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The Next Generation Sequencing (NGS) technologies have provided affordable ways to generate errorful raw genetical data.
To extract Variant Information from billions of NGS reads is still a daunting task which involves various hand-crafted and
parameterized statistical tools. Here we propose a Deep Neural Networks (DNN) based alignment and SNV tool known as
DAVI. DAVI consists of models for both global and local alignment and for Variant Calling. We have evaluated the performance
of DAVI against existing state of the art tool-set and found that its accuracy and performance is comparable to existing
tools used for benchmarking. We further demonstrate that while existing tools are based on data generated from a specific
sequencing technology, the models proposed in DAVI are generic and can be used across different NGS technologies. Moreover,
this approach is a migration from expert driven statistical models to generic, automated, self-learning models.
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1 INTRODUCTION
Next generation sequencing [1] has opened up a new paradigm - It has provided affordable access to whole
genome or genome sequences to many researchers which leads to personalized medicine and to personal genome
project[2]. Many Mendelian disease studies have employed NGS to identify causal genes based on patient-specific
variants[3]. Since a disease associated genetic variant rarely occurs among general healthy population, its
interpretation in a patient is relatively simple. This interpretation simplicity by virtue of rarity of the variants
however entails risk of false discoveries due to the errors in sequencing and false detection by variant calling
methods. For success of clinical genomics and personalized medicine, fast and accurate identification of variant
is most crucial. Thus NGS technology has shifted focus from generating genome data to swift and accurate
information extraction. In NGS methods, a whole genome or targeted regions of the genome are randomly
digested into small fragments (or short reads) that get sequenced and are then either aligned to a reference
genome or assembled[4] to form complete DNA (de-novo assembly). From aligned reads, variants and indels are
identified by segregating read errors from potential variants and then comparing contigs with reference genome.
These identified variants are known as True Variants and the process of detecting variants in reads is known
as Variant Calling. Since NGS represents a throughput technology, it is highly sensitive to technological errors
and produces data which is erroneous, random, multiple and of high coverage. It is therefore required to clean
and pre-process [5] [6] [7] [8] data before variant calling. Variants detection in a genome sequence is thus a
multi-step process comprising of : (1) Mapping the reads to the indexed reference(alignment), (2) Sorting the
reads based on their location, (3) Identifying and annotating the probable variant candidates, (4) Determining
true variants and their genotypes from variant candidates with high confidence (variant calling). This makes
the process of variant and indels (insertion and deletion of bases) identification highly dependent on reliable
bio-informatics tools. There are many off-the shelf tools and pipelines available for variant identification[9].

Authors’ address: Gaurav Gupta, ggupta.iitd@gmail.com; Shubhi Saini, saini.shubhi@gmail.com.

Publication date: September 2019.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/778647doi: bioRxiv preprint 

https://doi.org/10.1101/778647
http://creativecommons.org/licenses/by-nd/4.0/


2 • Gaurav Gupta and Shubhi Saini

These tools are based on string manipulation and statistical modeling and require parameter tweaking by domain
experts. Moreover, different tool sets are required for different NGS technologies and for different species.
In this paper, we propose a novel deep neural network based tool "DAVI" (Deep Alignment and Variant

Identification) which can be used across NGS technologies and species for raw reads alignment and SNV
detection. We benchmark the computational performance of DAVI against state of the art GATK pipeline and
demonstrate that it not only performs variant identification faster, but is also more specific than existing tool set.

2 CURRENT METHODOLOGY
As described above, all existing pipelines can be broadly divided into two major processes : One is aligning reads
to reference (Alignment), and the other is identification of variants from aligned reads (Variant Calling).

Alignment is the process by which the NGS reads are aligned to their corresponding(most likely) locations in
the reference genome. Alignment can be achieved by comparing reads with k-mers of reference genome. But due
to imperfection in raw NGS reads(substitution and indels) an attempt to exactly match reads to reference k-mers
will lead to rejection while comparing. Thus to perform alignment raw reads are divided into sub-reads and
matching regions (contigs) with reference are identified. Matched sub-reads are expanded at contigs to find best
suitable match of a read. There exist many tools which perform this local alignment like BWA , Novalign , Bowtie
, BLAST etc. These algorithms use dynamic programming to locate region for best alignment. Algorithmically
these algorithms can be divided into two main categories : (1) Hash Table based algorithms, indexing either
the reads or the reference genome and (2) Burrows-Wheeler Transform based algorithms, using suffix trees
and suffix arrays of the strings[10][4]. Recently there have been some attempts to use ML based algorithms for
pseudo-alignment
Variant calling is the process by which variants are identified from the aligned sequence data with respect

to reference sequence of the particular organism. GATK, VarScan2, Atlas-SNP2,SNVer are some of the tools
that perform variant calling on aligned reads. SNP callers may also be divided into two different approaches: (1)
Heuristic methods based on thresholds for coverage, base quality and variant allele frequency and (2) Probabilistic
methods based on genotype likelihood calculations and Bayes’ theorem. Due to their computational demands,
heuristic based methods are less commonly used than probabilistic methods [4].

2.1 GATK Best Practices Pipeline
For the purpose of benchmarking the performance of our proposed SNV identification methodology, we have
experimented with Illumina2000 data. We have compared our results with the widely used GATK best practices
pipeline[11] for SNV. GATK based pipeline has been selected because it gives best performance across existing
variant calling pipelines against gold standard set of reference variant calls from GIAB[9]. This pipeline consists
of BWA, Picard Tools and GATK packages.

GATK uses machine learning based algorithms in its HaplotypeCaller tool for variant detection, with PairHMM
method for pairwaise aignment of each read against its haplotype. PairHMM is a pairwise alignment method that
uses a Hidden Markov Model(HMM) and produces a likelihood score of observing the read, given the haplotype
[12]. For each potentially variant site, the program applies Bayes’ rule, using the likelihoods of alleles given the
read data to calculate the posterior likelihoods of each genotype per sample given the read data observed for that
sample.

2.2 Deep Learning Based Approaches In Bio-informatics
Despite more than a decade of effort and thousands of dedicated researchers, the hand-crafted and parameterized
statistical models used for variant calling still produce thousands of errors and missed variants in each genome
[13]. Deep Neural Network based learning algorithms provide attractive solutions for many bio-informatics [14]
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problems because of their ability to scale for large dataset, and their effectiveness in identification of intrusive
complex features from underlying data. There has been some success in area of de-novo peptide sequencing [15],
mapping protein sequence to fold(deepSF)[16] and to predict protein binding sites in DNA and RNA(deepBind)
[17] . CNN based models are used exhaustively in identification of Motif in DNA sequence [18], but not much
has been done for the prediction of SNVs in raw DNA reads.
Only recently, Google has developed DeepVariant [19] tool which uses deep learning to predict variants in aligned
and cleaned DNA reads. DeepVariant method uses CNN as universal approximator for identification of variants
in NGS reads. It does so by finding candidate SNPs and indels in reads aligned to the reference genome with
high-sensitivity but low specificity. The DeepVariant model uses Inception-v2 architecture to emit probabilities
for each of the three diploid genotypes at a locus using a pileup image of the reference and read data around each
candidate variant. There have been some attempts to use RNN for global alignment, but their results are not yet
established [20].
In DAVI we have used both CNN and RNN algorithms for alignment. Using DNN we determine a DNA read
comparator function (global alignment) or sub-read comparator function (local alignment),which determines best
alignment based on scoring function. For Variant identification DAVI uses CNN like DeepVariant but instead of
using pileup images with inception-v2 architecture, we use Position Specific Frequency Matrix(PSFM) to identify
possible variant sites and a set of images(reference, substitution and indel) to predict variant and its genotype
at a given location. The detailed model designs and experiments are illustrated in section below. We have used
Illumina data of Ecoli (CP012868.1 Escherichia coli str. K-12 substr. MG1655, complete genome) and human data for
validation of our experiments. We have also used pacBio human genome data for generalizing our model across
NGS technologies.

Fig. 1. DAVI pipeline

3 DEEP ALIGNER AND VARIANT IDENTIFICATION

3.1 Alignment
As discussed above, to perform alignment we have to derive a comparator function which considers complete raw
NGS reads (global alignment) or part of reads (local alignment), and reference k-mers from a location as input
and performs comparison to output rank of similarity since perfect matches to reference sequence is elusive. Our
comparator function should be able to handle some percentage of variation between two input streams while
measuring degree of similarity. Higher similarity value implies better alignment at that location.
As we know, DNN works very well in extracting feature while being resilient over noise(variations). Moreover,
since DNN based algorithm scales with data, our alignment use-case is a good fit for these algorithms. Two
most widely used DNNs are Convolutional Neural Network(CNN) and Recurrent Neural Network (RNN). While
CNN is generally used to extract features from local patches of data, RNN is used for sequential data where
current outcome is dependent upon previous learnt patterns. We have explored both these techniques to solve
our problem of alignment. The dataset used for training and testing of our DNN model is discussed in following
subsection.
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3.2 Dataset
To perform alignment we have used genome sequence of Ecoli K-12. For this reference genome we have used
two sets of input reads: (1) Actual NGS reads, which generated from ILLUMINA sequencer and have length of
30-300bps with error rate of 1-2% and coverage of 30x. We called this dataset real dataset. We have used this
dataset primarily for testing our models. (2) To learn a robust comparison function we have trained our models
with what we call as simulated dataset. Reads for this dataset are generated from reference genome with max
error rate of 40%. The process of generation of simulated reads and preprocessing of strings for alignment is
explained in Appendix B.

3.3 DNN for Alignment
3.3.1 Deep Conflation Based Model.

In this model, we have used CNN to predict the most probable location of a given read by breaking the reads
and reference into fragments of size k, called as k-mers. Let ri be a k-mer obtained from reference location i. We
calculate the similarity between k-mer of a given read w.r.t. several different reference k-mers from different
locations < r1, r2, .., ri , ..., rn >. The highest similarity reference k-mer can then be extended in a fashion similar
to BLAST algorithm. We formulate the problem of k-mer string matching as analogous to that of identifying
match between a word and its misspelled variants. This formulation is similar to conflation problem of business
data.“Character-level Deep Conflation For Business Data Analytic” [21] discusses the model developed to solve
the conflation problem. We have extended this model for our application. The details of model used for Alignment
are discussed in Appendix B. Figure 2 Gives an overview of the model.

Fig. 2. Deep Conflation Based Model

Evaluation on Simulated Dataset. To perform alignment using this model, a simulated dataset was generated
from genome sequence of ecoli(CP012868.1 Escherichia coli str. K-12 substr. MG1655, complete genome). We
experimented by generating a set of 10000 random 100-mers containing characters A,C,G and T. For each 100-mer,
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we also generated a 100-mer with 40% Insertion,deletion and substitution starting at a random location. After
training the model for 3 epochs on entire dataset, with mini-batches of size 100 the model was able to achieve a
testing accuracy of 99.4%.

Fig. 3. Loss vs number of minibatches

The entire dataset was divided into training and testing data, using a split ratio of 90:10 for training:testing.
The training data was further split in ratio of 90:10 for training and validation, with data selected through
random permutation on dataset for each epoch. With this splitting, each epoch contains 81 minibatches. Figure 3
shows the change in Loss and accuracy of prediction over number of minibatches during training. Accuracy for
validation and testing is measured as the number of mutated strings for which the correct reference was ranked
highest in the given set.

Evaluation on Real Data. To test the accuracy of network trained with above simulated dataset with real data,
the following procedure was used. We have taken EColi reference same as that used in simulated data and NGS
reads from SRR2724094_1.bam (fastq aligned by BWA-MEM). The process is defined in Algorithm ?? (Appendix
A). Model was tested on 100 batches of the above dataset where input sequence length is of 100 nucleotide bases.
Statistics of test are shown in Table 3.3.1 and Fig.3.3.1.
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Fig. 4. Confusion Matrix for Deep Conflation Align-
ment Model

Metrics Values
Accuracy 0.9953239019846017
Precision 0.9492050794920508
Recall 0.9995788143624302
F1 Score 0.4868704482511027

Table 1. Performance Metrics of Deep Conflation
Based Alignment Model

Observations. Deep Conflation model has been found to be useful for predicting the best match reference k-mer
to a given read. In this model the length of read (k-mer) does not affect the accuracy of prediction. Thus this
model can be used for global alignment, since a given read of length ‘r’ can be aligned by searching for best
reference k-mer of same length by straightforward comparison. Since feature extraction for reference k-mers is
required only once, we create a database of reference features first time. Subsequently, to test the alignment of
reads against this reference, the features are queried from the database.

3.4 RNN Based Alignment
Recurrent Neural Networks are memory based Neural Networks. They are especially useful with sequential
data because each neuron/unit can use its internal memory to maintain information about the previous input.
The two most widely used RNNs are : Vanilla RNN and LSTM (Long Short Term Memory). RNN is estimated to
be faster network as compared to LSTM, but it falls short in memorizing and representing long term patterns
associated with input data stream. Thus, to determine which Recurrent Neural Network will be feasible for
comparing genome strings, we modeled both RNN cells and LSTM cells. We further improved these models using
CoDeepNEAT techniques.

3.4.1 Architecture. Alignment of query reads with respect to a given reference sequence, works by comparing
query string with a series of reference strings, and determining the degree of confidence of their alignment.
Since a read may be aligned to more than one locations in the reference, ‘degree of confidence’ gives a measure
to choose the best site for alignment. To perform alignment using neural network, our RNNs takes reference
string and query string as input and then classifies them into one of the two classes: namely, Matched class and
Unmatched class. Then from all Matched cases based on best matching score, a reference string is picked for
alignment. For classification, we have modeled our DNN as shown in Fig 5. The value of hyper-parameters used
in Vanilla RNN and LSTM model are listed in Table 2 .
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Fig. 5. RNN Based Alignment Model Architecture

Hyper Param-
eters

RNN LSTM

Batch Size 10 10
Input Length 10-90 10-90
Hidden State
Size

4 20

Bias True True
Dropout 0.0 0.0
Learning Rate 0.001 0.003
Optimizer RMSProp Adam
Loss Function Cross En-

tropy
Cross En-
tropy

Table 2. Vanilla RNN and LSTM Hyper Parame-
ters.

3.4.2 Experiment. Models of both RNNs are trained on Simulated Dataset. Input to model is generated by
concatenating raw sequence of fixed length with reference sequence of same length against which comparison to
be made. This concatenated sequence is then converted to Hot vector Encoding to generate input for models.
For Vanilla RNN 50 epoch with 380 batches of training dataset is used while for LSTM 100 epochs are used for
training same dataset. To observe over-fitting, validation test was performed on validation dataset at regular
interval.

Evaluation and Observations. Trained RNN models was evaluated on test dataset of simulated dataset. Mean
accuracy of 87.55% was observed for Vanilla RNN, The accuracy graph and model test parameters of Vanilla RNN
for test dataset is shown in Fig. 6. While mean accuracy of 79.6 % is observed for LSTM. The accuracy graph and
model test parameters of LSTM for test dataset is shown in Fig.7. Detail Design for both Vanilla RNN and LSTM
with training accuracy is illustrated in Appendix C

Comparison of RNN Models. We have performed experiments with different sequence lengths ranging from 10
to 90. The number of hidden units in models is kept at 1/3 of sequence length. We have observed that as size of
sequence grows beyond a certain threshold, both RNN models show no learning and accuracy drops significantly.
For Vanilla RNN, model threshold reaches for sequence length above 50, while for LSTM model threshold is
reached at length of 80. The test accuracy of Vanilla RNN model is significantly higher than LSTM model and
also Vanilla RNN model trains faster as compared to LSTM model. Test accuracy of both models vs sequence
length is shown in Fig. 8.
As observed Vanilla RNN model has better accuracy as compared to LSTM for query length up to 40bps, we have
used Vanilla RNN for alignment. Since query length of NGS data is more than 40bps , Vanilla RNN based model
can be used for Local Alignment only.
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Precision Recall f1-score Support
0 0.88 0.73 0.80 165
1 0.88 0.95 0.91 325

avg/total 0.88 0.88 0.87 490

Fig. 6. RNN Model Test Accuracy

Precision Recall f1-score Support
0 0.00 0.00 0.00 100
1 0.80 1.00 0.89 390

avg/total 0.63 0.80 0.71 490

Fig. 7. LSTM Model Test Accuracy

3.5 Optimization of RNN models
The above two experiments are clear indicators that vanilla RNN based Neural Network does perform well for
genome comparison, but designing an optimal RNN network is a difficult task as each network has large number
of hyper parameters to optimize. To automate the process of finding best values for each hyper-parameter we have
used Neuro Evolution technique known as CoDeepNeat[22]. CoDeepNeat uses existing neuro evolution technique
of NEAT [23], which has been successful in evolving topologies and weights of relatively small recurrent networks.
The fitness of evolved DNN is determined by how well system is getting trained by gradient descent , to perform
its task. CoDeepNeat uses genetic algorithm for optimization which is combined with gradient descent to evolve
large and complex DNN.

3.5.1 Extending CoDeepNeat for RNN. In our implementation of CoDeepNeat, population of chromosomes is
created by randomly initialized hyper parameters of network and slowly evolving them though mutation. Instead
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Fig. 8. Test Accuracy Comparison of Vanilla RNN and LSTM model with Input Sequence Length

of representing each chromosome as a layer in DNN, in our design each chromosome itself is represented as
a DNN. Advantage of this modification is that it nullifies the requirement of crossover in genetic algorithm as
crossed over offspring can be generated by the application of mutation only. Although this approach limits the
size of DNN and number of different layers that can be stacked, yet this is not a constraint since our Network
is small. To evolve the networks, we have used two different mutation operators , namely Random Mutation
Operator and Gaussian Mutation Operator [24] To evolve population offspring with selection, we have used
DNN learning as fitness function. In particular, accuracy of validation test of DNN after a fixed number of epochs.
Chromosomal population is evolved using genetic algorithm. The algorithm used for evolving chromosome
population selects three elites from parent generation and are evolved in next generation without mutation
while all other off springs are mutated version of previous generation chromosomes. The detailed algorithm for
evolution is described in Algorithm 4 (Appendix A).

3.5.2 Evolution & Training. Evolution was carried out for 10 generations(epochs) and best DNN was selected
as the one with highest accuracy in any generation of evolution. To mutate chromosomes, mutation operators
were applied to each hyper parameter with probability of 0.2. Since training a DNN is computationally expensive
and size of population was 30, each network was trained for only two epochs on the training set. Validation Set
was used for calculating fitness of DNN. Due to small number of epochs validation accuracy was calculated once,
at the end of training. It is argued that due to small number of epochs, the network which is evolved is the one
which trains fastest rather than the one with highest accuracy. Thus, through this technique we have automated
the design of DNN topologies which gives model with shortest training time with relatively higher accuracy.

3.5.3 Experimental Setup and Evaluation. System is built using Pytorch libraries with Tensorflow backend
for CUDA platform on single GPU. Time taken for model to evolve is 49.32 hrs. After network is evolved for
10 generations, for each DNN (chromosome) in population, mean validation test accuracy is calculated. Fig. 9
shows the performance of population across generations. It is clear from this figure that system evolves till 6th
generation by increasing mean accuracy and minimizing the standard deviation of population. But after 6th
generation, mean accuracy decreases due to random mutation and standard deviation of population increases.
During evolution most of the DNNs (population) trained quickly and had accuracy between 90%-100% as shown
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by density of clusters in Fig. 9. For the optimal solution, we chose DNN from 6th generation which provides
maximum accuracy. DNN with highest accuracy and smallest standard deviation has been picked up as best DNN
for nucleotide base comparison. The values of hyper parameters of best DNN suggested by model are listed in
Table 3.

Fig. 9. Accuracy of population after each Generation

Hyper Parameter Values
Number of Layers 1
Learning Rate 0.0938099
Optimizer RMSProp
Bias False
Hidden Size 7
Dropout Rate 0.2653750429101209
Activation Function sigmoid
Bi-directional False

Table 3. Hyper Parameter Values of Suggested RNN

3.5.4 Evaluation Of Optimized RNN with Simulated Data. To train and test optimized RNN model, simulated
dataset is used. Training Loss graph (Fig. 10) of optimal DNN converges faster as compared to Vanilla RNN.
Vanilla RNN learning starts around 3500 batches while in optimal DNN learning starts just after 2500. Hence,
number to batches required for training optimal DNN is much less than Vanilla RNN model. Mean test accuracy
of optimized RNN for 100 samples of simulated dataset is 96.123 % as compared to 84.55 % of Vanilla RNN (Fig.11).
When tested on real dataset with input sequence of length 15 nucleotide bases mean accuracy for 100 samples
increases to 98.88. The accuracy plot and report are shown in Fig 13 and 12
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Fig. 10. Performance of optimized RNN

Fig. 11. Test Accuracy of Optimized RNN Fig. 12. Accuracy Of Optimized RNN on Real Dataset

Fig. 13. Confusion Matrix Of Optimized RNN On Real
Dataset

Metrics Values
Accuracy 0.9883333333333333
Precision 0.9902534113060428
Recall 0.996078431372549
F1 Score 0.4965

Table 4. Performance Metrics of Optimized RNN Align-
ment Model
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Limitation and Assumptions. Limitations of RNN based model are as follows:
• We have assumed the reads to be of fixed length and maximum length of a read is lesser than 40 bps.
• This model falls short in doing global alignment as, length of read generated by Illumina NGS are greater
than 40 bps.
• We have not considered quality of reads while performing comparison.
• We have assumed maximum errors in high quality reads are 40% of total length.

4 USING DNN MODELS FOR ALIGNMENT
We have described CNN and RNN based models which can be used to generate comparator function for alignment.
These models need to be discussed from the viewpoint of their usage in Alignment framework. RNN based
alignment model, on the other hand has been found to work well on k-mers with length less than 40bps. Since the
reads produced by Illumina are greater than 40bp in length, this model is more suited for local alignment of reads.
To align a read w.r.t. reference genome, RNN has to be used in consultation with Local Alignment Algorithm as
described in Algorithm 5 (Appendix A).
To increase the speed of alignment, we have used heuristics similar to BLAST to reduce our search space,

by reducing the number of comparisons. Instead of comparing with each reference k-mer, the algorithm uses
5-mers as seed, and based on the seed all possible locations are searched for alignment. To reduce search space
for query sequence, a database of all possible 5-mers with their locations in reference genome are stored in
dictionary format. Once database is created, all possible 5-mers in query sequence are read. These query 5-mers
are then searched in database and their corresponding location of occurrences are saved as probable locations for
alignment. The detailed work flow of algorithm is as described in Algorithm 1 .

4.1 Comparison of Models
We have experimented with Ecoli data on Deep Conflation and RNN models as described in Algorithms 3, 5 and
1. EColi Reference used was the same as that across all alignment models, and reads were obtained from sample
SRR272401_1. The models were compared for time taken by them to train and predict accuracy, and results are
summarized in Table 5.

Model Training Time Prediction
Accuracy

Alignment Type

Deep Conflation
Model

4 hours 99.5 Global

RNN Model 14.24 min 98.8 Local
Table 5. Alignment Models Timing Comparison

The models proposed for alignment are also compared with existing state-of art alignment tools, mainly with
BLAST and BWA-MEM. For BLAST [25] we have taken open source python implementation while for BWA-MEM
standard tool was taken for comparison. The result of performance comparison is shown in Table 5. It is observed
that BWA-MEM is highly optimized for alignment and it is fastest irrespective of query length. BLAST is also
optimized by using several heuristics to limit the search space. Our proposed model Recurrent Aligner works
well for query of small length as model is designed for optimum length of 32bps. While Deep Conflation Model
works well for query length based on training configuration. When trained for 100bps sequences, the model
works well for sequences 1̃00bp length, but is unable to align queries shorter than 50 bps. On training the model
with 30bps sequences, queries of 3̃0bps are aligned correctly. Therefore deep conflation model is not able to
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Algorithm 1 Alignment with Heuristic
procedure createDatabase(referenceSequence,kmerSize)

▷ Create reference kmer database
kmerDatabase ← dict()

▷ create dictionary key:kmer ,value: location array
re f Lenдth ← lengthOfSeq(re f erenceSequence)
while i , (re f Lenдth − kmerSize) do

kmerWord = re f erenceSequence[i : i + kmerSize]
i ← i + 1
if kmerWord in kmerDatabase.keys() then

kmerDatabase[kmerWord].append(i)
else

kmerDatabase[kmerWord] ← [i]

SavetoFile(kmerDatabase) ▷ Save kmer database to file

procedure Alignment(queryRead,referenceSequence,type,kmerSize)
▷ Aliment procedure with heuristic

re f KmerDatabase ← readfromFile(kmerDatabase)
▷ Read reference kmer dict from file

queryLenдth ← lengthOfSeq(queryRead)
re f SequenceSet ← []
while i , (queryLenдth − kmerSize) do

queryKmer ← (queryRead[i : i + kmerSize]
locSet ← re f kmerDatabase[queryKmer ]
for each location in locSet do

start ← location − i
end ← start + queryRead
refSequenceSet.append(referenceSequence[start:end])

if type is Local then
aliдnedlocation ← localAlignmnet(queryRead, re f SequenceSet ,kmerLenдth,batchSize)

else
aliдnedlocation ← GlobalAlignment(queryRead, re f SequenceSet)

return aliдnedlocation

align queries with more than 50% of padding. For high quality alignment, threshold value of score can be set in
proposed model.

4.2 Deep Learning Based Variant Calling
The SNV and indel identification in a genome is a complex problem , which can be broadly broken down into
two subproblems: Identification of variant and Classification of their type. Probable Variant sites can be classified
into four categories : Heterozygous, Homozygous, Non-variant and Non-SNP. Since we have already discussed
how CNN based deep learning model can be used for extracting feature and for classification of genomic data,
we have used CNN for identification and classification of variants. The proposed Variant Caller pipeline is as
described in Fig.14. Data is preprocessed where from aligned and sorted reads probable variant candidates are
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Read Name Length of Read RNN Deep Conflation BLAST BWA-MEM
SRR2724094.1.1 1 300 4.34 1.8 10.85 0.64
SRR2724094.3.1 3 37 0.624843 0.15 0.169 0.045
SRR2724094.7.1 7 86 0.377 0.284 0.876 0.047
SRR2724094.10.1 10 168 1.548 0.603 0.72 0.055

Table 6. Time taken (in sec) by DNN Models to Predict Location of Read

Read BLAST RNN Deep Conflation
Location Score Location Score Location Score

SRR2724094.1.1 1 - - 4258852 0.388 4258852 0.389
SRR2724094.3.1 3 3073798 0.945 3073797 0.95 3073797 0.2
SRR2724094.7.1 7 306992 0.97 306991 0.98 306991 0.98
SRR2724094.10.1 10 1564588 0.87 1564587 0.95 1564587 0.95

Table 7. Reads Location Prediction by different Models

located using Position Frequency Matrix. These variant candidates are converted to Input Image Matrix , which is
fed to Trained CNN for Classification of Probable Variant Candidates to Variant/Non-Variant and their genotype.
The details of data processing, input image creation and label data generations is described in Appendix D For

Fig. 14. Proposed CNN based Variant Caller Fig. 15. CNN architecture for Variant Calling

training the CNN model, we have used two sets of datasets, one of human genome and another of Ecoli . For
human, we have used Genome in a Bottle reference dataset [26]. Out of this dataset we have used NA12878 [27]
data, in which input data is in BAM format while variant data is in VCF format. To consider variant which has
high confident, interval data was used in BED format.

4.2.1 Convolutional Neural Network. The network consists of two convolution layers with max pool layers
and three densely connected hidden layers. In convolution layer ,kernels of size (2,4) and of size (3,4) are applied
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to generate 48 convolution filters. Three densely connected layers use exponential linear activation function [28]
with dropout rate of 0.05. The above network is trained using Adam Optimizer with learning rate 0.0005. The
output layer contains two groups of output - For the first 4 output units, we learn about the possible bases of the
site of interests. For example, if the data indicates the site has a base “C”, we like to train the network to output
[0, 1, 0, 0]. If a site has heterozygous variants, for example,“A/G”, then we would like to output [0.5, 0, 0.5, 0]. We
use mean square loss for these 4 units. For 2nd group of outputs, the units consist of variant type. We use a vector
of 4 elements to encode all possible scenarios. A variant call can be of any category as mentioned above. We use
a soft max layer and use cross-entropy for the loss function for these 4 units.The architecture of CNN is depicted
in Fig.15.
Training : CNN was trained on data as mentioned above. Training images were sent as a batch of size 500,

each image of dimensions 15*4*3. The first 30000 images were used for training and next 30000 were used for
validation. Number of epochs for training was 3000. Time taken to train network on 30000 reads of NA12878-chr21
was 284.289 seconds.

4.2.2 Evaluation. To evaluate performance of our model we have generated confusion matrix for Genotypes
of variants and report of our prediction as shown in Fig 16 and Table 8. It is clear from prediction results that our
model output has high specificity and moderate sensitivity.

Fig. 16. Confusion Matrix of Genotype Prediction

Precision Recall f1-score Support
Homozygous 0.75 0.82 0.78 11
Hetrozygous 0.91 0.75 0.82 28
Non-Variant 1.00 1.00 1.00 3954
Non-SNP 0.8 0.57 0.67 7
avg/total 1.00 1.00 1.00 4000

Table 8. Genotype Prediction Report

4.2.3 Experimental Setup and Results. CNN is modeled using Tensorflow library [29] on Ubuntu 16.04 operating
system, which helps in scaling CNN network on both CPU and GPU based architecture. For benchmarking GATK
performance GATK 3.7 with JAVA 8 is used. The hardware specification of system used for benchmarking is as
shown in Table 9 :-

Processor Memory Hard Disk GPU
IntelÂő i7-4770 CPU @ 3.40GHz 7.7 GB 1.5 TB None

Table 9. System Specification

We benchmark the performance of our variant caller network considering real execution time (in seconds)
and accuracy of prediction. We have carried out comparative study of the proposed model against GATK 3.7
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Haplotype Caller for "Illumina" dataset. To prove that deep learning based variant caller can be used across
different NGS technologies we have also done performance and sensitivity analysis on "PacBio RSII" dataset.
We have used Dataset as mentioned in Table 10.

Dataset Species NGS Reference
hg38.NA12878

chr21-14069662-46411975 Homo sapiens PacBio
RSII hg38.chr21

hg38.NA12878
chr22-18924717-49973797 Homo sapiens PacBio

RSII hg38.chr22

NA12878
chr20.10_10p1mb Homo sapiens Illumina ucsc.hg19

chr20
SRR1610046_1 Ecoli Illumina ecoli.fa
SRR1610046_2 Ecoli Illumina ecoli.fa
SRR1610047_1 Ecoli Illumina ecoli.fa
SRR1610052_1 Ecoli Illumina ecoli.fa

Table 10. Variant Caller Dataset

For Human data we have used four different datasets for benchmarking , GRCh3718 data is used as reference
genome. Network is trained using first 30000 images of NA12878-chr21 dataset and validated with next 40000
images . Trained network is used for variant and indel prediction of NA12878-chr22 and NA12878-chr20 datasets.
For non-human data, we have used EColi data. Model is trained using SRR1610046_1 EColi dataset, and tested
with four other Ecoli datasets (Table 10). Timing analysis for NA12878-chr21, NA12878-chr22 and SRR1610046_1
datasets is shown in Fig. 17. Prediction accuracy of CNN Variant Caller when trained and tested on same species
varies between 86%-93% compared to true variant as shown in Fig. 18. To observe accuracy across species, we
have used Variant Caller trained on Human Genome NA12878-chr21 and have used it for predicting variant
in ecoli dataset SRR1610046_1. We have compared the prediction accuracy when trained on dataset from same
species to dataset of different species. Results are comparable as shown in Fig. 19.

Moreover, we tried to analyze how the model trained on one NGS technology can be used across other tecnology.
In this test we have used variant caller trained on human NA12878-chr21 of PacBio RSII data and predicted
accuracy on PacBio RSII dataset of human NA12878-chr21 and NA12878-chr22 and on Ilumina 2000NGS human
dataset NA12878-chr20 and HG00096-chr11. The variant prediction accuracy in both test cases is above 90 % as
shown in Fig 18. Hence variant caller trained on dataset of any species can be used for variant prediction of any
other species. This will allow non-human genome sequencing project to be benefited by depth of human truth
data[? ]. And Model Trained on one NGS technology can be used across various other NGS. Thus moving away
from expert driven model to more generic data driven model.
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Fig. 17. Variant Caller Timing Analysis

Fig. 18. Prediction accuracy of Variant Caller Across
NGS Technologies

Fig. 19. Prediction Accuracy if trained with same species
dataset vs different species dataset

Dataset Number of Variant Caller Variant Caller Variant Caller GATK Haplotype
Dataset Reads Preprocessing Time(s) Prediction Time(s) Total Time Caller Time(s)

NA12878-chr20 52053 12.17 0.75 12.92 20.2
SRR2724094_1 513785 21.67 4.05 26.576 1745
SRR2724094_2 341788 21.67 4.139 25.809 1716
SRR2724099_1 1535766 90.52 16.89 107.41 2830
SRR2724099_2 1527685 65.611 10.64 76.251 3322

Table 11. CNN Variant Caller vs GATK Haplotype Caller

5 CONCLUSION AND FUTURE WORK
In this paper we have explored various deep neural network based models to tackle two problems in Genome
Sequencing- namely, Global/Local Alignment of raw NGS data and Single Nucleotide Variant(SNV) Identification
and its Classification. Proposed solutions were tested and their timing performance were benchmarked against
existing de-facto standard tool sets. We have observed that performance of our alignment model is comparable to
BLAST but is slower than BWA-mem. Our DNN based SNV model at preliminary level was found to perform
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faster than GATK 3.7 and is highly specific. There can be further boost in performance of these DNN models
by using more biological information and by using multi-process and multi-threaded programing models. We
have also established that use of DNN makes our model independent of underlying NGS technologies and model
trained for single NGS technologies can be used across all others. Thus with help of Deep Neural Network we
can generate models which provide faster,reliable and highly specific solution for identification of SNV from
raw NGS reads, and will pave path for data centric solutions as compared to expert based methods in field of
bio-informatics.
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A ALGORITHMS

Algorithm 2 Data Generation
functionQueryGeneration(refSubString, errorPercentage, m) ▷ Function to generate m query strings

randomly generate Location in reference sub string
for each random location do

maxErrorLenдth ←Length Of Reference Sub String ∗ errorPercentage
errorLenдth ← random(maxErrorLenдth)
generate Query substring of errorLength
modify reference substring by query substring

return array of query strings

function GenerateUnmatchedString(refSubString, n) ▷ Function to generate n unmatched string
while n , 0 do

Generate random reference String of length l
return array of unmatched strings

procedure DataGeneration(re f erenceGenome,errorPercentage)
Read Reference Genome Fasta File
for n number of Reference Strings do ▷ Generate data for N reference strings

Create Reference Substring of Length L
for Each Reference Substring do

QueryStrinдs ←QueryGeneration(Re f SubStr , errorPercent ,m) ▷ create m query strings
UnmatchedStrinдs ← GenerateUnmatchedString(Re f SubStr ,m + 50) ▷ create m+50

unmatched strings
for Each QueryStrinд do

Create Target Vector [1,0] ▷ 1:Match,0:Unmatched wrt reference
for EachUnmatchedStrinд do

Create Target Vector [0,1] ▷ 1:Match,0:Unmatched wrt reference
X ← random(QueryStrinдs,UnmatchedStrinдs)
Y ← random(tarдetQueryVector , tarдetUnmatchedVector )
return X , Y
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Algorithm 3 Global Alignment Using Deep Conflation Model
procedure GlobalAlignment(queryRead,referenceSequenceSet)

▷ Align query to reference sequences and return best matched location
kmerSet ← [ ]
queryLenдth ← lengthofSeq (queryRead) ▷ Get Length of query Reads
for each re f seq in re f erenceSequenceSet do

while i , (len(re f seq) − queryLenдth) do
re f Kmer ← re f seq[i : (i + queryLenдth)]
kmerSet .append(re f Kmer )
i ← i + 1

index ← DeepConflationModel(queryRead,kmerSet) ▷ Model match query with set of kmers and
return highest matched index

return index

Algorithm 4 Population Evolution
function generateMutateChild(P,population) ▷ Generate Population offspirng by Mutation

numContestant ← 2
selContestant ← random.sample(population,numContestant)() ▷ Uniformly Sample two

chromosomes from Population
rank ← fitnessTest(selContestant)()
selContestantsort(selContest,rank)()
pick ← random.choice(selContestant,P)()
O f f sprinд← mutate(pick)()
return Offspring

procedure Evolution(population,p,n,q) ▷ Evolve Population for n generations
Children ← []
Initialize population of chromosomes with random values
while n , 0 do

for each chromosome in population do ▷ Selection of Chromosomes
Train chromosome for 2 epochs and perform validation test
Perform Fitness Test on Chromosome

elites ← selectTopThree(chromosomes) ▷ Top 3 DNN’s With highest accuracy
Append elites to Children
for rank of elites do

probSum+ = p ∗ (1 − p) ∗ ∗rank
P ← 1 − probSum
while len(Children) < len(popluation) do

mutateChild ← generateMutateChild(P ,population)
AppendmutateChild to Children
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Algorithm 5 Local Alignment Using RNN Model
][H]

function alignmentScore(queryRead,referenceSet)
▷ Calculate Alignment Score by % of matched base pairs

scores ← [ ]
for each sequence in reference do

matchScore ←get number of matched Base Pairs

scores.append(
matchScore

len(queryRead)
)

return scores

procedure LocalAlignment(queryRead,referenceSequenceSet,kmerLength,batchSize)
▷ Align query to reference sequences and return best matched location

queryWords ← [ ]
queryLenдth ← lengthofSeqence(queryRead) ▷ Get Length of query Reads
while i ,(queryLenдth - kmerLenдth) do

queryKmer ← queryRead[i : (i + kmerLenдth)]
queryWords.append(queryKmer)
i ← i + 1

re f kmerSet ← [ ]
for each refseq in referenceSequenceSet do

while j , (len(rer f seq) − kmerLenдth) do
re f Kmer ← re f seq[j : (j + queryLenдth)]
refkmerSet.append(refKmer)
j ← j + 1

wordlocation ← [ ]
wordScore ← [ ]
for each word in queryWords do

re f Seq ← [ ]

while i ⩽
re f Lenдth

batchSize
do

re fWords ← re f kmerSet[i ∗ batchSize : ((i + 1) ∗ batchSize)]
refSeq.append(refWords)
i ← i + 1

index ← rnnAlignmentModel(word, re f Seq)
▷ RNN model return index if matched or -1

if loc , −1 then
loc ← i ∗ batchSize + index
wordlocation.append(loc)
re f Set ← re f erenceSequence[loc : loc + queryLenдth]
score ← alignmentScore(queryRead, re f Set) ▷ Calculate alignment score of query Read and

Reference Sequence
wordScore.append(score)

location ←Best Score Location
return location
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B EXPERIMENT DETAILS OF DEEP CONFLATION MODEL

B.1 Simulated Data Generation
Simulated data is generated by adding random errors in the form of substitution and indels of bases of correspond-
ing reference string. Through this scheme, we intend to generate data which has close resemblance with actual
reads obtained from NGS sequencer. Also, by using error as a parameter in the data generator, we can generate
and experiment with datasets containing varying degree of errors. This will help in establishing correlation
between the percentage of error in reads and the prediction accuracy of Neural Network, if any exists. Algorithm
for data generation is described in Algorithm 2 (Appendix A).
The output of data Generation is jumbled using uniform random distribution. For experimentation, three

data sets of inputs and targets are generated - namely, training dataset, validation dataset and test dataset. Each
dataset is generated by method as described above, but the number of matched and unmatched corpuses are
different due to uniform random sampling of batch data. Data is generated for 4000 reference strings, total
database of corpuses is of the order 61*4000. Dataset is split into 80, 20 ratio for training and validation set. For
test, another 1000 reference string dataset is generated. Length of each reference string is varied from 15-170 bps
for experimentation. Details of DNN models which use this dataset are discussed in following section.

B.2 Deep Conflation Model for Alignment
Model Overview. Given a read k-mer ‘x’, the model ranks a set of reference k-mers < r1, r2, ....., rn >, so that

the reference k-mer most similar to given read gets highest rank. The k-mers are first preprocessed and encoded
as per the following scheme:
A : 0, C : 1, G : 3, T : 4.
The model consists of two parts:

(1) Extracting finite dimension feature vectors from the encoded read and reference k-mers through CNN.
(2) Ranking the reference features based on cosine similarity with read features.< r1, r2, ....., rn > are ranked

in order of decreasing similarity.

CNN Feature extractor. Let ‘x’ be a string containing ‘k’ characters. Then, character encoding of x is obtained
as x = [x1,x2...,xk ]. x is then fed as input to the CNN, and convolution is applied using three different filters
of sizes 2, 3 and 4 to extract features corresponding to bigrams, trigrams and 4-grams. The ‘t’th output of a
convolution with filter size ‘f’ is obtained as follows:

hf t = tanh(Wf st :t+f −1 + bf ) (1)

WhereWf is the convolution weight, bf is the bias and st :t+f −1 is the vector obtained by concatenating st to
st+f −1 Feature map of convolution with filter size ‘f’ can be defined as :

hf = [hf 1,hf 2, .......,hf (k−c+1)] (2)

Max pooling is applied to feature map hf to obtain ĥf . Feature maps obtained with filters of sizes 2, 3 and 4 are
concatenated to form a vector representing the entire input string/character sequence y = [ĥ2, ĥ3, ĥ4]. This final
feature vector is fed to the ranker module. The process of feature extraction is repeated for each read k-mer and
reference k-mer.

Ranker. After obtaining the feature vectoryx for read k-mer x, and set of feature vectorsyri =< yr1 ,yr2 , ...,yrn >
, 1 < i < n for reference k-mers < r1, r2, ....., rn > the ranker computes cosine similarity between yx and each of
yri as follows

R(x , ri ) =
yTxyri

| |yx | |.| |yri | |
(3)
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Reference k-mers are ranked by these scores with respect to a given read k-mer, with the best matching reference
k-mer awarded the highest rank.

Training. For training, we have used simulated data as described in previous subsection. We feed the model a
batch of 100 such (reference,mutant) pairs, wherein the model is expected to learn to match the mutated string to
its original reference string, and assign it the highest rank. Using the similarity scores obtained from equation 3,
the posterior probability of correct reference string, given the mutant string is defined as follows:

P(r+ |x) =
exp(γ .R(x |r+)∑

r ′ ∈Ref exp(γ .R(x |r
′
))

(4)

Where r+ is the correct reference string to which x should match. γ is a hyperparameter set to 10. Ref is the set of
reference strings, containing r+ and 99 other random non matching reference strings. While learning, the model
tries to minimize the following loss function:

L(θ ) = −loд
∏
x,Ref

P(r+ |Re f ) (5)

Where θ denotes the model parameters to be learnt, and product is over all examples in a batch. Adam Optimizer
with learning rate of 0.0002 is used for loss minimization.

Testing. During testing, a read k-mer is fed to the model and features extracted from this input are compared
with feature vectors obtained from reference k-mers. Thereafter, reference k-mers are ranked in order of similarity
(based on Equation 3), and the highest rank reference k-mer is output as the most probable match for the given
read k-mer.

C DESIGN AND TRAINING OF RNN MODELS

C.1 Vanilla RNN
A vanilla RNN is designed to include an additional context layer, where the activation of hidden units from previous
feed-forward process is stored [30]. These hidden state values are concatenated with input which generates three
dimensional vector of shape [sequence_lenдth,batch_size,hidden_size + input_size]. These vectors are then fed
to RNN cell with fully connected nodes. Each cell of RNN stores value as hidden state which is of dimension
[batch_size,hidden_size]. The output of RNN cell is then fed to FC layer while hidden state is fed to input layer
of next cell.

C.1.1 Training. The network was trained on simulated data for 50 epochs, with 380 batches of size 10 (Number
of batches = 61*4000/batch size/Sequence length) for each epoch. For each epoch, at interval of 100 batches,
training loss and training accuracy of predicted output was calculated. To observe overfitting, validation test was
performed on validation data at same interval. With learning rate of 0.001 for optimizer the plots of loss function,
training accuracy and validation accuracy is shown in Fig. 20

C.2 LSTM
In order to model global alignment of genome sequences by comparing reads of long lengths, we have explored
LSTM cell in our Recurrent Neural Network architecture. Benefit of LSTM is that it helps to avoid long-term
dependencies and thus remembers data patterns for long time(sequences). From many different LSTM configu-
rations available, we have used Hochreiter & Schmidhuber LSTM [31]. A cell of LSTM consists of hidden state
and cell state. Hidden state of LSTM cell is used for modifying state of next LSTM cell, while Cell State dictates
output of current cell. Both values for initial LSTM cell are initialized to zero. Similar to RNN, input to cell is
concatenated with previous hidden state before being fed to next LSTM cell.
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Fig. 20. Training Loss, Training and Validation Accuracy Of Vanilla RNN

C.2.1 Training. LSTM network was trained for 100 epochs with number of batches and batch size same as
that of RNN model. Training set and validation set are also kept same as that of RNN model. Unlike RNN, the
training loss and training accuracy in LSTM model are calculated for each epoch, while validation test is done at
an interval of 100 batches for each epoch. The training loss, training accuracy and validation accuracy of LSTM
model is shown in Figure 21

D DATA-PREPROCESSING FOR CNN BASED VARIANT CALLER
D.0.1 Data Preprocessing. This process involves generation of variant candidates and generation of labeled

data to train CNN . For variant generation, the aligned BAM file is read using Samtools and corresponding CIGAR
[32] strings are decoded. From CIGAR string, different alleles along with their position in reference reads are
identified by comparing it with reference read. These alleles are then classified either as reference-matching base,
reference-mismatching base, an insertion or as a deletion [13].
The frequency of each distinct allele for a position is calculated using Position Specific Frequency Matri-

ces(PSFM) [33] as shown in Fig.22. If frequency is above set threshold, the allele site is considered as a variant
candidate. For all possible variant candidates, Variant string is generated by reading fix length of bases from
reads ,with variant site as median. These variant candidate strings are encoded into three matrices. 1st matrix is
created by encoding the expected reference sequence using one-hot-like encoding. It encodes number of reads
that aligned to a reference position . The 2nd matrix encodes the difference of all the bases observed in the
read-reference alignment. Reads with ‘N’ nucleotides are ignored. The 3rd matrix is similar to the 2nd matrix,
except, none of the insertion bases in the reads is counted. All the matrices are input to CNN for both training
and variant calling. Fig.23, depicts data transformation at each stage of data preprocessing.
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Fig. 21. Training Loss, Training and Validation Accuracy Of LSTM

Fig. 22. Position Specific Frequency Matrix

Labeled Data : Labeled Data is created by reading corresponding variant file in,VCF format. Only those true
variants are considered for labeling which fall in high confidence region of reference genome. For all true variants,
their position,reference base, alternate base and their genotypes are read. These variants and their genotypes are
then encoded as shown in Fig. 24b.
The process of generating label data and data transformation for labeling is shown in Fig.24a.
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Fig. 23. Data transformation during Preprocessing

(a) Label Data Generation Process

(b) Label Data Encoding

Fig. 24. Label Data Generation
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