
An Open Source Mesh Generation Platform for
Biophysical Modeling Using Realistic Cellular
Geometries
Christopher T. Lee2,*, Justin G. Laughlin2, John B. Moody3, Rommie E. Amaro1, J. Andrew McCammon1, Michael J. Holst3, and
Padmini Rangamani2,*

1Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093 US
2Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093 USA
3Department of Mathematics, University of California, San Diego, La Jolla, CA, 92093 USA
*Correspondence: ctlee@ucsd.edu, prangamani@ucsd.edu

ABSTRACT Advances in imaging methods such as electron microscopy, tomography and other modalities are enabling
high-resolution reconstructions of cellular and organelle geometries. Such advances pave the way for using these geometries
for biophysical and mathematical modeling once these data can be represented as a geometric mesh, which, when carefully
conditioned, enables the discretization and solution of partial differential equations. In this study, we outline the steps for a naïve
user to approach GAMer 2, a mesh generation code written in C++ designed to convert structural datasets to realistic geometric
meshes, while preserving the underlying shapes. We present two example cases, 1) mesh generation at the subcellular scale as
informed by electron tomography, and 2) meshing a protein with structure from x-ray crystallography. We further demonstrate
that the meshes generated by GAMer are suitable for use with numerical methods. Together, this collection of libraries and tools
simplifies the process of constructing realistic geometric meshes from structural biology data.

SIGNIFICANCE As biophysical structure determination methods improve, the rate of new structural data is increasing.
New methods that allow the interpretation, analysis, and reuse of such structural information will thus take on commensurate
importance. In particular, geometric meshes, such as those commonly used in graphics and mathematics, can enable
a myriad of mathematical analysis. In this work, we describe GAMer 2, a mesh generation library designed for biological
datasets. Using GAMer 2 and associated tools PyGAMer and BlendGAMer, biologists can robustly generate computer and
algorithm friendly geometric mesh representations informed by structural biology data. We expect that GAMer 2 will be a
valuable tool to bring realistic geometries to biophysical models.

INTRODUCTION
The use of Partial Differential Equations (PDEs) in mathemat-
ical modeling of cellular phenomena is becoming increasing
common, particularly, for problems ranging from electro-
statics, reaction-diffusion, fluid dynamics, and continuum
mechanics. Solutions to these equations using idealized ge-
ometries have provided insight into how cell shape can affect
signaling (1, 2), and how blood flows in vessels (3).

On the other hand, in order to gain better insight into
how cellular geometry can affect the dynamics of these
mechanochemical processes, using realistic geometries is
necessary. Already, freely available tools such as Virtual
Cell (4) and CellOrganizer (5) have paved the way for
using realistic cellular geometries in simulations. With in-
creasing availability of high-resolution images of cellular
ultrastructure, including the size and shape of organelles, and
the curvature of the various cellular membranes, there is a
need for computational tools and algorithms that can enable
us to use these data as the geometry or domain of interest and
conduct simulations using numerical methods (6).

For most relevant geometries, it is impossible to obtain
analytical solutions for PDEs; this necessitates the use of
numerical methods to provide an approximate solution. These
numerical methods are based on discretization (approximating
the PDE with a discrete algebraic system) combined with
solvers (typically iterative methods that converge to the solu-
tion to the algebraic system). The first step usually requires
the generation of a geometric mesh over which the problem
can be discretized using techniques such as finite difference,
finite volume, finite element, or other methods to build the
algebraic system that approximates the PDE. The numerical
approximation to the PDE is then produced by solving the
resulting linear or nonlinear algebraic equations using an
appropriate fast solver. One of the computational challenges
associated with generating meshes of biological datasets is the
presence of highly irregular surfaces with curvatures at the
nanometer or Ångstrom length scales. Although many tools
from the graphics community exist to generate meshes for
visualization, these poor quality meshes, when used to solve
a PDE, can both destroy the quality of the discretization as an

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765453doi: bioRxiv preprint 

https://doi.org/10.1101/765453


Figure 1: Example workflow using GAMer to construct a tetrahedral domain suitable for use with Finite Element simulations. A)
Segmented Electron Tomogram of a murine cardiac Calcium Release Unit (CRU) from the Cell Image Library entry 3603.
B) Stacks of contours from traced model. C) Conditioned surface mesh of the model. D) Tetrahedralized domain which can
be used for simulating cytosolic diffusion. Note that we have inverted the tetrahedralized domain to represent the free space
surrounding the CRU geometry. Scale bars are 200 nm.

approximation to the PDE, and also produce algebraic systems
that are badly conditioned and difficult to solve efficiently or
accurately with iterative solvers.

While it is possible to design discretizations of PDE
problems on surfaces using finite volume methods or other
techniques, we prefer the Finite Element Method (FEM) here
for a number of reasons. To begin with, the FEM first arose
in the 1960s in the engineering community as a response to
the poor performance of existing discretization techniques
for PDEs involving shells and other complex physical shapes.
In addition, methods such as the FEM that are built on
basis function expansion provide a natural framework both
for treating highly nonlinear problems, and for discretizing
multiple PDE that couple together to form a larger multi-
physics system. Lastly, the FEM framework is quite general,
and can in fact be shown to reproduce finite volume, spectral,
and other discretizations through appropriate choices of basis
and test functions.

One challenge preventing the routine use of experimental
structural data with PDE-based mathematical modeling is the
difficulty to generate a discretization, or commonly a mesh,
which accurately represents the structures of interest. Building
upon existing meshing codes, such as TetGen (7), NetGen (8),
TetWild (9), MeshLab (10), Gmsh (11), CGAL (12), alongwith
commercial codes such as ANSYS Meshing among others,
we describe the development of a meshing framework, the
Geometry-preserving Adaptive MeshER software version
2 (GAMer 2), which is designed specifically for biological
mesh generation. This code has been completely rewritten
from version 1, which was previously described by Yu et al.
(13, 14), Gao et al. (15, 16), and (17). GAMer 2 features the
original GAMer algorithms but with significantly improved
ease of use, distributability, and maintainability. We have also
developed a new Python Application Programming Interface
(API): PyGAMer, and streamlined the GAMer Blender add-on:
BlendGAMer. The complete explanation of the mathematics

and underlying algorithms are available in (13–18). In what
follows, we provide an overview of the GAMermesh generation
capabilities for the general biophysicist.

METHODS

At its core, GAMer is a mesh generation and conditioning
library which uses concepts from the graphics and engineering
literature. It can be used to produce high quality surface and
volume meshes from several types of input: 1) PDB/PQR file
(Ångstrom–nanometer), 2) Volumetric dataset (Ångstrom–
meters), or 3) Initial surface mesh (Ångstrom–meters). To
enable FEM-based applications, GAMer also has utilities to
support boundary marking. Tetrahedral meshes of a domain
can be constructed in GAMer through the use of functionality
provided via TetGen (19). Surface or volume meshes can be
output to several common formats for use with other tools
such as FEniCS (20, 21), ParaView (22), MCell (23), and
FFEA (24) among others. We note that although GAMer is
designed primarily with FEM-based applications in mind,
conditioned meshes of realistic geometries can also be used
for geometric analysis such as the estimation of curvatures,
volumes, and surface areas (25). Conditioned meshes can also
be used in other tools such as MCell (23) and 3D printing.
Example tutorials of using GAMer 2 to generate surface and
volume meshes of a protein structure (PDB ID: 2JHO) and
a subcellular scene of a calcium release unit from a murine
cardiac myocyte imaged using Electron Tomography (ET)
(Cell Image Library: 3603 (26)), Fig. 1, are provided in
the documentation and described in this report. Here we
will summarize the key implementation steps and refer the
interested reader to (25) for the technical details.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765453doi: bioRxiv preprint 

https://doi.org/10.1101/765453


GAMer 2 Development
One of the limitations of prior versions of GAMer is the in-
ability to robustly represent meshes of arbitrary manifoldness
and topology. This limitation prevented the safe application
of GAMer to non-manifold meshes, which often produced
segmentation faults or other undefined behaviors. To ame-
liorate this, in GAMer 2 we replaced the underlying mesh
representation to use the Colored Abstract Simplicial Com-
plex (CASC) data structure (27). CASC keeps careful track of
the mesh topology and therefore makes it trivial to track the
manifoldness of a given mesh object. By eliminating the need
for code to handle encounters with non-manifold elements,
the code base is significantly reduced and segmentation faults
no longer occur. Another benefit of using CASC is that it can
represent both surface meshes (2D simplices embedded in
3D) and volume meshes (3D simplices embedded in 3D), al-
lowing users to interact with both surface and volume meshes
using an identical API. This simplification contributes to the
long-term maintainability of the GAMer 2 code.

In the development of GAMer 2, we have also migrated to
use the cross-platform CMake build toolchain, and away from
the previous GNU build system Autotools. Using CMake,
GAMer 2 can now be compiled and run on major operating
systems including Linux, and Mac OS–along with Windows
which was previously unsupported. We note that the Win-
dows binary can be built directly using Microsoft Visual
Studio and does not require the installation of Unix-like
environments such as Cygwin. By supporting compilation of
GAMer 2 using native and preferred tools, this improves binary
compatibility with other libraries and simplifies distribution.

Collaborative Workflow
To further improve code availability and to encourage commu-
nity collaboration, the GAMer code is now hosted on Github1.
In this environment, users can file issues to report bugs or
ask questions. Users are also encouraged to contribute to
the code by submitting pull requests. All pull requests are
put through rigorous continuous-integration testing to ensure
code compatibility across a wide range of operating systems,
compilers, and versions prior to integration with the main
deployment branches. Along with source control, GAMer 2
also implements git tagging based semantic versioning to
track the software version. Compiled code can report the
source version which aids in reporting and debugging.

Implementation of a New PyGAMer API
In addition to the complete redesign of the core library, the
corresponding Python interface, now called PyGAMer, is now
generated using PyBind 11 (28) instead of SWIG (29). PyBind
11 was designed to expose C++ types to Python and vice-
versa while minimizing boilerplate code by capitalizing upon
the capabilities of the C++ compiler. One of the benefits of

1https://github.com/ctlee/gamer

this approach is the ability to bind complex template types,
which are extensively used in CASC. This enables users to
develop Python script to interact with elements of mesh and
call C++ methods. Another benefit of using PyBind 11 is
its support for embedding Python docstrings which enable
straightforward documentation of PyGAMer using popular
Python tools such as Sphinx. To this end, documentation for
GAMer 2 and PyGAMer is now automatically generated and
hosted online2.

Using scikit-build, which connects setuptools and
CMake, installation of PyGAMer in any Python environment
can be achieved easily using pip install pygamer. pip
will automatically download and resolve dependencies and
build the PyGAMer Python extension module.

Figure 2: Screenshot of the BlendGAMer toolshelf menu in 3D
modeling software Blender. The user can call GAMer mesh
conditioning, analysis, boundary marking, and tetrahedraliza-
tion functions by clicking buttons and adjusting settings in the
toolshelf. Shown on the right is a conditioned surface mesh
of the calcium release unit model.

BlendGAMer Development
In order to support interactive modeling with graphical feed-
back,we have aGAMer addon forBlender (30) (BlendGAMer).
BlendGAMer has also been rewritten to use PyGAMer. In ad-
dition to this update, the user interface has been redesigned
to be easier to use, shown in Fig. 2. The boundary marking
capability now uses Blender attribute layers instead of lists
of values. Many features now have corresponding toggles
in the interface, for example, the number of neighborhood
rings to consider when computing the Local Structure Tensor
(LST). Several mesh conditioning operations have also been
updated to operate only upon selected vertices. There is also
a new Mesh Analysis panel which contains several helpful

2https://gamer.readthedocs.io

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765453doi: bioRxiv preprint 

https://github.com/ctlee/gamer
https://gamer.readthedocs.io
https://doi.org/10.1101/765453


features for analyzing the quality of a mesh and includes
curvature estimation. Based upon the newly implemented
semantic versioning, BlendGAMer can now track the version
of metadata which is stored in a given file. Using this informa-
tion BlendGAMer and perform automatic metadata migration
from version to version as improved schemes for metadata
storage are created.

Modeling Diffusion in the CRU Geometry
To demonstrate the use of the generated mesh with the FEM,
we model the diffusion of a molecule with concentration u in
the CRU geometry, Fig. 3. The dynamics of u are modeled as

∂u
∂t
= D∇2u −

u
τ

in Ω, (1)

u(x, t = 0) = 0, (2)

where D is the diffusion constant, τ is a decay constant, Ω
is the cytosolic domain, and t is time. We define boundary
conditions:

D(n · ∇u) = Jin on ∂Ωt-tubule, (3)
D(n · ∇u) = 0 on ∂Ωother, (4)

∂Ω = ∂Ωt-tubule ∪ ∂Ωother, (5)

where Jin is the inward flux on the t-tubule membrane
(∂Ωt-tubule). No flux boundary conditions are applied to all
other boundaries. The following system is solved using
FEniCS (20, 21) and visualized using ParaView (22).We note
that the boundaries ∂Ωt-tubule and ∂Ωother are differentiated by
markers applied using BlendGAMer.

RESULTS AND DISCUSSION
We demonstrate that GAMer is capable of generating high
quality surface and volume simplex meshes of geometries
as informed by structural biology datasets. The incorporated
Python library, PyGAMer, and Blender add-on, BlendGAMer,
enable users to prototype or interact with meshes as they
are conditioned. Collectively these tools enable the facile
mathematical modeling of biological systems using realistic
geometries. The GAMer workflow has been previously applied
in several works (25, 31–36).

Several examples are described in the online GAMer 2
documentation. Shown in Fig. 1, are the steps to go from ET
data to simulation quality mesh. In this example, a segmented
ET dataset (Fig. 1 A) featuring a murine Calcium Release
Unit (CRU) is retrieved from the Cell Image Library, shown
in Fig. 1 B. This is the same starting geometry previously
used by Hake et al. (34). From the model contours, we gener-
ated a preliminary mesh which was then conditioned using
BlendGAMer to produce Fig. 1 C. Using Blender Boolean
mesh operations, the geometry was inverted to represent the
cytosolic space surrounding the CRU and tetrahedralized
(Fig. 1 D). In this case, the mesh is sufficiently high quality

Figure 3: Snapshots of molecular diffusion in the calcium
release unit geometry. A) initial condition; B) 200 µs; C)
400 µs; D) 5000 µs. The molecules can be trapped in locally
confined regions leading to enriched concentrations.

and suitable for use with FEM-based simulations as shown in
Fig. 3.

Figure 4: Example demonstrating the meshing of protein myo-
globin (PDB ID: 2JHO). A) Rendered cartoon representation
with heme and iron shown as sticks. B) Tetrahedralization of
the space excluding the protein volume. Red denotes faces
marked as protein and blue denotes faces on the boundary of
the enclosing cube.

In Fig. 4, we demonstrate the mesh generation capabili-
ties of GAMer from atomistic protein structural data such as
those available from the Protein Data Bank. A volume dataset
representing the approximate occupied space of all atoms is
generated by applying a Gaussian kernel over the atomic posi-
tions. An isosurface of the dataset can then be meshed using
the marching cubes algorithm (37). While GAMer includes a

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765453doi: bioRxiv preprint 

https://doi.org/10.1101/765453


basic table of atom types to assign radii, more sophisticated
atomic radius assignment tools (e.g., PDB2PQR (38)) can be
used and radius information passed via the PQR file format.

CONCLUSION
The realism of biophysical models can be enhanced by incor-
poration realistic geometries from structural biology. GAMer
2 brings the community closer to this goal by simplifying the
mesh generation process. Our design strategies in implement-
ing GAMer 2 encourage community collaboration. We believe
that, moving forward, GAMer 2 can serve as an integrative
platform for meshing biological mesh generation.

SOFTWARE AVAILABILITY
GAMer is licensed under GNU Lesser General Public License
(LGPL), version 2.1 or later. Full documentation and examples
are available at the project home page, gamer.readthedocs.io,
and development is hosted on GitHub at http://github.
com/ctlee/gamer. The latest release v2.0.3 is archived on
Zenodo (doi:10.5281/zenodo.2340294).

AUTHOR CONTRIBUTIONS
C.T.L., J.G.L., J.B.M., and M.J.H. developed the software;
C.T.L. drafted the article; C.T.L., J.G.L., J.B.M., J.A.M.,
R.E.A., M.J.H., and P.R. edited the article; and all authors
read and approved the final article.

ACKNOWLEDGMENTS
NIH P41-GM103426 for CTL, JBM, REA, JAM, and MJH.
NIH R01-GM31749 for JAM and CTL. NIH MBTG T32-
GM008326,CTL.NSFDMS-CM1620366 andDMS-FRG1262982
to MJH. AFOSR MURI to PR FA9550-18-1-0051. UCSD
CTSBB/VMCC Fellowship to JGL.

REA is a cofounder and scientific advisor of, and has
equity interest in, Actavalon, Inc.

REFERENCES
1. Rangamani, P., A. Lipshtat, E. Azeloglu, R. Calizo,M.Hu,

S. Ghassemi, J. Hone, S. Scarlata, S. Neves, and R. Iyen-
gar, 2013. Decoding Information in Cell Shape. Cell
154:1356 – 1369. http://www.sciencedirect.com/
science/article/pii/S0092867413010209.

2. Bell, M., T. Bartol, T. Sejnowski, and P. Rangamani,
2019. Dendritic spine geometry and spine apparatus
organization govern the spatiotemporal dynamics of cal-
cium. The Journal of General Physiology 151:1017–1034.
http://jgp.rupress.org/content/151/8/1017.

3. Updegrove, A., N. M. Wilson, J. Merkow, H. Lan, A. L.
Marsden, and S. C. Shadden, 2017. SimVascular: An

Open Source Pipeline for Cardiovascular Simulation. Ann.
Biomed. Eng. 45:525–541.

4. Loew, L. M., and J. C. Schaff, 2001. The Virtual Cell: A
software environment for computational cell biology.

5. Murphy, R. F., 2012. CellOrganizer: Image-DerivedMod-
els of Subcellular Organization and Protein Distribution.
In Methods Cell Biol.

6. Xu, C. S., K. J. Hayworth, Z. Lu, P. Grob, A. M. Hassan,
J. G. García-Cerdán, K. K. Niyogi, E. Nogales, R. J.
Weinberg, and H. F. Hess, 2017. Enhanced FIB-SEM
systems for large-volume 3D imaging. Elife 6. https:
//elifesciences.org/articles/25916.

7. Si, H., 2015. TetGen, a Delaunay-Based Quality Tetra-
hedral Mesh Generator. ACM Trans. Math. Softw.
41:1–36. http://dl.acm.org/citation.cfm?id=
2732672.2629697.

8. Schöberl, J., 1997. An advancing front 2D/3D-mesh
generator based on abstract rules. Comput. Vis. Sci. .

9. Hu, Y., Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and
D. Panozzo, 2018. Tetrahedral meshing in the wild.
ACM Trans. Graph. 37:1–14. http://dl.acm.org/
citation.cfm?doid=3197517.3201353.

10. Cignoni, P., M. Callieri, M. Corsini, M. Dellepiane,
F. Ganovelli, and G. Ranzuglia, 2008. MeshLab: an
Open-Source Mesh Processing Tool. In V. Scarano,
R. De Chiara, and U. Erra, editors, Eurographics Ital.
Chapter Conf. The Eurographics Association.

11. Geuzaine, C., and J.-F. Remacle, 2009. Gmsh: A 3-D
finite element mesh generator with built-in pre- and post-
processing facilities. Int. J. Numer. Methods Eng. 79:1309–
1331. http://doi.wiley.com/10.1002/nme.2579.

12. CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

13. Yu, Z., M. J. Holst, Y. Cheng, and J. McCammon, 2008.
Feature-Preserving Adaptive Mesh Generation for Molec-
ular Shape Modeling and Simulation. J. Mol. Graph.
Model. 26:1370–1380.

14. Yu, Z., M. J. Holst, and J. Andrew McCammon, 2008.
High-Fidelity Geometric Modeling for Biomedical Ap-
plications. Finite Elem. Anal. Des. 44:715–723.

15. Gao, Z., Z. Yu, and M. Holst, 2012. Quality Tetrahe-
dral Mesh Smoothing via Boundary-Optimized Delau-
nay Triangulation. Computer Aided Geometric Design
29:707–721.

16. Gao, Z., Z. Yu, and M. Holst, 2013. Feature-Preserving
Surface Mesh Smoothing via Suboptimal Delaunay Tri-
angulation. Graphical Models 75:23–38.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765453doi: bioRxiv preprint 

http://github.com/ctlee/gamer
http://github.com/ctlee/gamer
http://www.sciencedirect.com/science/article/pii/S0092867413010209
http://www.sciencedirect.com/science/article/pii/S0092867413010209
http://jgp.rupress.org/content/151/8/1017
https://elifesciences.org/articles/25916
https://elifesciences.org/articles/25916
http://dl.acm.org/citation.cfm?id=2732672.2629697
http://dl.acm.org/citation.cfm?id=2732672.2629697
http://dl.acm.org/citation.cfm?doid=3197517.3201353
http://dl.acm.org/citation.cfm?doid=3197517.3201353
http://doi.wiley.com/10.1002/nme.2579
http://www.cgal.org
https://doi.org/10.1101/765453


17. Chen, L., and M. Holst, 2011. Efficient Mesh Optimiza-
tion Schemes Based on Optimal Delaunay Triangulations.
Comp. Meth. in Appl. Mech. Engr. 200:967–984.

18. Lee, C. T., J. B. Moody, J. G. Laughlin, and M. J. Holst.
GAMer 2.0 Software. https://github.com/ctlee/
gamer.

19. Si, H., 2015. TetGen, a Delaunay-Based Quality Tetrahe-
dral Mesh Generator. ACM Trans. Math. Softw. 41:11:1–
11:36. http://doi.acm.org/10.1145/2629697.

20. Logg, A., K.-A. Mardal, G. N. Wells, et al., 2012. Au-
tomated Solution of Differential Equations by the Finite
Element Method. Springer.

21. Alnæs,M. S., J. Blechta, J. Hake, A. Johansson, B. Kehlet,
A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N.
Wells, 2015. The FEniCS Project Version 1.5. Archive of
Numerical Software 3.

22. Ahrens, J., B. Geveci, and C. Law, 2005. ParaView: An
end-user tool for large-data visualization. In Vis. Handb.

23. Stiles, J. R., and T.M. Bartol, 2001. Monte Carlo methods
for simulating realistic synaptic microphysiology using
MCell. In E. D. Schutter, editor, Computational Neuro-
science: Realistic Modeling for Experimentalists, CRC
Press, Boca Raton, 87–127.

24. Solernou, A., B. S. Hanson, R. A. Richardson, R. Welch,
D. J. Read, O. G. Harlen, and S. A. Harris, 2018.
Fluctuating Finite Element Analysis (FFEA): A con-
tinuum mechanics software tool for mesoscale simu-
lation of biomolecules. PLOS Computational Biol-
ogy 14:1–29. https://doi.org/10.1371/journal.
pcbi.1005897.

25. Lee, C. T., J. G. Laughlin, N. A. de La Beaumelle,
R. E. Amaro, J. A. McCammon, R. Ramamoorthi,
M. J. Holst, and P. Rangamani, 2019. GAMer 2: A
system for 3D mesh processing of cellular electron
micrographs. bioRxiv https://www.biorxiv.org/
content/early/2019/07/23/534479.

26. Hoshijima, M., T. Hayashi, A. Thor, M. Terada, M. Mar-
tone, and M. Ellisman, 2004. CCDB:3603, MUS MUS-
CULUS, T-tubules, sarcoplasmic reticulum, myocyte.
CIL. Dataset.

27. Lee, C. T., J. B. Moody, R. E. Amaro, J. A. Mc-
cammon, and M. J. Holst, 2019. The Implemen-
tation of the Colored Abstract Simplicial Complex
and Its Application to Mesh Generation. ACM
Trans. Math. Softw. 45:1–20. http://dl.acm.org/
citation.cfm?doid=3349340.3321515.

28. Jakob, W., J. Rhinelander, and D. Moldovan, 2017.
pybind11 – Seamless operability between C++11 and
Python. Https://github.com/pybind/pybind11.

29. Beazley, D. M., 1996. SWIG: An Easy to Use Tool for
Integrating Scripting Languages with C and C++. In Pro-
ceedings of the 4th Conference on USENIX Tcl/Tk Work-
shop, 1996 - Volume 4. USENIX Association, Berkeley,
CA, USA, TCLTK’96, 15–15. http://dl.acm.org/
citation.cfm?id=1267498.1267513.

30. Community, B. O., 2018. Blender - a 3D modelling
and rendering package. Blender Foundation, Sticht-
ing Blender Foundation, Amsterdam. http://www.
blender.org.

31. Yu, Z., M. J. Holst, T. Hayashi, C. L. Bajaj,
M. H. Ellisman, J. A. McCammon, and M. Hoshi-
jima, 2008. Three-dimensional geometric model-
ing of membrane-bound organelles in ventricular my-
ocytes: Bridging the gap between microscopic imag-
ing and mathematical simulation. J. Struct. Biol.
164:304–313. http://linkinghub.elsevier.com/
retrieve/pii/S1047847708002281.

32. Cheng, Y., Z. Yu, M. Hoshijima, M. J. Holst, A. D.
McCulloch, J. A. McCammon, and A. P. Michailova,
2010. Numerical Analysis of Ca2+ Signaling in Rat
Ventricular Myocytes with Realistic Transverse-Axial
Tubular Geometry and Inhibited Sarcoplasmic Reticulum.
PLoS Comput. Biol. 6:e1000972. http://dx.plos.
org/10.1371/journal.pcbi.1000972.

33. Cheng, Y., P. Kekenes-Huskey, J. E. Hake, M. J.
Holst, J. A. McCammon, and A. P. Michailova,
2012. Multi-scale continuum modeling of biolog-
ical processes: from molecular electro-diffusion to
sub-cellular signaling transduction. Comput. Sci.
Discov. 5:015002. https://iopscience.iop.org/
article/10.1088/1749-4699/5/1/015002.

34. Hake, J., A. G. Edwards, Z. Yu, P. M. Kekenes-Huskey,
A. P.Michailova, J. A.McCammon,M. J. Holst,M.Hoshi-
jima, and A. D. McCulloch, 2012. Modelling cardiac cal-
cium sparks in a three-dimensional reconstruction of a cal-
cium release unit. J. Physiol. 590:4403–4422. http://
doi.wiley.com/10.1113/jphysiol.2012.227926.

35. Kekenes-Huskey, P. M., Y. Cheng, J. E. Hake, F. B.
Sachse, J. H. Bridge, M. J. Holst, J. A. McCam-
mon, A. D. McCulloch, and A. P. Michailova, 2012.
Modeling effects of L-type ca(2+) current and na(+)-
ca(2+) exchanger on ca(2+) trigger flux in rabbit
myocytes with realistic T-tubule geometries. Front.
Physiol. 3:351. http://journal.frontiersin.org/
article/10.3389/fphys.2012.00351/abstract.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765453doi: bioRxiv preprint 

https://github.com/ctlee/gamer
https://github.com/ctlee/gamer
http://doi.acm.org/10.1145/2629697
https://doi.org/10.1371/journal.pcbi.1005897
https://doi.org/10.1371/journal.pcbi.1005897
https://www.biorxiv.org/content/early/2019/07/23/534479
https://www.biorxiv.org/content/early/2019/07/23/534479
http://dl.acm.org/citation.cfm?doid=3349340.3321515
http://dl.acm.org/citation.cfm?doid=3349340.3321515
http://dl.acm.org/citation.cfm?id=1267498.1267513
http://dl.acm.org/citation.cfm?id=1267498.1267513
http://www.blender.org
http://www.blender.org
http://linkinghub.elsevier.com/retrieve/pii/S1047847708002281
http://linkinghub.elsevier.com/retrieve/pii/S1047847708002281
http://dx.plos.org/10.1371/journal.pcbi.1000972
http://dx.plos.org/10.1371/journal.pcbi.1000972
https://iopscience.iop.org/article/10.1088/1749-4699/5/1/015002
https://iopscience.iop.org/article/10.1088/1749-4699/5/1/015002
http://doi.wiley.com/10.1113/jphysiol.2012.227926
http://doi.wiley.com/10.1113/jphysiol.2012.227926
http://journal.frontiersin.org/article/10.3389/fphys.2012.00351/abstract
http://journal.frontiersin.org/article/10.3389/fphys.2012.00351/abstract
https://doi.org/10.1101/765453


36. Bromer, C., T. M. Bartol, J. B. Bowden, D. D. Hub-
bard, D. C. Hanka, P. V. Gonzalez, M. Kuwajima,
J. M. Mendenhall, P. H. Parker, W. C. Abraham, T. J.
Sejnowski, and K. M. Harris, 2018. Long-term po-
tentiation expands information content of hippocam-
pal dentate gyrus synapses. Proceedings of the Na-
tional Academy of Sciences 115:E2410–E2418. https:
//www.pnas.org/content/115/10/E2410.

37. Lorensen, W. E., and H. E. Cline, 1987. Marching
Cubes: A High Resolution 3D Surface Construction
Algorithm. SIGGRAPH Comput. Graph. 21:163–169.
http://doi.acm.org/10.1145/37402.37422.

38. Dolinsky, T. J., J. E. Nielsen, J. A. McCammon,
and N. A. Baker, 2004. PDB2PQR: an auto-
mated pipeline for the setup of Poisson-Boltzmann
electrostatics calculations. Nucleic Acids Res.
32:W665–W667. https://academic.oup.com/nar/
article-lookup/doi/10.1093/nar/gkh381.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/765453doi: bioRxiv preprint 

https://www.pnas.org/content/115/10/E2410
https://www.pnas.org/content/115/10/E2410
http://doi.acm.org/10.1145/37402.37422
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkh381
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkh381
https://doi.org/10.1101/765453

