine p<0.0001, one-way ANOVA 312 

on ranks, followed by Holm-Sidak multiple comparisons test). Saline-injected animals 313 

showed a decrease in distance ratio and latency along the task (r=-0.72, p=0.0026 and r=-314 

0.68, p=0.005 respectively), that was not found in bupivacaine-injected animals (r=-0.35, 315 

p=0.21 and ρ=-0.1, p=0.66 respectively), control-injected animals showed normal decrease 316 

in distance ratio and latency (r=-0.68, p=0.005 and r=-0.61, p=0.015 respectively, Fig. 2B-317 

C). 318 

The results obtained for the hit rate after pharmacological inactivation of the hippocampus 319 

resembled the results obtained in the previous experiment: saline-injected animals reaching 320 

the same hit rate than observers of a pretrained demonstrator and displayed a significant 321 

decrease in both variables distance ratio and latency. Bupivacaine-injected animals showed 322 

a similar hit rate of naïve and observers of a not-pretrained, without a significant progressive 323 

decrease in distance ratio and latency. Finally, the control-injected group reached the same 324 

hit rate as pretrained rats and decreased their distance ratio and latency along with the task 325 

(Fig. S5). These results indicate that hippocampal function is essential for observational 326 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/832758doi: bioRxiv preprint 

https://doi.org/10.1101/832758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

learning since its inactivation prevents learning improvement. The absence of learning could 327 

not be attributable to the remnant effect of the drug during spatial learning, because 328 

pretrained animals injected with bupivacaine 40 minutes before the test, solving the maze 329 

with high proficiency, indicating that after that time the hippocampal function was fully 330 

recovered. 331 

The emergence of social place cell activity. Social place cells have been recently 332 

described as CA1 hippocampal pyramidal neurons that can generate a representation of a 333 

congener in socially guided tasks, both in rats and bats (Danjo et al., 2018, Omer et al., 334 

2018, Bray, 2018, Duvelle and Jeffery 2018). We tested the idea that social place cell-activity 335 

could underlie observational learning during a spatial learning task. Given that observer rats 336 

were always naïve, this hypothesis also implies that observers could generate a spatial 337 

representation of unvisited environments, by representing the positions of the demonstrator. 338 

To test this idea, we recorded the neuronal activity of CA1 hippocampal cells of a naïve 339 

observer while a pretrained demonstrator performs the spatial learning task. After recording, 340 

single units of putative pyramidal neurons were analyzed following the firing rate and spike 341 

waveforms criteria defined in the methods section. A total of 380 individual neurons from 7 342 

animals in 10 experimental sessions were obtained, 85% of which were classified as 343 

putative pyramidal cells (n=322 neurons). Low firing rate neurons or putative interneurons 344 

were not included in these analyses. To determine whether a pyramidal neuron coded for 345 

the position of the demonstrator we aligned all the trajectories traveled by the demonstrator 346 

rats with the timestamps of each spike for each pyramidal neuron of the observer 347 

hippocampus. Then we built rate maps for each neuron as was described before.  348 

For each rate map, we computed the information per spike index (IPS, Skaggs et al., 1996) 349 

and compared this value with the IPS obtained by chance (1,000 randomizations of the 350 

interspike interval of each rate maps (Omer et al., 2018). All those neurons that showed an 351 
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IPS higher than 2SD over the mean of the randomized IPS were classified as social place 352 

cells since its information content was higher than expected by chance. We identified 19,3% 353 

(62 neurons) of total pyramidal neurons as “social place cells” during the observation phase 354 

of the task. These neurons will be encoding the position of the demonstrator in the observer’s 355 

hippocampus (Fig 3A). By using the same criteria, we classified 26.4% (85 neurons), of 356 

pyramidal neurons as a place cells during the navigation phase of the task (Fig. 3B).  357 

Social place cells obtained during the observation phase shared several features with 358 

canonical place cells recorded during navigation, with no statistical differences in its mean 359 

firing rate, information per spike content and sparsity of the place fields between the two 360 

phases of the task (Fig. 3C-E). Only the maximum firing rate (at the center of the place field) 361 

was lower during observation than during navigation (3.64±0.3 Hz and 6.13±0.26 Hz 362 

respectively, p<0.0001 Mann-Whitney rank-sum test, Fig. 3F). 363 

These results suggest that during observation, a subpopulation of CA1 pyramidal neurons 364 

can encode the position of the demonstrator in the hippocampus of the observer. These 365 

neurons shared several features of canonical place cells, such as the mean firing rate, the 366 

information per spike index and sparsity, suggesting that the social place cells and place 367 

cells are the same neurons. However other properties, as the maximum firing rate in the 368 

center of the place field was lower during observation that during navigation, suggesting that 369 

the cognitive maps emerging from observation and navigation are different at least regarding 370 

firing rate.  371 

 372 

The spatial representation during observation is not correlated with spatial 373 

representation emerging from the navigation. To determine a relationship between the 374 

cognitive maps generated during observation and navigation, we focused on the fraction of 375 

neurons that showed place cell activity during both phases of the task, that we called 376 

common cells. We identified 29 common cells from the 62 observational place cells or 85 377 
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place cells (46.8% and 34.5%, respectively, Fig. 4A). This data indicates that almost half of 378 

social place cells take part in the representation of the self-animal as place cells, 379 

suggesting a significant contribution to the spatial learning behavior. To evaluate whether 380 

the spatial map codification of the demonstrator resembles the representation of the self-381 

animal during navigation, we compared the spatial position of the place fields and the firing 382 

rate patterns, for each common cell during observation and navigation. First, we compared 383 

the spatial representation in both conditions of each common cell by using Pearson bin-by-384 

bin spatial correlation index, Fig. 4B. To determine whether a spatial correlation was 385 

higher than chance, we compared the spatial correlation obtained for each cell against a 386 

threshold computed as 2SD above the average correlation of completely unrelated maps, 387 

which denotes full global remapping (see methods for details, Fhyn et al., 2007). We found 388 

that only one out of 29 common cells showed a spatial correlation higher than the 389 

expected by chance (Fig. 4C), which indicates that the spatial representation generated by 390 

a given common cell during observation is unrelated with the spatial representation 391 

generated by the same cell during navigation.  392 

Second, we evaluated rate remapping, as a change in the maximum firing rate during the 393 

observation and navigation phases of the task. We found that the maximum firing rate of 394 

common cells during the observation was lower than navigation (Fig. 4D, p<0.0001, 395 

Wilcoxon paired signed-rank). The overlap firing rate score for each common cell indicates 396 

that only two out of 29 common cells showed overlap scores higher than the chance, while 397 

most neurons (93.1%) showed overlap scores into or below the stablish by chance, 398 

suggesting that almost all those neurons exhibit rate remapping (Fig 4E). 399 

Third, we performed a population vector analysis to assess the similarity of the 400 

representation at the population level during observation and navigation (Leutgeb et al., 401 

2005). The firing maps of common cells were stacked in a  3D matrix where x- and the y-402 

axis represents the position of each bin of the map, and the z-axis represents the firing rate 403 
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of each neuron. The population vector (PV) corresponded to the distribution in each bin of 404 

normalized firing rates from different common neurons in a single experimental session. We 405 

calculated the Pearson correlation bin-by-bin for each PV between observation and 406 

navigation and compared this distribution with a randomly generated-distribution (see details 407 

in methods). The distribution of PV-correlation coefficients was not different than the random 408 

distribution (0.33±0.3.3+10-3 and 0.32±3.2*10-3 respectively, p=0.91, Mann-Whitney rank-409 

sum test), indicating that there was no correlation at population level higher than the 410 

obtained by chance and that the organization of the cognitive maps, at the population level, 411 

was different in the two phases of the task (Fig. 4F, G). 412 

Finally, we evaluated whether the cognitive maps generated during observation and 413 

navigation preferentially encoded a salient feature of the environment, such as the location 414 

of the rewarded-well. The distance (in cm) between the center of the place field and the 415 

rewarded well during both phases were computed. We found that the distribution of 416 

distances statistically fits with a normal distribution with a mean of 67.48±3.12 (cm) for 417 

observation, and 68.79±2.99 (cm) for navigation, that was not different among them (Fig. 418 

S6, p=0.76, t-test). This result indicates that place fields were evenly distributed in the oasis 419 

maze arena and unbiased by the rewarded well both during observation and navigation 420 

phases. 421 

In summary, we found a population of hippocampal neurons that displayed a significant 422 

amount of spatial information about the demonstrator’s position during the observation 423 

phase. Near half of those neurons were also part of the population of canonical place cells 424 

emerging during the navigation phase. Our analysis indicates that the spatial 425 

representations during observation and current navigation are entirely different. 426 

Theta oscillation during observation and navigation. The changes in the LFP signal in 427 

the range of theta (4-12 Hz) are typically displayed during spatial navigation, strong temporal 428 

coordination between spike cell activity and theta oscillation is present and necessary for 429 
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learning process (Robbe et al 2006, Skaggs et al 1996) and have been described for social 430 

place cells activity (Denjo et al., 2018). To determine whether during observation some 431 

similar LFP/spike coupling is also present, we compared changes in theta power during a 432 

10-minute resting period before and after observation or navigation. We did not find 433 

differences in power spectral density on the theta band during observation compared with a 434 

pre-task resting period (0.46±0.07, dB and 0.48±0.08, dB; respectively, p>0.99, Friedman 435 

test followed by Dunn’s test), but during navigation we found an increase in theta spectral 436 

power compared with rest (0.63±0.07, dB, p=0.04, Friedman test followed by Dunn’s test, 437 

Fig. 5A, B). This data suggests that neuronal activity emerging during observation did not 438 

correlate with an increase in the spectral power of the internally-generated theta oscillation, 439 

that it is present during navigation, indicating that animals without experience in the 440 

observed environment do not coordinate observational place cells activity with theta rhythm. 441 

 442 

 443 

 444 

 445 

 446 

447 
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DISCUSSION 448 

Observational learning is a relevant cognitive ability present in different species from 449 

invertebrate to human which able us to learn through the observation. Even though it has 450 

been demonstrated in different animal models at the behavioral level and some brain 451 

structure has been involved such as the amygdala, cerebellum, and hippocampus. The 452 

causal relationship between that structure and the capacity to learn by observation has been 453 

poorly explored. Recent evidence in rats and bats indicates that the principal cells of the 454 

observer hippocampus may encode the spatial position of another congener acting as a 455 

demonstrator. We hypothesized that the hippocampus is a critical structure for observational 456 

spatial learning through the ability to generate cognitive maps representing the experience 457 

of others or self.  458 

Our results demonstrate that naïve rats can effectively improve their learning performance 459 

if before solving a spatial task they observe an expert demonstrator conducting the same 460 

task. This improvement in performance cannot be explained by other factors such as 461 

habituation to the observation platform or seeing a congener randomly moving around the 462 

arena. Importantly, this observational learning phenomenon was only present if the 463 

demonstrator corresponded to an expert rat solving the maze. Previous studies have 464 

demonstrated that the cerebellum is important for associative motor learning mediated by 465 

social demonstrations (Leggio et al 2000). Here we focused on hippocampus because it is 466 

the most relevant structure for spatial learning (Schenk & Morris,1985). Our experiment of 467 

hippocampal inactivation during observation clearly indicates that observational learning 468 

requires the proper functioning of this structure to be behaviorally unfolded. Since it is difficult 469 

to deal with remnant effect of drug in the brain our reversible inactivation of the hippocampus 470 

fully recovers the functionality of this region since expert animals which received the same 471 

procedures of inactivation display a correct spatial learning indicating that any effect of the 472 

drug during the observation did not affect the functionality of this structure during the 473 
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execution of the task, causally demonstrating the importance of hippocampal neural activity 474 

in this phenomena.  475 

In terms of electrical properties of hippocampal principal cells, we corroborate that these 476 

neurons effectively displayed the content of spatial information higher than chance and 477 

generated a spatial map that can represent both the position of others and themselves in 478 

the arena. The 19.3 % of pyramidal cells were classified as social place cells and 46.8% of 479 

social place cells also code for the animal’s own position during navigation (common cells). 480 

This percentage of social place cells is lower compared with Denjo et al (2018) study. This 481 

difference can be explained by the different methods used to define a place cell (presence 482 

of a place field vs. spatial information index) and by experimental design, e.g. in this present 483 

study observer animals were totally naïve respect to the task,  and only observed without 484 

navigation during observation, while both in Denjo et al and Omer et al, observer animals 485 

must be trained to solve that particular task. 486 

This difference in social place cells activated in experienced vs naïve animals, in turn, 487 

suggests that the experience of the animal before the observational learning experience 488 

could be critical for the hippocampal internal representation of other’s positions. This 489 

explanation could be extended to Mou & Ji et al., 2016 report, who did not find social place 490 

cell activity but report coactivation of place cells during observation, in an animal that 491 

passively watched a demonstrator in a linear track.  492 

In terms of single-cell properties, social place cells share many features with canonical place 493 

cells, including average firing rate, spatial information, and sparsity. Only the firing rate at 494 

the center of the place field was higher during navigation respect to observation suggesting 495 

a remapping phenomenon between the 2 phases of the task. The neuronal population 496 

analysis demonstrates that the representation during navigation and observation is different 497 

with changes in firing rate overlap, global remapping and population vector representation 498 

of the space. These results indicate that the neuronal representation of what it is observed 499 
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and explored are totally different, and the brain can differentiate between the experience of 500 

a congener and the self-animal but using the same neurophysiological substrate for both 501 

representations. How the observer’s brain manages the information of the demonstrator’s 502 

spatial performance in the generation of the self-spatial map, and how exactly, the non-503 

spatial information contained in the social place cells drives observational learning, are 504 

questions that arise from our results and need further directions.  505 

During navigation, the place cell activity is phase-locked with theta oscillation (Colgin, 2016). 506 

This coordinated pattern of activity has demonstrated to be necessary for spatial learning 507 

and it is proposed as a mechanism that may facilitate the transfer of information from other 508 

hippocampal formation structures (McNaughton et al. 2006). An increase in theta rhythm-509 

power has been recently reported in social place cells (Danjo et al., 2018). However, we did 510 

not find any increase in theta power during the observation phase in our task. Given that 511 

place fields representation could emerges in absence of theta oscillation (Brandon et al., 512 

2014) and ambulatory signals (e.g. quite animals; Terrazas et al., 2005), and the main 513 

difference between Danjo et al. (2018) and the present work is the degree of training of 514 

animals in the task, previous to observation (which in our case is not existent, because 515 

observers are naïve respect to the spatial task), and the animal is not navigating the maze 516 

during the observation, we suggest that theta power increase during observation could 517 

dependent on previous experience of the animal with the environment, but is not essential 518 

for the generation of a spatial representation of the demonstrator.   519 

In summary, our report demonstrated that spatial observational learning depends on 520 

hippocampus, this structure can code the spatial representation of others and itself and that 521 

this coding is essential to learn from other’s experience.  522 

523 
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MAIN FIGURES  617 

 618 

Figure 1. Observation improves spatial learning in the oasis maze. (A). A modified 619 

version of the Oasis maze with an observation platform on it where a naïve rat observed a 620 

demonstrator rat solving the task. The green line depicts the optimal path between the start 621 

and the end while the red one indicates a path traveled by the rat. (B). Behavioral groups: 622 

rats were divided into demonstrators (red and blue) and observers (green and purple). The 623 

demonstrators were separated into naïve and pre-trained animals, while the observers were 624 

always naïve and separated based on the demonstrator: observer of a pre-trained (green) 625 

or an observer of a naïve (purple). (C). Mean ± sem percentage of hit rate. of four 626 

experimental groups: not pre-trained (“N”, red), pre-trained (“Pre-t”, cyan), an observer of a 627 

pre-trained (“Obs pre-t”, green), an observer of a not pre-trained (“Obs N”, purple). #p<0.05 628 

vs pre-trained group; *p<0.05 vs observer of a pre-trained group; one-way ANOVA, followed 629 
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by Holm-Sidak posthoc test. (D). Distance ratio: the ratio between the actually walked 630 

distance over the optimal distance, on each trial. Each plot represents one of the four 631 

experimental groups described before. (E). Latency: time spent for rats to find the rewarded 632 

well on each trial. In (D) and (E) the correlation coefficient and p-value of each group are 633 

indicated, (Pearson correlation coefficient or Spearman Rank correlation index). 634 
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 636 

Figure 2. Pharmacological inactivation of the hippocampus during observation 637 

abolishes spatial learning. Rats were separated into three groups based on the injection: 638 

saline (green), bupivacaine (red) or control (blue). Control animals, previously pretrained in 639 

the oasis maze, were injected with bupivacaine 40 minutes before the task. (A). Mean±sem 640 

percentage of hit rate. & p<0.01 vs saline group, #p<0.01 vs bupivacaine group, *p<0.01 vs 641 

control (one-way ANOVA followed by Holm-Sidak posthoc test). (B) distance ratio, and (C) 642 

latency for each group. The correlation coefficient and p-value of each group are indicated, 643 

(Pearson correlation coefficient or Spearman index). 644 
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 646 

Figure 3. Social place cell activity during observational learning. (A) Representative 647 

examples of observer’s hippocampal CA1 neuronal activity (upper panel, animal paths in 648 

grey lines and neuron spikes in red dot) with respect to demonstrator trajectories (lower 649 

panel, rate maps with normalized firing rate). (B) Representative examples of observer’s 650 

hippocampal CA1 neuronal activity during navigation. (C) Mean firing rate during 651 

observation (red) or navigation (blue). (D) information per spike (IPS) during observation or 652 

navigation. (E) sparsity and (F) maximum firing rate (at the center of the place field) for the 653 

population of neurons active during observation (red) and navigation (blue). ***p<0.001 654 

Mann-Whitney rank-sum test. 655 
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 656 

Figure 4. Global remapping during the transition between observation and navigation. 657 

(A) Examples of the common cells, neurons that were active during observation and 658 

navigation. The activity was normalized to the maximum firing rate of each rate map. (B) 659 

Distribution of spatial correlation index calculates for the same common cell between 660 

observation and navigation phases of the task. (C) Spatial correlation index obtained for 661 

each common cell (red dots). Blue lines indicate the randomized spatial correlation intervals 662 

values (mean+2SD, thick and thin lines respectively), neurons outside this interval are 663 

considered with similar rate maps, otherwise, the maps are significantly uncorrelated. (D) 664 

Maximum firing rate of common cells during observation (red) and navigation (blue). 665 

***p<0.0001, Wilcoxon-rank test. (E) Overlap score of firing rates during observation and 666 

navigation for each common cell. Values close to 1 indicate no rate remapping and values 667 

close to 0 the opposite. As in (C), thick blue lines denote the mean random overlap scores 668 
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and thin blue lines denote the mean ± 2SD random overlap scores. (F) Population Vector 669 

analysis: The PV of each bin was obtained staking the firing rate of each bin, of the rate 670 

map, for each common cell, during observation (PVobs) and navigation (PVnav). (G). The 671 

comparison of the PV correlation index between observation and navigation was not 672 

different than a randomized PV population built by using the same data set (p=0.91, Mann-673 

Whitney test). 674 
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 676 

Figure 5. No changes in theta rhythm spectral power during observation. (A) 677 

Spectrogram (0-20 Hz) during a pre-task period of resting (Pre), observation and navigation 678 

phases of the learning task. Dotted vertical white lines indicate the transition between the 679 

different phases of the task. (B) Mean ± sem of power spectral density in the 0-20 Hz 680 

frequency range during the three phases of the task showed in (A). #p<0.05 navigation vs 681 

rest and vs observation, Friedman rank test followed by Dunn’s posthoc multiple 682 

comparisons. 683 
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SUPPLEMENTARY FIGURES 685 

 686 

687 

Figure S1. Behavioral groups and training details. A total of 25 rats were grouped in 688 

Demonstrators and Observers. Demonstrated were separated in naïve (red, n=7) and pre-689 

trained demonstrators (blue, n=7). Observers were all naïve animals and grouped 690 

accordingly to the demonstrator nature. An observer of a pre-trained demonstrator (green, 691 

n=6) or an observer of a naïve (purple, n=5). The pre-trained protocol consisted of three 692 

consecutive days of free exploration of the oasis maze arena where 100, 50 and 25% of 693 

the wells were rewarded. Observer animals were habituated for three days to the 694 

observation platform and then watched the performance of a demonstrator in the oasis 695 

maze. Immediately after observation, those animals solved the oasis maze preserving the 696 

position of the baited well.   697 

 698 
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 700 

Figure S2. Pharmacological groups. A total of 18 animals were bilaterally implanted with 701 

cannulas directed to the hippocampal CA1 region. Six animals were injected with saline 702 

before the observation phase of the task (saline, green group), while the other 6 were 703 

bilaterally injected with 0.5 uL of bupivacaine 0.75% v/v (bupivacaine, red group). These two 704 

groups were previously habituated to the observational platform in three consecutive days. 705 

The last 6 animals were pre-trained in the oasis maze and 40 minutes before solving the 706 

task were injected with 0.5 uL of bupivacaine 0.75 % v/v, to mimic the time of observation 707 

phase and evaluate any residual effect of the drug in spatial navigation (control, blue group). 708 

 709 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/832758doi: bioRxiv preprint 

https://doi.org/10.1101/832758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 710 

Figure S3. Platform control animals. (A) A subgroup of naïve rats (n=8) was habituated 711 

during three consecutive days to the platform and then solved the oasis maze without 712 

observing any demonstrator. (B) Mean ± sem percentage of hit rate, (C) distance ratio, (D) 713 

latency, the correlation coefficient and p-value of each behavioral variables it is indicated in 714 

the plot (Pearson correlation coefficient). 715 
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 717 

Figure S4. Poor spatial learning performance is not explained by lower exploration or 718 

immobility. Total path length (A) and mean velocity (B) during oasis maze. Results are 719 

shown as mean±sem. #p<0.05 vs pre-trained group, *p<0.05 vs observer of a pre-trained 720 

demonstrator, one-way ANOVA followed by Holm-Sidak posthoc test (for path length) and 721 

Kruskal-Wallis test followed by Dunn’s posthoc for velocity. Notice that the worst 722 

performance correspond to the animals that most distances traveled in the oasis maze. 723 
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 725 

Figure S5. Comparison between behavioral and pharmacological hit rate. Mean ± sem 726 

of saline (green), an observer of a pre-trained (light green), bupivacaine (red), naïve 727 

demonstrator (pink), an observer of a naïve (purple), control (blue) and pre-trained (light 728 

blue) groups. n.s = non-significative, t-test (green vs light green and blue vs light blue 729 

groups) or Kruskal-Wallis one-way ANOVA (red, pink and purple groups). 730 
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 732 

Figure S6. Place fields are not influenced by the position of the rewarded well. 733 

Distribution histogram for the distance between the center of the place field and the position 734 

of the rewarded-well both during observation (left) and navigation (right). The red curve 735 

represents a Gaussian distribution fitted with the distance values (p-value of a Kolmogorov 736 

test is indicated in red). 737 
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