
 1

Title
Keeping patient phenotypes and genotypes private while seeking disease diagnoses

Authors
Karthik A. Jagadeesh1,7, David J. Wu2,7, Johannes A. Birgmeier1, Dan Boneh1,3,8, Gill
Bejerano1,4,5,6,8

Affiliations
1 Department of Computer Science, Stanford University
2 Department of Computer Science, University of Virginia
3 Department of Electrical Engineering, Stanford University
4 Department of Developmental Biology, Stanford University
5 Department of Pediatrics (Medical Genetics), Stanford University
6 Department of Biomedical Data Science, Stanford University
7 These authors contributed equally
8 Corresponding authors: dabo@cs.stanford.edu (D.B) and bejerano@stanford.edu (G.B)

Abstract
In an age where commercial entities are allowed to collect and directly profit from large
amounts of private information, an age where large data breaches of such organizations are
discovered every month, science must strive to offer society viable ways to preserve privacy
while benefitting from the power of data sharing. Patient phenotypes and genotypes are critical
for building groups of phenotypically-similar patients, identify the gene that best explains their
common phenotypes, and ultimately, diagnose a patient with a Mendelian disease. Direct
computation over these quantities requires highly-sensitive patient data to be shared openly,
compromising patient privacy and opening patients up for discrimination. Existing protocols
focus on secure computation over genotype data and only address the final steps of the
disease-diagnosis pipeline where phenotypically-similar patients have been identified.
However, identifying such patients in a secure and private manner remains open. In this work,
we develop secure protocols to maintain patient privacy while computing meaningful
operations over both genotypic and phenotypic data for two real scenarios: COHORT
DISCOVERY and GENE PRIORITIZATION. Our protocols newly enable a complete and secure end-
to-end disease diagnosis pipeline that protects sensitive patient phenotypic and genotypic data.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

mailto:dabo@cs.stanford.edu
mailto:bejerano@stanford.edu
https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 2

Introduction
We can now accurately diagnose over 5,000 monogenic diseases and attribute their causes to
over 3,400 different disease genes(1). Each year, approximately 300 novel monogenic disease
genes are discovered(2); revealing novel disease mechanisms and disease genes(3–5).
Obtaining a precise disease diagnosis enables better treatment plans, disease management,
and care for the patient(6, 7). The diagnosis also provides a sense of closure to the patient
family, informs family counseling, and in the age of genome editing, provide first hope for a
cure.

However, to identify the single gene that causes a patient’s disease, a patient must reveal their
entire genome to the test provider together with their full set of ailments, signs and
symptoms(8). This highly personal information can potentially be used to discriminate against
not only the patient themselves, but also their next of kin. At the same time, over 99.9% of this
sensitive patient information is completely irrelevant to a monogenic disease diagnosis (and in
principle, need not be shared at all).

Previously, we have shown(9) how exact computations on genomic data can be performed
without sharing genomic inputs. For instance, a small cohort of strangers suspected of having
the same, yet-to-be-diagnosed disease, can discover whether they possess a mutation in the
same gene without sharing any other genomic data with each other or with the test provider. In
a similar vein, our techniques can identify the causal mutation present in affected family
members but not in unaffected relatives (e.g., cousins), without any family member needing to
reveal their genome to each other or to the test provider. In both scenarios, virtually nothing is
revealed about the genomes of the participants, and moreover, the precise output of the
analysis is successfully computed.

In an era of great genomic discoveries, but also great concerns for privacy, and great data
breaches, our ability to provide private genomic services without revealing participant genomes
must be extended. While the secure protocols over patient genomes described above are
critical for obtaining a diagnosis, obtaining the necessary inputs to those algorithms typically
requires computing over the (equally-sensitive) patient phenotype data. For instance, several of
the tests require identifying cohorts of phenotypically-similar patients; it is not clear how to
establish such cohorts without having patients collectively share and compare their
phenotypes. In this work, we extend the scope of patient privacy beyond protecting genomic
data to additionally protect patient phenotypic data. Our work newly enables privacy-
preserving versions of the following exact tests:

First, a large group of undiagnosed strangers can come together and determine whether any
two or more of them share a promising set of phenotypes without needing to reveal any of
their disease phenotypes to each other or to the test provider. If one or more such small groups
are found, each small cohort can then rely on our previously-developed privacy-preserving
protocols to identify a common-mutated gene that explains their phenotypes without needing

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 3

to share their genomic information(9). For those patients for whom a small cohort is not
identified (often a majority), virtually nothing is revealed about their own condition.

A full 70% of patients sequenced for a monogenic disease cannot be immediately diagnosed (in
part because the causative gene for the disease is currently unknown), and can greatly benefit
from the above service(10, 11). For the remaining 30% of patients on average where a diagnosis
is possible, they would benefit from consulting a commercial entity that specializes in
monogenic disease diagnosis to obtain the actual diagnosis based on their set of candidate
disease genes and observed phenotypes. In our second advancement, we design a protocol that
enables a patient to consult with the commercial service provider and learn a handful of
potentially-causal genes for their condition without needing to reveal any of their genotype or
phenotype information to the commercial service provider. Moreover, the service provider only
reveals a sliver of their competitive knowledge by only revealing to the patient a shortlist of
potentially-causal genes from their much larger list of candidate disease genes.

Results
Quantifying the similarity of any two sets of phenotypes
Virtually no two patients suffering from the same monogenic disease will be described using
identical phenotypic terms. They may exhibit somewhat different phenotypes or there could be
differences in the granularity of terms used by their different clinicians, differences in the
battery of tests they have undergone or the symptoms they choose to share with their
clinicians. The Human Phenotype Ontology(12) (HPO) is extremely helpful as it organizes sets of
phenotypes into a structured hierarchy.

HPO is a structured vocabulary (technically, a Directed Acyclic Graph, or DAG) that attempts to
capture all genetically-derived human phenotypes in the form of a hierarchy. For example, the
HPO term "Hypomimic face" is a child term of both "Decreased facial expression" and
"Abnormality of facial musculature," and the latter is in turn a child of "Abnormality of facial
soft tissue" and so on.

Recently, we developed the Phrank (for PHenotype RANKing) algorithm for quantifying the
similarity between any two sets of HPO phenotypes, and showed that Phrank improves on the
performance of previous algorithms in tasks like obtaining a differential genetic disease
diagnosis based on a set of patient phenotypes and a knowledgebase of gene-phenotype-
disease associations(13). Here we develop a privacy-preserving version of Phrank that we next
use to both discover patient cohorts and prioritize candidate disease genes without needing to
share sensitive patient genotype and phenotype data.

Secure multiparty computation
We construct our privacy-preserving protocols using techniques from modern cryptography,
and specifically, secure multiparty computation. To illustrate the concept of secure multiparty
computation, consider the following simple scenario: Patient 1 holds a secret number 𝑋, and
Patient 2 holds a secret number 𝑌. Patients 1 and 2 would like a test provider to compute the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 4

value 𝑋 + 𝑌 for them. Of course, they can both simply give 𝑋 and 𝑌 to the test provider who
would then compute and reveal the sum 𝑋 + 𝑌. But in this model, the two patients have to fully
trust the test provider, since the test provider learns both 𝑋 and 𝑌 (Figure 1A). The objective in
secure multiparty computation is to develop a protocol that allows the provider to provide
Patients 1 and 2 the same service while protecting the secrecy of 𝑋 and 𝑌 (namely, the provider
should only be able to learn the output 𝑋 + 𝑌, but not 𝑋 or 𝑌 themselves).

One way to achieve the above goal is to split the provider into two non-colluding test providers
(assumed to be “honest-but-curious”—namely, they follow the protocol as described), which
then jointly compute 𝑋 + 𝑌 while individually learning nothing at all about 𝑋 or 𝑌. This privacy-
preserving operation can be achieved using a notion called “secret sharing” (Figure 1B). In our
simple example, Patient 1 picks a random number 𝑅𝑋. She sends 𝑅𝑋 to the first test provider
service (Node 1), and she sends 𝑋 − 𝑅𝑋 to the second test provider (Node 2). Since 𝑅𝑋 and
𝑋 − 𝑅𝑋 are both random numbers, they perfectly hide 𝑋 from Node 1 and Node 2. Patient 2
does the same. He chooses a random number 𝑅𝑌 and sends 𝑅𝑌 to Node 1 and 𝑌 − 𝑅𝑌 to Node
2. Node 1 then computes 𝑅𝑋 + 𝑅𝑌 and reveals only this number to Node 2. Similarly, Node 2
computes (𝑋 − 𝑅𝑋) + (𝑌 − 𝑅𝑌) and reveals only this number to Node 1. Nodes 1 and 2 now
sum the two numbers they have just shared. The sum is exactly 𝑋 + 𝑌, but neither node has
learned anything about either 𝑋 or 𝑌 (see Figure 1B).

These ideas can be extended to support more complex computations involving any number of
patients (Figure 1C), who first securely share some information with the two test provider
services (Nodes 1 and 2). The two services securely compute on the shared inputs, and as long
as they do not collude, the only information that is revealed to either of them is the outcome of
the computation and nothing else. To reduce the cost of our protocols, we work in the
“preprocessing” model(14–17) where we assume that prior to the computation between the
two test providers, a third party called the “dealer” performs some precomputation and gives
the output of the precomputation to the two test providers for use in the protocol. This
precomputation does not depend on any participant’s secret inputs, and can be performed at
any time. The dealer could be implemented by a third cloud provider or by patients
(smartphones) participating in the protocol. This is the basic building block for the privacy-
preserving protocols we develop in this work. We refer the reader to Methods for a rigorous
discussion.

Secure multiparty cohort discovery
Given a large number of undiagnosed patients, the goal of cohort discovery is to identify one or
more small subsets of patients who share very similar phenotypes (and thus are likely to arise
from a common mutated gene). The subsequent sequencing of these small cohorts in search of
a common mutated gene has already led to the discovery and diagnosis of hundreds if not
thousands of monogenic diseases.

Phrank enables an efficient approach for cohort discovery. Namely, we begin by computing the
Phrank similarity score between (the sets of phenotypes of) all pairs of patients. Then, we
identify small groups of patients who have high Phrank similarity scores with other members

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 5

within the group, but low similarity scores with the overall large heterogeneous set of patients
(Figure 2A). We develop a privacy-preserving way of implementing this cohort discovery
algorithm that does not require patients to share their set of phenotypes with other patients or
with the test administrator (Figure 2B). Specifically, we first express the Phrank
computation(13) and the necessary clustering as a sequence of additions, multiplications, and
Boolean operations. We then apply the “ABY approach”(18) to implement this protocol: we use
the method from Figure 1 for secure addition, a method called Beaver triples(14) for secure
multiplication, and Yao’s garbled circuits(19) for secure Boolean operations (see Methods and
Supplementary Figure 1 for a complete description).

We applied this technique to discover disease cohorts from a set of 1067 real patients with
various Mendelian disorders, including 9 patients with Distal Arthrogryposis (DA) and 9 with
Nager Syndrome (NS). The remaining 1049 patients were obtained from a large cohort of
patients with likely genetic disorders (see Methods). Each of the 1067 patients was associated
with a list of on average 4 clinician-noted HPO phenotypes, which was used to compute the
pairwise phenotypic similarity between all patients. The maximum phenotypic similarity score
between any two patients was 127.29, the average was 1.64, and the minimum was 0. The
secure cohort building operation successfully identified 2 distinct cohorts among these 1067
patients (Supplementary Figure 2), where 8 of the 9 patients with Distal Arthrogryposis were
grouped together and 9 of the 9 patients diagnosed with Nager Syndrome were grouped
together. None of the 1049 patients with other diseases were incorrectly grouped into either
cluster and no other cluster was incorrectly construed.

Under our experimental setup, placing Node 1 & 2 nearly 3,000 miles apart (one on each coast
of the U.S), evaluating the secure patient cohort building operation on a group of 1067 real
patients completed in just over 10 seconds and required 60 MB of online communication and
634 MB of precomputed values (see Table 1). Since the cohort building operation requires
computing the phenotypic similarity between all pairs of patients, the bandwidth, size of the
precomputed values, and the protocol execution time grow quadratically with the number of
patients (see Supplementary Figure 3).

Secure gene prioritization
Genome sequencing of an individual with a monogenic disease can yield hundreds of different
candidate genes with rare functional mutations(4, 5, 20). With 60 million patients to be
sequenced in the next 5 years(21), automated methods must be developed to assist the
clinician in efficiently sifting through the candidate gene list in search of a possible diagnosis.

We have previously shown Phrank’s utility in this context. Namely, given a patient with a set of
candidate genes and observed phenotypes, and given a knowledgebase consisting of all
candidate disease genes and the set of phenotypes associated with each one, Phrank sorts the
patient genes in descending order for their ability to explain the patient’s phenotypes with a
very high likelihood of finding the patient’s causative gene at or near the top of this list(13). As
described, this test asks the patient to reveal all of the genes where they have potentially
causative variants as well as their full set of phenotypes to the test provider. Conversely, having

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 6

the provider simply hand their full knowledgebase containing thousands of carefully-curated
gene-phenotype associations to the patient would jeopardize their advantage over competing
services (Figure 3A). Here, we use similar techniques as above to build a privacy-preserving
framework for secure gene prioritization (Figure 3B). In this scenario the test provider does not
learn anything about the patient, and the patient only learns the identities of the top few
candidate genes that are most correlated with her particular phenotypes, and nothing more
about the test provider’s knowledgebase or exact ranking method (see Methods,
Supplementary Figure 4).

We ran our secure gene prioritization protocol over 169 real patients with different Mendelian
disorders ranging from Albinism to Weaver Syndrome. The patients were associated with an
average of 7 clinician-noted HPO phenotypes and typically presented between 100-150
candidate genes containing rare, potentially causative, variants. The secure computation
outputted the top 10 of over 3400 disease genes that were most likely to explain each patient’s
phenotypes. In nearly 90% of the cases (150 of the 169 cases), the causative gene was found in
this 10-15X shorter list of genes. Depending on the precise privacy and accuracy requirements,
the filtering steps for controlling the number of genes in the input of the secure gene
prioritization protocol can be adjusted.

Our secure gene prioritization protocol completed in 84 seconds and required 429 MB of
communication (see Table 1). The bandwidth, size of the precomputed values, and the protocol
execution time all scale linearly with the size of the test provider’s knowledgebase (see
Supplementary Figure 3).

Discussion
Genomic data presents each family a ‘serve or protect’ dilemma. On the one hand, sharing the
family’s genetic information with clinicians and researchers can advance genomic medicine and
enable better treatment plans for the afflicted. On the other hand, the sensitivity of that same
data requires prudence and care in handling so as to protect the patient family from genomic
discrimination or exploitation. Our previous works have shown how to leverage secure
multiparty computation techniques to identify disease-causing(9) or disease-associated(22)
genes and obtain a definitive genetic diagnosis(9) without revealing nearly any patient genetic
information. These works, however, implicitly assume that patient cohorts have already been
assembled and that computation need only be done on the patients’ genotype data. In this
work, we extend these secure genome techniques to enable secure computation over patients’
phenotypes as well. Combined, our protocols bring us closer to a secure end-to-end disease
diagnosis pipeline capable of building disease cohorts, identifying their shared causal gene, and
diagnosing subsequent patients(9), all while respecting the privacy of patients’ genetic and
genomic data.

In combination with apps that store a patient’s medical record, and automated tools that
extract HPO terms from medical notes (such as our ClinPhen(23)), one can envision a near
future where a patient can decide to participate in a secure cohort discovery with a simple push
of a smartphone button. As 70% of sequenced patients with severe genetic diseases remain

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 7

undiagnosed(10, 11), and especially since 300 novel disease genes are discovered each year(2)
(predominantly through cohort building), this is a highly desirable future where the latest
technology both serves and protects us. Fierce competition between different commercial
entities offering monogenic patient diagnosis make our secure gene prioritization protocol
highly desirable to patients and commercial providers alike. The 30% of sequenced patients
who can already receive a diagnosis will do so in an accelerated fashion, and without needing to
share any private genomic or phenotypic data. Commercial providers in turn can amass
knowledge in the form of better annotations, HPO graph refinements, and even enhancements
to Phrank while only revealing a tiny sliver of vital information to each patient.

In both scenarios, virtually nothing is discovered about the patients, especially in cases where
the computation cannot currently aid the patients directly. This allows patients to participate in
multiple cohort building efforts, until a cohort is found that can aid them too. It should also
allow different healthcare systems to join forces in building small patient cohorts, without ever
sharing any actual patient data. And it allows patients in our second scenario to get reanalyzed
periodically by the same, or alternatively, a different, commercial entity to facilitate a diagnosis
when one ultimately becomes available.

The methods we describe in this work enable us to significantly enhance the disease diagnosis
pipeline while protecting the privacy of all parties involved. The core primitive that underlies
our protocols is the Phrank phenotype set-similarity metric, and the computational overhead
invested to make the computation secure is very feasible in terms of computation time,
bandwidth, and the amount of precomputation. It is straightforward to further generalize
Phrank to support more functionalities and computations over phenotypes. For example, using
the AMELIE PubMed article/disease gene/phenotypes database(24), publications can also be
securely prioritized to reveal only those that best explain a patient’s disease.

This work introduces the first framework for computing meaningful functions over Mendelian
phenotypes and genotypes without requiring patients to reveal their phenotype or genotype
information. These protocols enable accurate disease diagnosis while revealing minimal patient
information, a large step towards enabling secure personalized genome analysis for all.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 8

Online Methods
Human Phenotype Ontology
Phenotypes are represented using the Human Phenotype Ontology(12) (HPO) Build 127. HPO
phenotypes are arranged in a directed acyclic graph (DAG), where the graph structure encodes
the parent-child relationship between the different phenotypes. The DAG is organized such that
if a patient or gene is associated with a phenotype 𝜑, the patient or gene is also associated with
all ancestors of 𝜑 up to the root phenotype node “phenotypic abnormality” (HP:0000118).

Patient phenotype data
Patient phenotypic data were combined from 4 sources. Phenotypes for 1049 patients were
extracted from patient records found in the Stanford STARR database(23). 169 patients from
the Deciphering Developmental Disorders(25) (DDD) cohort came associated with a list of HPO
phenotypes. We manually extracted HPO phenotypes for 9 patients identified with Nager
Syndrome from Table 1 in Bernier et al(26) and for 9 Distal Arthrogryposis patients from Table 1
in McMillin et al(27).

Patient genotype data
Variant Call Format (VCF) files of patients submitted to the Deciphering Developmental
Disorders (DDD) project were downloaded from European Genome-Phenome Archive (EGA)
with accession numbers EGAD00001001848, EGAD00001001977, EGAD00001002748,
EGAD00001001355, EGAD00001001413 and EGAD00001001114. All patients with a single-gene
diagnosis not due to a structural variant (as specified by the patient’s VCF) and for which the
causative gene was not a novel discovery of the DDD project were selected. From any
diagnosed set of siblings, a single diagnosed sibling was selected at random resulting in 169
diagnosed DDD patients as shown previously(13).

Variant annotation
ANNOVAR v527 was used to annotate patient variants with predicted effect (below) on protein-
coding genes using gene isoforms from ENSEMBL gene set version 75 for the hg19/GRCh37
assembly of the human genome. We included all gene isoforms where the transcript start and
end were marked as complete and where the coding span was a multiple of three. All ExAC v
0.3.1 and 1000 genomes phase 3 subpopulations were used to annotate variants with allele
frequency information.

Variant filtering
Only variants with an exonic nonsynonymous SNV, exonic stopgain, exonic frameshift, core
splicing, exonic nonframeshift or exonic stoploss predicted semantic effect on a protein-coding
gene isoform were considered for further analysis. All patient variants with an allele frequency
over 0.5% in any subpopulation of the 1000 Genomes Project or in Exome Aggregation
Consortium (ExAC) were also marked as likely benign. In case a gene contained only a single
heterozygous variant, the variant was marked as likely benign if it occurred at an allele
frequency over 0.1% in any subpopulation of the 1000 Genomes Project or ExAC. All variants

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 9

marked as likely benign were filtered out of the candidate list of variants. All remaining variants
made up the list of candidate causative variants for each patient.

Additive secret sharing
A two-party secret-sharing protocol allows a user to distribute “shares” of a value 𝑥 to two
servers such that each server individually has no information about 𝑥. Collectively, the two
servers can combine their shares to reconstruct the secret 𝑥. In this work, we use an additive
secret-sharing scheme. To secret share 𝑥 across two parties, the user chooses a random value 𝑟
between 0 and 𝑝 – 1 (where 𝑝 is a fixed integer). In our protocols, we use 𝑝 = 216. The user
then gives 𝑟 to one party and 𝑥 – 𝑟 (mod 𝑝) to the other party. Since 𝑟 is uniformly random,
neither party learns anything about 𝑥 given just their share of the input. However, by adding
their shares together, the parties can recover the secret 𝑥 = 𝑟 + (𝑥 – 𝑟) (mod 𝑝). We write
[𝑥] = ⟨[𝑥]1, [𝑥]2〉 to denote a secret-sharing of 𝑥, where [𝑥]1 denotes the share held by the
first party (e.g. 𝑟) and [𝑥]2 denotes the share held by the second party (e.g. 𝑥 − 𝑟 (mod 𝑝)).
The invariant we maintain is that [𝑥]1 + [𝑥]2 = 𝑥 (mod 𝑝).

Computing on secret-shared values

Addition on secret-shared values
We now describe how two parties can jointly compute on secret-shared values without learning
anything about the underlying shared values. Given shares of [𝑥] = ⟨[𝑥]1, [𝑥]2〉 and [𝑦] =
⟨[𝑦]1, [𝑦]2〉, the first party will have [𝑥]1, [𝑦]1 and the second party will have [𝑥]2, [𝑦]2. First, we
remark that the shares are additive meaning that a party who has shares of 𝑥 and 𝑦 can just
add their shares together to obtain a share of the sum 𝑥 + 𝑦, or [𝑥 + 𝑦] = ⟨[𝑥]1 + [𝑦]1, [𝑥]2 +
[𝑦]2⟩. Notably, this operation does not require any communication between the two parties.
Similarly, parties can scale their shared values by a fixed constant by scaling their local shares.
Namely, for a constant 𝑘, we can write [𝑘𝑥] = ⟨𝑘[𝑥]1, 𝑘[𝑥]2⟩. Finally, to add a constant 𝑦 to a
secret-shared value [𝑥], the two parties just need to compute [𝑥] + 𝑦 = ⟨[𝑥]1 + 𝑦, [𝑥]2⟩. In
summary, these operations enable two parties to locally compute any affine function (i.e.,
linear functions of the form 𝑎𝑥 + 𝑏, where 𝑎 and 𝑏 are fixed constants) on their secret-shared
values.

Multiplication on secret-shared values
Computing a product of two secret-shared values is more complex. Here, we describe an
elegant technique due to Beaver(14) that we use in this work. Beaver’s multiplication protocol
is a core ingredient in secret-sharing-based multi-party-computation protocols(15). First, we
assume that the parties have a secret-sharing of a random product: namely, a triple
([𝑎], [𝑏], [𝑐]), where 𝑎 and 𝑏 are random values (that do not depend on any party’s secret
information), and 𝑐 = 𝑎𝑏 (mod 𝑝). We refer to ([𝑎], [𝑏], [𝑐]) as a “Beaver multiplication triple.”
Beaver’s main insight is that we can leverage a secret-sharing of a random product to compute
a secret-sharing of an arbitrary product. We describe the main protocol below:

1. Suppose that the two parties possess a secret-sharing of two values [𝑥] and [𝑦], and

their goal is to compute a secret-sharing of the product [𝑥𝑦]. Moreover, the two parties

have shares of the multiplication triple ([𝑎], [𝑏], [𝑐]) where 𝑐 = 𝑎𝑏. Note that the two

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 10

parties only have shares of the 𝑎, 𝑏, and 𝑐, and importantly, do not know the actual

values of 𝑎, 𝑏, and 𝑐.

2. Each party computes and publishes their shares of 𝑥 − 𝑎 (mod 𝑝) and 𝑦 − 𝑏 (mod 𝑝).

Specifically, the first party sends [𝑥]1 − [𝑎]1 and [𝑦]1 − [𝑏]1 to the second party, and

the second party sends [𝑥]2 − [𝑎]2 and [𝑦]2 − [𝑏]2 to the first party. At the end of this

step, both parties have the values 𝑥 − 𝑎 (mod 𝑝) and 𝑦 − 𝑏 (mod 𝑝).

3. The parties then locally compute the following affine relation:

[𝑧] = (𝑥 − 𝑎)(𝑦 − 𝑏) + [𝑎](𝑦 − 𝑏) + [𝑏](𝑥 − 𝑎) + [𝑐].

Specifically, the two parties compute the following:
[𝑧]1 = (𝑥 − 𝑎)(𝑦 − 𝑏) + [𝑎]1(𝑦 − 𝑏) + [𝑏]1(𝑥 − 𝑎) + [𝑐]1

[𝑧]2 = [𝑎]2(𝑦 − 𝑏) + [𝑏]2(𝑥 − 𝑎) + [𝑐]2.

We argue that 𝑧 is a sharing of the product 𝑥𝑦. Appealing to linearity of the underlying
operations and using the fact that 𝑐 = 𝑎𝑏, we show that 𝑧 is a secret-sharing of the product 𝑥𝑦:

[𝑧]1 + [𝑧]2 = (𝑥 − 𝑎)(𝑦 − 𝑏) + ([𝑎]1 + [𝑎]2)(𝑦 − 𝑏) + ([𝑏]1 + [𝑏]2)(𝑥 − 𝑎) + ([𝑐]1 + [𝑐]2)

= (𝑥 − 𝑎)(𝑦 − 𝑏) + 𝑎(𝑦 − 𝑏) + 𝑏(𝑥 − 𝑎) + 𝑐

= 𝑥𝑦 − 𝑏𝑥 − 𝑎𝑦 + 𝑎𝑏 + 𝑎𝑦 − 𝑎𝑏 + 𝑏𝑥 − 𝑎𝑏 + 𝑐

= 𝑥𝑦.

As long as the values 𝑎, 𝑏, and 𝑐 in the multiplication triple are unknown to the two parties,
then the values 𝑥 − 𝑎 and 𝑦 − 𝑏 completely hide 𝑥 and 𝑦 (in an information-theoretic sense).
To summarize, Beaver’s protocol enables two (or more) parties to jointly compute a product of
two secret-shared values with one round of communication (where each party broadcasts their
shares of the blinded values to the other parties). With Beaver’s protocol, the problem of
multiplying secret-shared values essentially reduces to that of generating the (correlated)
Beaver multiplication triples. Note that the Beaver triples are completely independent of all of
the parties’ inputs to the computation, and thus, can be generated in a separate offline phase
prior to the main protocol execution. We discuss this more below (see “Using preprocessing for
better online efficiency”).

Generalizing Beaver multiplication triples to matrix-vector operations
In the above, we described a protocol for computing on secret-shared values (specifically, field
elements). A significant component of our protocols is evaluating matrix-matrix and matrix-
vector products. While we can perform the matrix operations using the elementary operations
over the underlying elements in the matrices, this incurs unnecessary overhead. To improve
performance, we note that Beaver’s multiplication protocol directly generalizes to computing
products of secret-shared matrices (in fact, it extends to computing products over any ring),
provided that the computing parties have a secret-sharing of a random matrix product (of the
same dimensions). Specifically, for matrices 𝑿 and 𝒀, we write [𝑿] and [𝒀] to denote a secret-
sharing of 𝑿 and 𝒀, respectively (this is just a component-wise secret-sharing of the entries in
the matrix). Addition and scalar multiplication on secret-shared matrices and vectors can be

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 11

done exactly as before. For multiplication, we use the direct generalization of Beaver’s protocol.
In particular, we assume that the computing parties have a secret-sharing of a matrix [𝑨], and
vectors [𝑩] and [𝑪] where 𝑪 = 𝑨𝑩. To compute shares of the product [𝑿𝒀] given shares of
matrices [𝑿] and [𝒀], the two parties first reveal 𝑿 − 𝑨 and 𝒀 − 𝑩. Then, they compute the
following affine relation on their shares:

[𝒁] = (𝑿 − 𝑨)(𝒀 − 𝑩) + [𝑨](𝒀 − 𝑩) + (𝑿 − 𝑨)[𝑩] + [𝑪].

Using the same analysis as above, we have that [𝒁] = [𝑿𝒀], as desired. The total
communication to perform a matrix vector multiplication in this way is proportional to the
dimensions of 𝑿 and 𝒀, which can be significantly smaller than the number of elementary
multiplications that need to be done to compute the product 𝑿𝒀. In particular, if 𝑿 is 𝑚-by-𝑘
and 𝒀 is 𝑘-by-𝑛, then the total communication is 𝑘(𝑚 + 𝑛), whereas using Beaver
multiplication triples to perform each of the elementary multiplications requires
communication 2 ⋅ 𝑘𝑚𝑛. This optimization (along with further generalizations) was also
leveraged to improve the efficiency of the privacy-preserving GWAS protocol by Cho et al(22).

Yao’s garbled circuits for evaluating Boolean circuits
Beaver’s protocol provides an efficient method for evaluating arithmetic operations (addition
and multiplication) on secret-shared values. However, they are less suitable for other types of
operations, such as comparisons or computing the maximum of a collection of values. While it
is possible to express these operations in terms of additions and multiplications, doing so incurs
considerable overhead (in terms of both computation as well as communication). A more
efficient alternative for secure evaluation of comparisons and argmax operations is to use Yao’s
protocol(19, 28), which is a general-purpose protocol for secure two-party computation. At a
high level, suppose Alice and Bob each have an input 𝑥 and 𝑦, and they want to compute some
joint function 𝑓 on their shared inputs. At the end of the computation, both Alice and Bob
should learn 𝑓(𝑥, 𝑦) but nothing else about the other party’s input (other than what is revealed
by 𝑓(𝑥, 𝑦)). In Yao’s protocol, the function 𝑓 is modeled as a Boolean circuit, and the inputs are
binary-valued. In contrast, in the case of Beaver’s protocol, the underlying function is modeled
as an arithmetic circuit (over a large finite field). Because comparisons are more naturally
expressed as a Boolean circuit, Yao’s protocol is more suitable for performing the comparison
and argmax operations.

The ABY approach: combining Boolean and arithmetic circuits
In this work, the computation we are interested in consists of two main ingredients: evaluating
a matrix-vector (or matrix-matrix) product, and then applying some post-processing operations
to the results (e.g., computing the top 𝑘 elements in the resulting vector or filtering out values
that fall below a certain threshold). Since matrix-vector products are arithmetic computations,
they are most well-suited for secret-sharing-based secure multiparty computation. On the
other hand, computing comparisons and thresholds are more easily expressed as Boolean
circuits (that operate over the binary representation of the inputs), and thus, are more
amenable for Yao’s protocol. The ABY approach(18) combines the best of both worlds and

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 12

provides a general paradigm for integrating secret-sharing multi-party computation with Yao-
based multi-party computation. In this work, we rely on the following elementary building
blocks from Demmler et al(18).

 Evaluating a garbled circuit on secret-shared values. First, we describe how to evaluate

a Boolean function on secret-shared values. Let 𝑓 be the Boolean function (e.g., this

could be an argmax function or a threshold function) we want to evaluate, and suppose

the inputs [𝒗] = ([𝒗]1, [𝒗]2) to 𝑓 are secret-shared across two-parties. To use Yao’s

protocol to evaluate the function f on the secret-shared values, we first define the

function

𝑔([𝒗]1, [𝒗]2) = 𝑓([𝐯]1 + [𝒗]2 mod 𝑝),

and then apply Yao’s garbled circuit protocol to evaluate the function 𝑔. In this case,

the input of each party is the (binary) representation of their share of the input. At the

end of the protocol execution, the parties learn the output

𝑔([𝒗]1, [𝒗]2) = 𝑓([𝒗]1 + [𝒗]2 mod 𝑝) = 𝑓(𝒗).

 Secret-sharing the output of a garbled circuit. In some cases, the output of the Boolean

circuit is not the final output of the computation, and we need to perform additional

arithmetic operations on the result. In this case, the outputs of the Boolean circuit

should be a secret sharing of the output rather than the output. We use this operation

to implement the PRIORITIZATION functionality (described further below). Suppose we

want to compute a Boolean function 𝑓 on an input 𝒗, and we want the output 𝒛 = 𝑓(𝒗)

to be secret-shared across the two parties. To support this, we define a new function 𝑔

that takes in the input 𝒗 as well as a share [𝒛]2 as follows:

𝑔(𝒗, [𝒛]2) = 𝑓(𝒗) − [𝒛]2 (mod 𝑝).

The input [𝒛]2 belongs to the second party, and is sampled uniformly at random (by the

second party). By construction, the output of 𝑔 is a vector [𝒛]1 where [𝒛]1 + [𝒛]2 =

𝒛 (mod 𝑝) and moreover, [𝒛]2 is sampled uniformly at random. Thus, the pair

([𝒛]1, [𝒛]2) is a secret-sharing of 𝒛. At the end of the computation, the first party

obtains the share [𝒛]1 while the second party holds the share [𝒛]2 (unknown to the first

party).

Using preprocessing for better online efficiency
We can often reduce the cost of a secure multiparty computation (MPC) protocol by working in
the MPC with preprocessing model(14–17). In this model, there is an independent semi-honest
party (called the “dealer”) that generates some input-independent values for the computing
parties. In other words, the protocol can be decomposed into an initial “offline phase” and an
“online phase” which operate as follows:

 Offline phase. During the offline phase of the protocol, the dealer precomputes the

input-independent values and distributes them to the computing parties. At the end of

the offline phase, the dealer can go offline and it does not have to be around for the

online phase of the computation.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 13

 Online phase. During the online phase of the computation, the computing parties

obtain the secret-shared inputs from all the protocol participants (e.g., the patients or

the doctors). They then run the protocol over the secret-shared data. At the end of the

computation, the computing parties publish their shares of the output, which allows

the clients to learn the output of the computation. During this phase, the computing

parties can make use of the precomputed values they received during the offline phase

of the protocol.

We now briefly describe how we take advantage of preprocessing in our protocols:

 Beaver’s multiplication protocol. Recall from our above description that Beaver’s

protocol for multiplying secret-shared values assumes the parties have a secret-sharing

of a random multiplication triple (which can be generated independently of all of the

inputs to the computation). These multiplication triples would be generated by an

independent semi-honest party and distributed to the computing parties prior to the

main protocol execution.

 Yao’s garbled circuit protocol: Working in the preprocessing model also enables a more

efficient implementation of Yao’s garbled circuit protocol (which we use for securely

evaluating Boolean circuits). Notably, since the garbled circuits used in our protocol are

fixed (and input-independent), they can be precomputed prior to the computation. This

means that in the online phase of the protocol, the two computing parties do not have

to communicate the description of a large garbled circuit, which considerably reduces

the online communication, and correspondingly, the end-to-end online protocol

execution time. Finally, we can also reduce the online cost of the oblivious transfers

(OTs)(29, 30) used to implement Yao’s garbled circuit protocol by precomputing OT

correlations(31). With precomputed OT correlations, each of the 1-out-of-2 OTs on the

input wire encodings to the garbled circuit (128-bits each) can be implemented by

communicating 257 bits (1 bit sent from the evaluator to the garbler and 256 bits sent

from the garbler to the evaluator). No cryptographic operations are needed. Using

precomputed OT correlations to implement the OTs reduces both the communication

and the computational cost of implementing the OTs.

In our experiments, we work in the preprocessing model and assume that there is a dealer that
generates the Beaver multiplication triples for the arithmetic computations and the OT
correlations as well as precomputed garbled circuits for the Boolean computations. In practice,
this dealer could be implemented by a third independent cloud provider or by the patients
(smartphones) who are contributing their data to the protocol execution. Finally, in our
experiments, we measure the total online cost of the computation as well as the total size of
the precomputed values that need to be distributed prior to the start of the online
computation.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 14

Implementing the application-specific wrappers
We now describe how we implement our application-specific wrappers (patient COHORT
DISCOVERY and GENE PRIORITIZATION) as a combination of arithmetic and Boolean circuit
operations.

Representing phenotypic and genotypic data as vectors
Phenotypes are represented using 11,532 distinct terms in the Human Phenotype Ontology
(HPO) terms (see above). For each set of HPO phenotype terms Φ, we define two 11,532-
dimensional vectors, 𝒗Φ and 𝒘Φ, where each vector component corresponds to an HPO term.
An indicator phenotype vector 𝒗Φ is a vector where the component corresponding to an HPO
term 𝜑 is 1 if 𝜑 ∈ Φ, and 0 otherwise. A weighted phenotype vector 𝒘Φ is a vector where the
component corresponding to an HPO term 𝜑 is its “weight” 𝑤𝜑 if 𝜑 ∈ Φ, and 0 otherwise (see

Methods). The weight of a phenotype, 𝑤𝜑, is defined to be the marginal information content of

the phenotype node (as described in Phrank)(13).

There are 20,663 protein-coding genes in the Ensembl 75 gene set. Where gene-level genomic
data is required for the computation, we create a 20,663-dimensional indicator genotype
vector where each vector component corresponds to a gene. The components corresponding
to the genes harboring a rare functional variant are set to 1 and all other components are set to
0 (see below).

Scenario 1: Secure patient COHORT DISCOVERY
Recall that the COHORT DISCOVERY functionality takes as input a set of phenotypes from
multiple patients, computes the pairwise phenotype similarity score between each pair of
patients, and then identifies small clusters of patients. Suppose there are a total of 𝑛 patients.
Let 𝒗1, … , 𝒗𝑛 be the indicator phenotype vector (i.e., a 0/1 vector) that models the patient’s
phenotypes (as above). Let 𝒘1, … 𝒘𝑛 be the weighted phenotype vector of for each patient (an
entry in 𝒘𝑖 is 0 if the patient does not exhibit the particular phenotype, and is equal to the
weight of the phenotype if the patient does have the particular phenotype). We define the
COHORT DISCOVERY functionality as follows:

1. Let 𝑽 be the matrix whose columns consist of the vectors 𝒗1, … , 𝒗𝑛 and 𝑾 be the matrix

whose columns consist of the vectors 𝒘1, … , 𝒘𝑛.

2. Compute the pairwise-similarity matrix 𝑺 = 𝑽𝑇𝑾 consisting of the Phrank scores

between each pair of patients. Note that 𝑺 is an 𝑛-by-𝑛 matrix.

3. To identify clusters of similar patients, apply the following filtering operation to the

entries of 𝑺. First, let 𝑠max be the maximum value among the entries in 𝑺, and define the

threshold 𝑡 = 𝜏 ⋅ 𝑠max for some parameter 0 < 𝜏 < 1. Let 𝑺thresh be the 𝑛-by-𝑛 matrix

where (𝑺thresh)𝑖,𝑗 = 1 if 𝑺𝑖,𝑗 > 𝑡 and (𝑺thresh)𝑖,𝑗 = 0 otherwise. Namely, 𝑺thresh is an 𝑛-

by-𝑛 indicator matrix whose 1-entries precisely correspond to the entries in 𝑺 that

exceed the threshold 𝑡.

4. Finally, to filter out small clusters, define the 𝑛-by-𝑛 indicator matrix 𝑺filtered where

(𝑺filtered)𝑖,𝑗 = 1 if (𝑺thresh)𝑖,𝑗 = 1 and there are at least 𝜌 non-zero entries in the 𝑖th

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 15

row and the 𝑗th column of 𝑺thresh. Otherwise (𝑺filtered)𝑖,𝑗 = 0. Intuitively, this step

filters out all pairs of patients that are not sufficiently similar to at least 𝜌 other patients

each. The output of the algorithm is the filtered matrix 𝑺filtered.

In the above description, both thresholds 𝜏 and 𝜌 are fixed parameters chosen based on the
specifics of the particular scenario. In our empirical experiments, we use 𝜏 = 1 4⁄ and 𝜌 = 4.

We now describe our protocol for secure evaluation of the patient COHORT DISCOVERY
functionality (see Figure 2). We work in the two-cloud model with preprocessing, where we
assume that the online computation is performed between two non-colluding servers and that
there is a third independent server (the “dealer”) that implements the offline precomputation
and distributes the precomputed values to the two cloud providers prior to the start of the
online computation.

At a high level, the online phase of our protocol works as follows. Each of the patients begins by
secret-sharing their indicator phenotype vector and their weighted phenotype vector to the
two non-colluding clouds servers. Next, the two clouds leverage Beaver’s multiplication
protocol to compute a secret-sharing of the pairwise-similarity matrix 𝑺 for the patients. Finally,
the two parties apply Yao’s garbled circuits to the shares of 𝑺 to perform the thresholding and
filtering and obtain the final 0/1 matrix 𝑺filtered. We describe our protocol formally below:

1. Each party secret shares its inputs 𝒗𝑖 and 𝒘𝑖 with the two cloud servers. At the end of

this step, the two clouds have shares [𝒗1], … , [𝒗𝑛] and [𝒘1], … , [𝒘𝑛] of every party’s

input. Equivalently, each cloud has a secret share of the matrices [𝑽] and [𝑾], where 𝑽

is the matrix whose columns consist of the vectors 𝒗1, … , 𝒗𝑛 and 𝑾 is the matrix whose

columns consist of the vectors 𝒘1, … , 𝒘𝑛.

2. Using Beaver’s multiplication protocol, the two clouds compute a secret sharing of the

product [𝑺] = [𝑽𝑇] ⋅ [𝑾].

3. Let 𝑓filter[𝜏, 𝜌] be the function that takes as input a pairwise-similarity matrix 𝑺 and

performs the thresholding and filtering procedure described above (using thresholds 𝜏

and 𝜌). Then, define the filtering procedure 𝑔filter[𝜏, 𝜌] that operates on secret-shared

values as follows:

𝑔filter[𝜏, 𝜌]([𝑺]1, [𝑺]2) = 𝑓filter[𝜏, 𝜌]([𝑺]1 + [𝑺]2 mod 𝑝)

The two clouds use Yao’s garbled circuit protocol to jointly evaluate 𝑔filter[𝜏, 𝜌] where

the first cloud provides its share [𝑺]1 as its input and the second party provides its share

[𝑺]2 as its input.

In the offline phase of the protocol, the dealer generates the Beaver multiplication triples, OT
correlations, and garbled circuits necessary to implement the above-described protocol and
distributes the precomputed values to the two computing clouds for use in the online phase of
the protocol. We now provide some additional details on how we implement (and optimize) the
above protocol:

 Phenotype weights are typically represented as decimal values while our secure

computation protocol computes over integer values (in fact, integers modulo 𝑝). While

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 16

it is possible to implement floating-point operations as integer operations, this incurs

significant overhead. Instead, in this work (and similar to many previous protocols for

secure computation), we use a fixed-point representation. In fact, since our protocols

only care about the ordering and (relative) magnitudes of the information-scores, we

simply scale the phenotype weights by a large multiplicative factor (in our work, we use

29 = 512), and then round the weights to the nearest integer. Finally, we choose the

modulus 𝑝 to be large enough so none of the arithmetic operations wrap around

modulo 𝑝. Note that whenever we have to operate on secret-shared values in Yao’s

protocol, we need to perform a modular reduction (mod 𝑝) within the garbled circuit

to reconstruct the input. It is thus convenient to choose 𝑝 to be a power of two (or

close to a power of two) so that the modulus reduction can be efficiently represented

as a Boolean circuit. In this work, we use 𝑝 = 216.

 Computing the threshold 𝑡 = 𝜏 ⋅ 𝑠max for an arbitrary threshold 0 < 𝜏 < 1 will require

implementing a division operation within a Boolean circuit, which can be very expensive

in general. However, if we choose the threshold τ to be an (inverse) power of two, then

division reduces to performing a bit-shift (more precisely, we simply drop some of the

least significant bits). This can be implemented with almost no overhead. For this

reason, we use 𝜏 = 1 4⁄ in this work. If we want to efficiently support arbitrary

thresholds that are not close to a power of two, another option is to modify the garbled

circuit to first compute and output the maximum entry 𝑠max. Then, the parties can

compute the threshold 𝑡 in the clear and finally, run the filtering protocol with the

threshold given as an additional input to the computation. Note that this modified

protocol would (only) reveal the value (but not the identity) of 𝑠max to the computing

parties.

 The rest of the threshold function corresponds to performing comparisons, maximums,

and counts. All of these elementary operations can be implemented efficiently using

building blocks from previous works(32).

Scenario 2: Secure PRIORITIZATION
The PRIORITIZATION functionality can be viewed as a two-party computation between a patient
and a 3rd party genome analysis provider. In this scenario, the patient wants to obtain a short
list of genes from the genome analysis provider, sorted based on the likelihood that a particular
gene causes their disease. Moreover, the patient would like to do so without revealing their
genotypic or phenotypic information to the genome analysis provider. In today’s competitive
commercial environment, the gene-phenotype mappings, HPO structure and even enhanced
Phrank algorithms used by the genome analysis provider often contains proprietary
information, and we desire a protocol that additionally protects the confidentiality of the
provider’s data.

In this scenario, the patient holds an indicator phenotype vector 𝒗𝑝 (i.e., this is a 0/1 vector

specifying the set of phenotypes a patient possesses) and an indicator genotype vector 𝒗𝑔 (i.e.,

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 17

this is a 0/1 vector specifying the set of genes containing rare functional variants that the
patient possesses). The genome analysis provider holds a set of weights matching genes to
specific phenotypes. We represent this as a matrix 𝑺. The rows of 𝑺 are associated with genes
while the columns of 𝑺 are associated with phenotypes. Essentially, we can view each row of 𝑺
as the weighted phenotype vector associated with the corresponding gene in the provider’s
gene-phenotype database.

In our setting, the phenotype vector has dimension 11,532 (corresponding to the number of
HPO terms in build 127), while the genotype vector has dimension 20,663 (corresponding to the
number of protein-coding genes in Ensembl build 75). The PRIORITIZATION functionality
identifies the genes the patient possesses that are most correlated with her phenotypes. The
components of the vector 𝑺𝒗𝑝 can be viewed as the Phrank score(13) between the patient’s

phenotypes and the phenotypes associated with each gene in the provider’s gene-phenotype
database.

The PRIORITIZATION functionality begins by computing the Phrank scores vector 𝑺𝒗𝑝. Next, we

filter out all genes where the patient does not have a rare variant by computing the Hadamard

product 𝒘 = 𝒗𝑔 ∘ (𝑺𝒗𝑝). To recall, the Hadamard product 𝒖 ∘ 𝒗 between two vectors 𝒖 and 𝒗

is defined to be the component-wise product of 𝒖 and 𝒗. The vector 𝒘 encodes the Phrank
score for each gene in the patient’s genome where the patient possesses a rare variant. The
PRIORITIZATION functionality outputs the top 𝑘 genes (entries) in the vector 𝒘, which
corresponds to the genes with the highest Phrank scores with respect to the patient’s set of
phenotypes. Below, we will write TOP-K to denote the function that takes as input a vector 𝒗
and outputs a 0/1 vector (of the same dimension as 𝒗) indicating the 𝑘 largest entries in 𝒗.

In many cases (including the scenarios we consider), the phenotype weights are available only
for a subset of the genes (e.g., for only the known disease-causing genes). While this can be
handled in the basic protocol described above by setting the rows of 𝑺 to be all zeroes
whenever a gene is not present, this incurs additional cost in the secure computation (since the
parties still need to compute a full matrix-vector product 𝑺𝒗𝑝). A more efficient method is to

define a “projection matrix” 𝚷 that maps a 0/1 vector over the full set of genes (20,663 genes)
to a 0/1 vector over a reduced set of disease genes (e.g., 3,406 genes). By construction, each
row of 𝚷 is a 0/1 vector with a single 1 in one position (corresponding to the gene that it is
selecting for). Then, the number of rows in the matrix 𝑺 is equal to the number of genes in the
reduced set (rather than the total number of genes in the genome). Computing the
PRIORITIZATION functionality corresponds to computing

𝚷𝑇 (TOPK ((𝚷𝒗𝑔) ∘ (𝑺𝒗𝑝)))

where 𝑺 is the phenotype weights for the reduced set of genes. The matrix 𝚷𝑇 projects gene
indices in the reduced set of genes to indices in the full set of genes. There are two main
advantages to structuring the computation in this this way:

 All of the matrix-vector multiplications involving 𝚷 and 𝚷𝑇 are over binary matrices and

vectors. Evaluating binary matrix-vector products requires less communication than

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 18

evaluating matrix-vector products modulo 𝑝 (namely, we can use a Beaver

multiplication triple over bits rather than over values modulo 𝑝). Introducing the

projection matrices allows us to perform a smaller matrix-vector multiplication modulo

𝑝 (in exchange for performing two additional matrix-vector multiplications over binary

inputs).

 The TOP-K computation only needs to be performed over the reduced set of genes.

Since this is the bottleneck in the computation and in most cases, the subset of genes

we are interested in is much smaller than the total number of genes, this yields a

significant savings in both communication and computation.

We now describe how we securely evaluate the PRIORITIZATION functionality. There are
several possible ways to perform the computation: either the patient can directly interact with
the 3rd party genome analysis provider, or it can secret-share its data to a cloud server and the
genome analysis provider, and the resulting two-party computation occurs between the cloud
server and the genome analysis provider. We take the latter approach here (see Figure 3), and
in addition, we ask the client to play the role of the dealer in the offline phase of the protocol.
Namely, the client (computer) generates the Beaver multiplication triples, the OT correlations,
and the garbled circuit to be used in the online protocol execution.

1. At the beginning of the protocol, the two parties have secret shares of the patient’s

indicator phenotype vector [𝒗𝑝], the patient’s indicator genotype vector [𝒗𝑔], the

phenotype weights [𝑺], and the projection matrix [𝚷].

2. Using Beaver’s multiplication protocol, the two parties compute a secret sharing of the

vector [𝒛] = ([𝚷] ⋅ [𝒗𝑔]) ∘ ([𝑺] ⋅ [𝒗𝑝]).

3. The second party chooses a random 0/1 vector [𝒛′]2. This will correspond to its share of

the output 𝒛′
 from the TOP-K computation. The two parties then use Yao’s garbled

circuit protocol to evaluate the function

𝑓([𝒛]1, ([𝒛]2, [𝒛′]2)) = TOPK([𝒛]1 + [𝒛]2 mod 𝑝) ⊕ [𝒛′]2,

where 𝑎 ⊕ 𝑏 denote addition modulo 2. At the end of the protocol execution, the first

party has [𝒛′]1 = TOPK([𝒛]1 + [𝒛]2 mod 𝑝) ⊕ [𝒛′]
2
 while the second party has [𝒛′]2.

Equivalently, the two parties have a mod-2 secret-sharing of the vector 𝒛′ = TOPK(𝒛).

The basic Boolean operations needed to perform this computation correspond to

performing additions modulo 𝑝, computing the max value in a vector, and comparisons

between values. All of these operations can again be implemented using standard

garbled circuit building blocks24.

4. To complete the protocol, the two parties use Beaver’s multiplication protocol to

compute a secret-sharing of [𝚷𝑇𝒛′] = [𝚷𝑇] ⋅ [𝒛′]. The parties then broadcast their

shares of the output. This suffices to reveal

𝚷𝑇𝒛′ = 𝚷𝑇 ⋅ TOPK(𝒛) = 𝚷𝑇 ⋅ TOPK ((𝚷𝒗𝑔) ∘ (𝑺𝒗𝑝)),

which is precisely the desired computation.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 19

Experimental setup
As discussed above, we implement our protocols in the two-cloud model, where the patients
and data contributors first secret-share their data with two non-colluding cloud servers which
perform the bulk of the computation. In addition, we assume an offline preprocessing step to
generate and distribute the precomputed Beaver multiplication triples, OT correlations, and
garbled circuits to the two non-colluding clouds. In practice, the preprocessing can be
implemented by another independent cloud provider or by the patients participating in the
computation. In our benchmarks, we focus on measuring the online cost of the protocol
execution in terms of both communication as well as end-to-end protocol execution time. We
additionally measure the total size of the precomputed values. Finally, to simulate the two non-
colluding cloud servers for the online phase of the computation, we place the two clouds on
opposites coasts of the United States, and we measure the total protocol execution time and
communication.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 20

References
1. OMIM Gene Map Statistics, (available at https://omim.org/statistics/geneMap).

2. A. M. Wenger, H. Guturu, J. A. Bernstein, G. Bejerano, Systematic reanalysis of clinical

exome data yields additional diagnoses: implications for providers. Genet. Med. 19, 209-

214 (ePub 2016) (2017).

3. S. B. Ng, A. W. Bigham, K. J. Buckingham, M. C. Hannibal, M. J. McMillin, H. I.

Gildersleeve, A. E. Beck, H. K. Tabor, G. M. Cooper, H. C. Mefford, C. Lee, E. H. Turner,

J. D. Smith, M. J. Rieder, K. Yoshiura, N. Matsumoto, T. Ohta, N. Niikawa, D. A.

Nickerson, M. J. Bamshad, J. Shendure, Exome sequencing identifies MLL2 mutations as a

cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010).

4. S. B. Ng, K. J. Buckingham, C. Lee, A. W. Bigham, H. K. Tabor, K. M. Dent, C. D. Huff,

P. T. Shannon, E. W. Jabs, D. A. Nickerson, J. Shendure, M. J. Bamshad, Exome

sequencing identifies the cause of a mendelian disorder. Nat. Genet. 42, 30–35 (2010).

5. S. B. Ng, E. H. Turner, P. D. Robertson, S. D. Flygare, A. W. Bigham, C. Lee, T. Shaffer,

M. Wong, A. Bhattacharjee, E. E. Eichler, M. Bamshad, D. A. Nickerson, J. Shendure,

Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 461,

272–276 (2009).

6. H. L. Rehm, S. J. Bale, P. Bayrak-Toydemir, J. S. Berg, K. K. Brown, J. L. Deignan, M. J.

Friez, B. H. Funke, M. R. Hegde, E. Lyon, Working Group of the American College of

Medical Genetics and Genomics Laboratory Quality Assurance Commitee, ACMG clinical

laboratory standards for next-generation sequencing. Genet. Med. Off. J. Am. Coll. Med.

Genet. 15, 733–747 (2013).

7. A. Aartsma-Rus, I. B. Ginjaar, K. Bushby, The importance of genetic diagnosis for

Duchenne muscular dystrophy. J. Med. Genet. 53, 145–151 (2016).

8. M. J. Bamshad, S. B. Ng, A. W. Bigham, H. K. Tabor, M. J. Emond, D. A. Nickerson, J.

Shendure, Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev.

Genet. 12, 745–755 (2011).

9. K. A. Jagadeesh, D. J. Wu, J. A. Birgmeier, D. Boneh, G. Bejerano, Deriving genomic

diagnoses without revealing patient genomes. Science. 357, 692–695 (2017).

10. Y. Yang, D. M. Muzny, J. G. Reid, M. N. Bainbridge, A. Willis, P. A. Ward, A. Braxton, J.

Beuten, F. Xia, Z. Niu, M. Hardison, R. Person, M. R. Bekheirnia, M. S. Leduc, A. Kirby,

P. Pham, J. Scull, M. Wang, Y. Ding, S. E. Plon, J. R. Lupski, A. L. Beaudet, R. A. Gibbs,

C. M. Eng, Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N.

Engl. J. Med. 369, 1502–1511 (2013).

11. Y. Yang, D. M. Muzny, F. Xia, Z. Niu, R. Person, Y. Ding, P. Ward, A. Braxton, M. Wang,

C. Buhay, N. Veeraraghavan, A. Hawes, T. Chiang, M. Leduc, J. Beuten, J. Zhang, W. He,

J. Scull, A. Willis, M. Landsverk, W. J. Craigen, M. R. Bekheirnia, A. Stray-Pedersen, P.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 21

Liu, S. Wen, W. Alcaraz, H. Cui, M. Walkiewicz, J. Reid, M. Bainbridge, A. Patel, E.

Boerwinkle, A. L. Beaudet, J. R. Lupski, S. E. Plon, R. A. Gibbs, C. M. Eng, Molecular

findings among patients referred for clinical whole-exome sequencing. JAMA. 312, 1870–

1879 (2014).

12. S. Köhler, S. C. Doelken, C. J. Mungall, S. Bauer, H. V. Firth, I. Bailleul-Forestier, G. C.

M. Black, D. L. Brown, M. Brudno, J. Campbell, D. R. FitzPatrick, J. T. Eppig, A. P.

Jackson, K. Freson, M. Girdea, I. Helbig, J. A. Hurst, J. Jähn, L. G. Jackson, A. M. Kelly,

D. H. Ledbetter, S. Mansour, C. L. Martin, C. Moss, A. Mumford, W. H. Ouwehand, S.-M.

Park, E. R. Riggs, R. H. Scott, S. Sisodiya, S. Van Vooren, R. J. Wapner, A. O. M. Wilkie,

C. F. Wright, A. T. Vulto-van Silfhout, N. de Leeuw, B. B. A. de Vries, N. L. Washingthon,

C. L. Smith, M. Westerfield, P. Schofield, B. J. Ruef, G. V. Gkoutos, M. Haendel, D.

Smedley, S. E. Lewis, P. N. Robinson, The Human Phenotype Ontology project: linking

molecular biology and disease through phenotype data. Nucleic Acids Res. 42, D966-974

(2014).

13. K. A. Jagadeesh, J. Birgmeier, H. Guturu, C. A. Deisseroth, A. M. Wenger, J. A. Bernstein,

G. Bejerano, Phrank measures phenotype sets similarity to greatly improve Mendelian

diagnostic disease prioritization. Genet. Med. 21, 464–470 (2019).

14. D. Beaver, in CRYPTO (1991), pp. 420–432.

15. I. Damgard, V. Pastro, N. P. Smart, S. Zakarias, in CRYPTO (2012), pp. 643–662.

16. R. Bendlin, I. D. ard, C. Orlandi, S. Zakarias, in EUROCRYPT (2011), pp. 169–188.

17. Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, A. Paskin-Cherniavsky, in TCC (2013),

pp. 600–620.

18. D. Demmler, T. Schneider, M. Zohner, in NDSS (2015).

19. A. C.-C. Yao, in FOCS (1982), pp. 160–164.

20. K. A. Jagadeesh, A. M. Wenger, M. J. Berger, H. Guturu, P. D. Stenson, D. N. Cooper, J.

A. Bernstein, G. Bejerano, M-CAP eliminates a majority of variants of uncertain

significance in clinical exomes at high sensitivity. Nat. Genet. 48, 1581–1586 (2016).

21. E. Birney, J. Vamathevan, P. Goodhand, Genomics in healthcare: GA4GH looks to 2022.

bioRxiv, 203554 (2017).

22. H. Cho, D. J. Wu, B. Berger, Secure genome-wide association analysis using multiparty

computation. Nat. Biotechnol. (2018) (available at http://dx.doi.org/10.1038/nbt.4108).

23. C. A. Deisseroth, J. Birgmeier, E. E. Bodle, J. N. Kohler, D. R. Matalon, Y. Nazarenko, C.

A. Genetti, C. A. Brownstein, K. Schmitz-Abe, K. Schoch, H. Cope, R. Signer,

Undiagnosed Diseases Network, J. A. Martinez-Agosto, V. Shashi, A. H. Beggs, M. T.

Wheeler, J. A. Bernstein, G. Bejerano, ClinPhen extracts and prioritizes patient phenotypes

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 22

directly from medical records to expedite genetic disease diagnosis. Genet. Med. Off. J. Am.

Coll. Med. Genet. (2018), doi:10.1038/s41436-018-0381-1.

24. J. Birgmeier, M. Haeussler, C. A. Deisseroth, K. A. Jagadeesh, A. J. Ratner, H. Guturu, A.

M. Wenger, P. D. Stenson, D. N. Cooper, C. Re, J. A. Bernstein, G. Bejerano, AMELIE

accelerates Mendelian patient diagnosis directly from the primary literature. bioRxiv,

171322 (2017).

25. C. F. Wright, T. W. Fitzgerald, W. D. Jones, S. Clayton, J. F. McRae, M. van Kogelenberg,

D. A. King, K. Ambridge, D. M. Barrett, T. Bayzetinova, A. P. Bevan, E. Bragin, E. A.

Chatzimichali, S. Gribble, P. Jones, N. Krishnappa, L. E. Mason, R. Miller, K. I. Morley,

V. Parthiban, E. Prigmore, D. Rajan, A. Sifrim, G. J. Swaminathan, A. R. Tivey, A.

Middleton, M. Parker, N. P. Carter, J. C. Barrett, M. E. Hurles, D. R. FitzPatrick, H. V.

Firth, Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis

of genome-wide research data. Lancet. 385, 1305–1314 (2015).

26. F. P. Bernier, O. Caluseriu, S. Ng, J. Schwartzentruber, K. J. Buckingham, A. M. Innes, E.

W. Jabs, J. W. Innis, J. L. Schuette, J. L. Gorski, P. H. Byers, G. Andelfinger, V. Siu, J.

Lauzon, B. A. Fernandez, M. McMillin, R. H. Scott, H. Racher, FORGE Canada

Consortium, J. Majewski, D. A. Nickerson, J. Shendure, M. J. Bamshad, J. S. Parboosingh,

Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex,

causes Nager syndrome. Am. J. Hum. Genet. 90, 925–933 (2012).

27. M. J. McMillin, J. E. Below, K. M. Shively, A. E. Beck, H. I. Gildersleeve, J. Pinner, G. R.

Gogola, J. T. Hecht, D. K. Grange, D. J. Harris, D. L. Earl, S. Jagadeesh, S. G. Mehta, S. P.

Robertson, J. M. Swanson, E. M. Faustman, H. C. Mefford, J. Shendure, D. A. Nickerson,

M. J. Bamshad, Mutations in ECEL1 Cause Distal Arthrogryposis Type 5D. Am. J. Hum.

Genet. 92, 150–156 (2013).

28. Y. Lindell, B. Pinkas, A Proof of Security of Yao’s Protocol for Two-Party Computation. J

Cryptol. 22, 161–188 (2009).

29. J. Kilian, in STOC (1988), pp. 20–31.

30. M. O. Rabin, How To Exchange Secrets with Oblivious Transfer. IACR Cryptol. EPrint

Arch. 2005, 187 (2005).

31. D. Beaver, in CRYPTO (1995), pp. 97–109.

32. V. Kolesnikov, A.-R. Sadeghi, T. Schneider, in Cryptology and Network Security (2009),

pp. 1–20.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 23

Acknowledgements

We thank members of the Boneh and Bejerano labs for valuable discussions, tools and project
feedback. All patient studies performed under Stanford IRB. The DDD study presents
independent research commissioned by the Health Innovation Challenge Fund [grant HICF-
1009-003], a parallel funding partnership between Wellcome and the Department of Health,
and the Wellcome Sanger Institute [grant WT098051]. The views expressed in this publication
are those of the authors and not necessarily those of Wellcome or the Department of Health.
The study has UK Research Ethics Committee approval (10/H0305/83, granted by the
Cambridge South REC, and GEN/284/12 granted by the Republic of Ireland REC). The UK
research team acknowledges the support of the National Institute for Health Research, through
the Comprehensive Clinical Research Network. This work was supported in part by Stanford
Graduate and Computational and Evolutionary Human Genomics Fellowships (K.A.J.), NSF
Graduate Research Fellowship (D.J.W.), Stanford Interdisciplinary Graduate Fellowship (J.B.),
Simons and National Science Foundation Fellowships (D.B.), Stanford Pediatrics Department,
DARPA, Packard Foundation and Microsoft Faculty Fellowships (G.B.). The authors declare no
conflict of interest.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 24

Tables and Figures
Table 1

Table 1. Keeping patient phenotypes and genotypes private while seeking disease diagnoses. In Scenario 1, we provide as input
the phenotypes of over 1,000 real patients, and successfully identify among them two small groups of patients with similar
phenotypes. Our protocol does not require any patient to share their phenotypes with anyone else (Figure 2). In Scenario 2, a
commercial provider accelerates the diagnosis of 𝑛 = 169 patients without needing to see any patient phenotypes or genotypes
(Figure 3). In this case, the patients do not learn much more about the commercial provider’s secret knowledgebase or exact
approach, bar a small number of candidate genes that plausibly explain the patient’s condition. All computations are performed over
real patient data.

 Relevant Information for Each Operation
Running Time

Measurements

Scenario 1:
Patient
cohort

discovery

Diseases
Individuals in

identified
cohort

Individuals
with

Disease

Total
Patients in

Analysis

Avg. Similarity
between

Patients with
Same Disease

Max/Avg./Min Similarity
Across All Patients

Bandwidth
(Megabytes)

End-to-
End
(sec)

Nager
Syndrome

8 9
1067

56.2
127.29/1.64/0 606 121

Distal
Arthrogryposis

9 9 99.8

Scenario 2:
Gene

prioritization
(𝑛 = 169
patients)

Total # of
Known

Protein-
Coding

Genes in
Genome

Total # of known
disease genes

Median
of

Candidate
Causative
Genes per

Patient
(private)

Total # of
HPO

Phenotypes

Median # of
Phenotypes
per Patient

% of
patients

with
causative
genes in
top 10

Median
Similarity

Score between
Patient and
Causative

Gene

Bandwidth
(Megabytes)

End-to-
End
(sec)

20,663 3,406 121 11,532 7 88% 22.3 429 84

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 25

Figure 1

Figure 1. Secure multiparty computation with 2 clouds. In our simplified scenario, two patients rely on a cloud provider to perform
some computation for them. (A) In existing protocols, outsourcing the computation to the cloud requires that the patients allow the
provider to learn their private data. (B) Using two non-colluding clouds, patients can enjoy the same service without needing to
share their private data. Because Rx and Ry are random numbers (see text), the provider can now exactly compute X + Y while
learning nothing about X or Y themselves. (C) We extend this strategy here to more complex functions including any combination of
addition and multiplication operations over numbers, vectors or matrices.

unrelated
patients

patient
private
data

X Y

provider

X+Y

YX

provider outputs exactly

provider
learns X,Y

unrelated
patients

patient
private
data

X Y

two cloud
providers

(RX+RY)+(X-RX+Y-RY) = X+Y

RX

provider outputs exactly

provider nodes
do not
learn X,Y

X-RX

provider computes X+Y

A B

RX, RY X-RX, Y-RY

C

unrelated
entities

entity
private
data

X1 Xn

two cloud
providers

f(X1,…,Xn)
cloud provider
outputs exact
answer

provider nodes
do not learn
true inputs

cloud
computes
on cloaked
(hidden)
inputs

entities share
inputs securely

⋯

X2

RY Y-RY

⋯

⋯

X-RX + Y-RYRX + RY

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 26

Figure 2

Figure 2. Scenario 1: Phenotypic cohort discovery without sharing any phenotypes. (A) Today,
undiagnosed patients must share their phenotypes with one another and with test providers in
hope of matching into a small cohort that can in turn be leveraged to identify the causative
gene for their condition. (B) As in Figure 1, using 2 non-colluding cloud servers, patients can
enjoy the same service without having to share their private data. In our scenario, undiagnosed
patients can participate in cohort discovery multiple times, without revealing anything about
themselves until they are matched (see Supplementary Figure 1 for technical details and
Supplementary Figure 2 for real patient results).

unrelated
patients

patient
private
phenotype
list

two	cloud
providers

discover	
same	small
cohorts

Provider	nodes
do	not	learn
patient
phenotypes

cloud
computes
on	cloaked
(hidden)
inputs	

patients
securely	share
phenotypes with	
cloud	providers

⋯

⋯

⋯

A B

X1 X2 Xn

⋯

⋯

⋯
X1 X2 Xn

one	cloud	provider

should	not	trust	
single	entity	to	see	all	
of	the	patient’s	data

provider	
learns
patient
phenotypes

discover small	cohorts

cloud	
computes	
on	clear	
(seen)
inputs

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 27

Figure 3

Figure 3. Scenario 2: Accelerating patient diagnosis while protecting both patient and
commercial provider. Mendelian patients present hundreds of candidate genes, but only one
of them may provide a diagnosis. Commercial providers compete over their ability to discover
this causal gene. (A) Patient wants the provider to rank their candidate gene list, but they don’t
want to reveal their private data. Neither does the provider want to entrust all their data and
methodology to any single client. (B) Using our 2 cloud model, the patient protects all their
sensitive data while the provider reveals only a sliver of theirs (see Supplementary Figure 4).

SOX3
SHF

ACTB
POLM
TTN

FUT3
NOP9
GJB2
SOX2
OCRL

cloud computes
on cloaked
(hidden) inputs

patient

A

phenotypes

candidate
genes

provider

gene-phenotype
knowledge base for
thousands of genes

genes

phenotypes

0.22

should not share to
protect patient privacy

should not share to
protect proprietary data

B

phenotypes candidate
genes

gene-phenotype
knowledge base

two cloud
providers

Output top-10
most likely

causal genes

Provider learns
minimal
information
about patient
and vice versa

patient and provider
securely share data
with cloud providers

MAX

hypertrichosis
macrocephaly

⋮
⋮

CRIPAK
GIPC1
LONP2
NOP9

⋮⋮

0.18 ⋯ 0

0 0.15 0.06

0 0 0

⋮ ⋮ ⋮

0.07 0 0.002

⋯

⋯

⋱

⋯

patient provider

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 28

Supplementary Figures
Supplementary Figure 1

Supplementary Figure 1. Scenario 1: Patient COHORT BUILDING protocol description. As part of
the protocol setup each patient creates two vectors based on their phenotype information: the
indicator phenotype vector 𝒗 and the weighted phenotype weights 𝒘. The shares of each vector
are sent to the two clouds and the secure protocol is executed between the two clouds to identify
cohorts of phenotypically-similar patients. We use (precomputed) Beaver multiplication triples to
compute the Phrank set similarity measure between each pair of patients. Then using Yao’s
protocol, we threshold the values in the pairwise similarity matrix, and then filter the resulting
values to remove small (spurious) clusters (see Methods for details).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 29

Supplementary Figure 2
 A B

Supplementary Figure 2. Scenario 1: Small cohort discovery. (A) The pairwise Phrank similarity
score matrix for all 𝑛 = 1,069 patients (which no one observes). (B) After clustering and
filtering, exactly two cohorts of patients are revealed. Patients are identified by their patient
identifiers (while their Phrank scores are completely hidden).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 30

Supplementary Figure 3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 31

Supplementary Figure 3. Performance measurements for secure computations. Bandwidth,
protocol execution time and the size of the precomputed values for the cohort creation and
gene prioritization protocols. All measurements were taken using a single-threaded execution
on two Amazon EC2 servers, one located on the East Coast and the other on the West Coast. (A)
For the cohort creation protocol, the bandwidth, network time, and precomputation size all
scale quadratically with the number of patients. (B) For the gene prioritization protocol, the
bandwidth, network time, and precomputation size all scale linearly with the size of the service
provider’s knowledgebase. Increasing the number of genes output by the protocol does not
have a significant impact on the bandwidth, but does slightly increase the computation time
and the amount of required precomputation.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 32

Supplementary Figure 4

Supplementary Figure 4. Scenario 2: GENE PRIORITIZATION protocol description. We show how to
securely prioritize patient candidate genes based on their likelihood for causing the patient’s
disease using patient phenotypic and genotypic information, and without revealing any patient
information to the genome analysis provider. The patient begins by securely uploading their
genotypic and phenotypic information to a non-colluding cloud, who will facilitate the computation.
(A) The gene prioritization protocol is performed between an individual and a third-party genome
analysis provider. The individual starts by sharing their data with the non-colluding cloud and the
server using a secure secret-sharing protocol. This ensures that neither the service provider nor the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

 33

non-colluding cloud can reconstruct the patient’s input data. The genome analysis provider and the
cloud then execute a secure computation protocol to identify the prioritized list of genes most likely
to explain the patient’s disease. (B) In the first step of the computation, the computing parties apply
a projection from the set of all candidate disease genes to the set of genes actually present in the
genome analysis provider’s knowledgebase (which is often a smaller subset of genes). This
significantly reduces the computational cost of subsequent operations in the protocol. Then the two
parties compute the Phrank score between each of the patient’s phenotypes and the phenotypes
associated with each gene in the provider’s knowledgebase. Both of these computations rely on
Beaver’s protocol (with precomputed Beaver multiplication triples). Next, using Yao’s garbled
circuits, the two parties jointly identify the top 10 genes with the highest Phrank scores. The result
is a secret-shared binary vector indicating the top 10 genes. Finally, the two parties project the
indices of identified genes back into the set of all possible genes. This is the output of the protocol.
This step again relies on Beaver’s multiplication protocol. (C) At the end of the protocol, the two
clouds send back their shares of the output to the client, who adds them together to learn the top
10 genes most correlated with their phenotypes.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/

