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Abstract 
In an age where commercial entities are allowed to collect and directly profit from large 
amounts of private information, an age where large data breaches of such organizations are 
discovered every month, science must strive to offer society viable ways to preserve privacy 
while benefitting from the power of data sharing. Patient phenotypes and genotypes are critical 
for building groups of phenotypically-similar patients, identify the gene that best explains their 
common phenotypes, and ultimately, diagnose a patient with a Mendelian disease. Direct 
computation over these quantities requires highly-sensitive patient data to be shared openly, 
compromising patient privacy and opening patients up for discrimination. Existing protocols 
focus on secure computation over genotype data and only address the final steps of the 
disease-diagnosis pipeline where phenotypically-similar patients have been identified. 
However, identifying such patients in a secure and private manner remains open. In this work, 
we develop secure protocols to maintain patient privacy while computing meaningful 
operations over both genotypic and phenotypic data for two real scenarios: COHORT 
DISCOVERY and GENE PRIORITIZATION. Our protocols newly enable a complete and secure end-
to-end disease diagnosis pipeline that protects sensitive patient phenotypic and genotypic data. 
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Introduction 
We can now accurately diagnose over 5,000 monogenic diseases and attribute their causes to 
over 3,400 different disease genes(1). Each year, approximately 300 novel monogenic disease 
genes are discovered(2); revealing novel disease mechanisms and disease genes(3–5). 
Obtaining a precise disease diagnosis enables better treatment plans, disease management, 
and care for the patient(6, 7). The diagnosis also provides a sense of closure to the patient 
family, informs family counseling, and in the age of genome editing, provide first hope for a 
cure. 
 
However, to identify the single gene that causes a patient’s disease, a patient must reveal their 
entire genome to the test provider together with their full set of ailments, signs and 
symptoms(8). This highly personal information can potentially be used to discriminate against 
not only the patient themselves, but also their next of kin. At the same time, over 99.9% of this 
sensitive patient information is completely irrelevant to a monogenic disease diagnosis (and in 
principle, need not be shared at all). 
 
Previously, we have shown(9) how exact computations on genomic data can be performed 
without sharing genomic inputs. For instance, a small cohort of strangers suspected of having 
the same, yet-to-be-diagnosed disease, can discover whether they possess a mutation in the 
same gene without sharing any other genomic data with each other or with the test provider. In 
a similar vein, our techniques can identify the causal mutation present in affected family 
members but not in unaffected relatives (e.g., cousins), without any family member needing to 
reveal their genome to each other or to the test provider. In both scenarios, virtually nothing is 
revealed about the genomes of the participants, and moreover, the precise output of the 
analysis is successfully computed. 
 
In an era of great genomic discoveries, but also great concerns for privacy, and great data 
breaches, our ability to provide private genomic services without revealing participant genomes 
must be extended. While the secure protocols over patient genomes described above are 
critical for obtaining a diagnosis, obtaining the necessary inputs to those algorithms typically 
requires computing over the (equally-sensitive) patient phenotype data. For instance, several of 
the tests require identifying cohorts of phenotypically-similar patients; it is not clear how to 
establish such cohorts without having patients collectively share and compare their 
phenotypes. In this work, we extend the scope of patient privacy beyond protecting genomic 
data to additionally protect patient phenotypic data. Our work newly enables privacy-
preserving versions of the following exact tests: 
 
First, a large group of undiagnosed strangers can come together and determine whether any 
two or more of them share a promising set of phenotypes without needing to reveal any of 
their disease phenotypes to each other or to the test provider. If one or more such small groups 
are found, each small cohort can then rely on our previously-developed privacy-preserving 
protocols to identify a common-mutated gene that explains their phenotypes without needing 
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to share their genomic information(9). For those patients for whom a small cohort is not 
identified (often a majority), virtually nothing is revealed about their own condition. 
 
A full 70% of patients sequenced for a monogenic disease cannot be immediately diagnosed (in 
part because the causative gene for the disease is currently unknown), and can greatly benefit 
from the above service(10, 11). For the remaining 30% of patients on average where a diagnosis 
is possible, they would benefit from consulting a commercial entity that specializes in 
monogenic disease diagnosis to obtain the actual diagnosis based on their set of candidate 
disease genes and observed phenotypes. In our second advancement, we design a protocol that 
enables a patient to consult with the commercial service provider and learn a handful of 
potentially-causal genes for their condition without needing to reveal any of their genotype or 
phenotype information to the commercial service provider. Moreover, the service provider only 
reveals a sliver of their competitive knowledge by only revealing to the patient a shortlist of 
potentially-causal genes from their much larger list of candidate disease genes. 

Results 
Quantifying the similarity of any two sets of phenotypes 
Virtually no two patients suffering from the same monogenic disease will be described using 
identical phenotypic terms. They may exhibit somewhat different phenotypes or there could be 
differences in the granularity of terms used by their different clinicians, differences in the 
battery of tests they have undergone or the symptoms they choose to share with their 
clinicians. The Human Phenotype Ontology(12) (HPO) is extremely helpful as it organizes sets of 
phenotypes into a structured hierarchy. 
 
HPO is a structured vocabulary (technically, a Directed Acyclic Graph, or DAG) that attempts to 
capture all genetically-derived human phenotypes in the form of a hierarchy. For example, the 
HPO term "Hypomimic face" is a child term of both "Decreased facial expression" and 
"Abnormality of facial musculature," and the latter is in turn a child of "Abnormality of facial 
soft tissue" and so on.  
 
Recently, we developed the Phrank (for PHenotype RANKing) algorithm for quantifying the 
similarity between any two sets of HPO phenotypes, and showed that Phrank improves on the 
performance of previous algorithms in tasks like obtaining a differential genetic disease 
diagnosis based on a set of patient phenotypes and a knowledgebase of gene-phenotype-
disease associations(13). Here we develop a privacy-preserving version of Phrank that we next 
use to both discover patient cohorts and prioritize candidate disease genes without needing to 
share sensitive patient genotype and phenotype data. 
 

Secure multiparty computation 
We construct our privacy-preserving protocols using techniques from modern cryptography, 
and specifically, secure multiparty computation. To illustrate the concept of secure multiparty 
computation, consider the following simple scenario: Patient 1 holds a secret number 𝑋, and 
Patient 2 holds a secret number 𝑌. Patients 1 and 2 would like a test provider to compute the 
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value 𝑋 + 𝑌 for them. Of course, they can both simply give 𝑋 and 𝑌 to the test provider who 
would then compute and reveal the sum 𝑋 + 𝑌. But in this model, the two patients have to fully 
trust the test provider, since the test provider learns both 𝑋 and 𝑌 (Figure 1A). The objective in 
secure multiparty computation is to develop a protocol that allows the provider to provide 
Patients 1 and 2 the same service while protecting the secrecy of 𝑋 and 𝑌 (namely, the provider 
should only be able to learn the output 𝑋 + 𝑌, but not 𝑋 or 𝑌 themselves). 
 
One way to achieve the above goal is to split the provider into two non-colluding test providers 
(assumed to be “honest-but-curious”—namely, they follow the protocol as described), which 
then jointly compute 𝑋 + 𝑌 while individually learning nothing at all about 𝑋 or 𝑌. This privacy-
preserving operation can be achieved using a notion called “secret sharing” (Figure 1B). In our 
simple example, Patient 1 picks a random number 𝑅𝑋. She sends 𝑅𝑋 to the first test provider 
service (Node 1), and she sends 𝑋 − 𝑅𝑋 to the second test provider (Node 2). Since 𝑅𝑋 and 
𝑋 − 𝑅𝑋 are both random numbers, they perfectly hide 𝑋 from Node 1 and Node 2. Patient 2 
does the same. He chooses a random number 𝑅𝑌 and sends 𝑅𝑌 to Node 1 and 𝑌 − 𝑅𝑌 to Node 
2. Node 1 then computes 𝑅𝑋 + 𝑅𝑌 and reveals only this number to Node 2. Similarly, Node 2 
computes (𝑋 − 𝑅𝑋) + (𝑌 − 𝑅𝑌) and reveals only this number to Node 1. Nodes 1 and 2 now 
sum the two numbers they have just shared. The sum is exactly 𝑋 + 𝑌, but neither node has 
learned anything about either 𝑋 or 𝑌 (see Figure 1B). 
 
These ideas can be extended to support more complex computations involving any number of 
patients (Figure 1C), who first securely share some information with the two test provider 
services (Nodes 1 and 2). The two services securely compute on the shared inputs, and as long 
as they do not collude, the only information that is revealed to either of them is the outcome of 
the computation and nothing else. To reduce the cost of our protocols, we work in the 
“preprocessing” model(14–17) where we assume that prior to the computation between the 
two test providers, a third party called the “dealer” performs some precomputation and gives 
the output of the precomputation to the two test providers for use in the protocol. This 
precomputation does not depend on any participant’s secret inputs, and can be performed at 
any time. The dealer could be implemented by a third cloud provider or by patients 
(smartphones) participating in the protocol. This is the basic building block for the privacy-
preserving protocols we develop in this work. We refer the reader to Methods for a rigorous 
discussion. 
 

Secure multiparty cohort discovery 
Given a large number of undiagnosed patients, the goal of cohort discovery is to identify one or 
more small subsets of patients who share very similar phenotypes (and thus are likely to arise 
from a common mutated gene). The subsequent sequencing of these small cohorts in search of 
a common mutated gene has already led to the discovery and diagnosis of hundreds if not 
thousands of monogenic diseases.  
 
Phrank enables an efficient approach for cohort discovery. Namely, we begin by computing the 
Phrank similarity score between (the sets of phenotypes of) all pairs of patients. Then, we 
identify small groups of patients who have high Phrank similarity scores with other members 
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within the group, but low similarity scores with the overall large heterogeneous set of patients 
(Figure 2A). We develop a privacy-preserving way of implementing this cohort discovery 
algorithm that does not require patients to share their set of phenotypes with other patients or 
with the test administrator (Figure 2B). Specifically, we first express the Phrank 
computation(13) and the necessary clustering as a sequence of additions, multiplications, and 
Boolean operations. We then apply the “ABY approach”(18) to implement this protocol: we use 
the method from Figure 1 for secure addition, a method called Beaver triples(14) for secure 
multiplication, and Yao’s garbled circuits(19) for secure Boolean operations (see Methods and 
Supplementary Figure 1 for a complete description). 
 
We applied this technique to discover disease cohorts from a set of 1067 real patients with 
various Mendelian disorders, including 9 patients with Distal Arthrogryposis (DA) and 9 with 
Nager Syndrome (NS). The remaining 1049 patients were obtained from a large cohort of 
patients with likely genetic disorders (see Methods). Each of the 1067 patients was associated 
with a list of on average 4 clinician-noted HPO phenotypes, which was used to compute the 
pairwise phenotypic similarity between all patients. The maximum phenotypic similarity score 
between any two patients was 127.29, the average was 1.64, and the minimum was 0. The 
secure cohort building operation successfully identified 2 distinct cohorts among these 1067 
patients (Supplementary Figure 2), where 8 of the 9 patients with Distal Arthrogryposis were 
grouped together and 9 of the 9 patients diagnosed with Nager Syndrome were grouped 
together. None of the 1049 patients with other diseases were incorrectly grouped into either 
cluster and no other cluster was incorrectly construed.  
 
Under our experimental setup, placing Node 1 & 2 nearly 3,000 miles apart (one on each coast 
of the U.S), evaluating the secure patient cohort building operation on a group of 1067 real 
patients completed in just over 10 seconds and required 60 MB of online communication and 
634 MB of precomputed values (see Table 1). Since the cohort building operation requires 
computing the phenotypic similarity between all pairs of patients, the bandwidth, size of the 
precomputed values, and the protocol execution time grow quadratically with the number of 
patients (see Supplementary Figure 3).  
 

Secure gene prioritization  
Genome sequencing of an individual with a monogenic disease can yield hundreds of different 
candidate genes with rare functional mutations(4, 5, 20). With 60 million patients to be 
sequenced in the next 5 years(21), automated methods must be developed to assist the 
clinician in efficiently sifting through the candidate gene list in search of a possible diagnosis.  
 
We have previously shown Phrank’s utility in this context. Namely, given a patient with a set of 
candidate genes and observed phenotypes, and given a knowledgebase consisting of all 
candidate disease genes and the set of phenotypes associated with each one, Phrank sorts the 
patient genes in descending order for their ability to explain the patient’s phenotypes with a 
very high likelihood of finding the patient’s causative gene at or near the top of this list(13). As 
described, this test asks the patient to reveal all of the genes where they have potentially 
causative variants as well as their full set of phenotypes to the test provider. Conversely, having 
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the provider simply hand their full knowledgebase containing thousands of carefully-curated 
gene-phenotype associations to the patient would jeopardize their advantage over competing 
services (Figure 3A). Here, we use similar techniques as above to build a privacy-preserving 
framework for secure gene prioritization (Figure 3B). In this scenario the test provider does not 
learn anything about the patient, and the patient only learns the identities of the top few 
candidate genes that are most correlated with her particular phenotypes, and nothing more 
about the test provider’s knowledgebase or exact ranking method (see Methods, 
Supplementary Figure 4). 
 
We ran our secure gene prioritization protocol over 169 real patients with different Mendelian 
disorders ranging from Albinism to Weaver Syndrome. The patients were associated with an 
average of 7 clinician-noted HPO phenotypes and typically presented between 100-150 
candidate genes containing rare, potentially causative, variants. The secure computation 
outputted the top 10 of over 3400 disease genes that were most likely to explain each patient’s 
phenotypes. In nearly 90% of the cases (150 of the 169 cases), the causative gene was found in 
this 10-15X shorter list of genes. Depending on the precise privacy and accuracy requirements, 
the filtering steps for controlling the number of genes in the input of the secure gene 
prioritization protocol can be adjusted. 
 
Our secure gene prioritization protocol completed in 84 seconds and required 429 MB of 
communication (see Table 1). The bandwidth, size of the precomputed values, and the protocol 
execution time all scale linearly with the size of the test provider’s knowledgebase (see 
Supplementary Figure 3). 

Discussion 
Genomic data presents each family a ‘serve or protect’ dilemma. On the one hand, sharing the 
family’s genetic information with clinicians and researchers can advance genomic medicine and 
enable better treatment plans for the afflicted. On the other hand, the sensitivity of that same 
data requires prudence and care in handling so as to protect the patient family from genomic 
discrimination or exploitation. Our previous works have shown how to leverage secure 
multiparty computation techniques to identify disease-causing(9) or disease-associated(22) 
genes and obtain a definitive genetic diagnosis(9) without revealing nearly any patient genetic 
information. These works, however, implicitly assume that patient cohorts have already been 
assembled and that computation need only be done on the patients’ genotype data. In this 
work, we extend these secure genome techniques to enable secure computation over patients’ 
phenotypes as well. Combined, our protocols bring us closer to a secure end-to-end disease 
diagnosis pipeline capable of building disease cohorts, identifying their shared causal gene, and 
diagnosing subsequent patients(9), all while respecting the privacy of patients’ genetic and 
genomic data. 
 
In combination with apps that store a patient’s medical record, and automated tools that 
extract HPO terms from medical notes (such as our ClinPhen(23)), one can envision a near 
future where a patient can decide to participate in a secure cohort discovery with a simple push 
of a smartphone button. As 70% of sequenced patients with severe genetic diseases remain 
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undiagnosed(10, 11), and especially since 300 novel disease genes are discovered each year(2) 
(predominantly through cohort building), this is a highly desirable future where the latest 
technology both serves and protects us. Fierce competition between different commercial 
entities offering monogenic patient diagnosis make our secure gene prioritization protocol 
highly desirable to patients and commercial providers alike. The 30% of sequenced patients 
who can already receive a diagnosis will do so in an accelerated fashion, and without needing to 
share any private genomic or phenotypic data. Commercial providers in turn can amass 
knowledge in the form of better annotations, HPO graph refinements, and even enhancements 
to Phrank while only revealing a tiny sliver of vital information to each patient.  
 
In both scenarios, virtually nothing is discovered about the patients, especially in cases where 
the computation cannot currently aid the patients directly. This allows patients to participate in 
multiple cohort building efforts, until a cohort is found that can aid them too. It should also 
allow different healthcare systems to join forces in building small patient cohorts, without ever 
sharing any actual patient data. And it allows patients in our second scenario to get reanalyzed 
periodically by the same, or alternatively, a different, commercial entity to facilitate a diagnosis 
when one ultimately becomes available.  
 
The methods we describe in this work enable us to significantly enhance the disease diagnosis 
pipeline while protecting the privacy of all parties involved. The core primitive that underlies 
our protocols is the Phrank phenotype set-similarity metric, and the computational overhead 
invested to make the computation secure is very feasible in terms of computation time, 
bandwidth, and the amount of precomputation. It is straightforward to further generalize 
Phrank to support more functionalities and computations over phenotypes. For example, using 
the AMELIE PubMed article/disease gene/phenotypes database(24), publications can also be 
securely prioritized to reveal only those that best explain a patient’s disease. 
 
This work introduces the first framework for computing meaningful functions over Mendelian 
phenotypes and genotypes without requiring patients to reveal their phenotype or genotype 
information. These protocols enable accurate disease diagnosis while revealing minimal patient 
information, a large step towards enabling secure personalized genome analysis for all.  
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Online Methods 
Human Phenotype Ontology 
Phenotypes are represented using the Human Phenotype Ontology(12) (HPO) Build 127. HPO 
phenotypes are arranged in a directed acyclic graph (DAG), where the graph structure encodes 
the parent-child relationship between the different phenotypes. The DAG is organized such that 
if a patient or gene is associated with a phenotype 𝜑, the patient or gene is also associated with 
all ancestors of 𝜑 up to the root phenotype node “phenotypic abnormality” (HP:0000118).  
 

Patient phenotype data 
Patient phenotypic data were combined from 4 sources. Phenotypes for 1049 patients were 
extracted from patient records found in the Stanford STARR database(23). 169 patients from 
the Deciphering Developmental Disorders(25) (DDD) cohort came associated with a list of HPO 
phenotypes. We manually extracted HPO phenotypes for 9 patients identified with Nager 
Syndrome from Table 1 in Bernier et al(26) and for 9 Distal Arthrogryposis patients from Table 1 
in McMillin et al(27). 
 

Patient genotype data 
Variant Call Format (VCF) files of patients submitted to the Deciphering Developmental 
Disorders (DDD) project were downloaded from European Genome-Phenome Archive (EGA) 
with accession numbers EGAD00001001848, EGAD00001001977, EGAD00001002748, 
EGAD00001001355, EGAD00001001413 and EGAD00001001114. All patients with a single-gene 
diagnosis not due to a structural variant (as specified by the patient’s VCF) and for which the 
causative gene was not a novel discovery of the DDD project were selected. From any 
diagnosed set of siblings, a single diagnosed sibling was selected at random resulting in 169 
diagnosed DDD patients as shown previously(13). 
 

Variant annotation 
ANNOVAR v527 was used to annotate patient variants with predicted effect (below) on protein-
coding genes using gene isoforms from ENSEMBL gene set version 75 for the hg19/GRCh37 
assembly of the human genome.  We included all gene isoforms where the transcript start and 
end were marked as complete and where the coding span was a multiple of three. All ExAC v 
0.3.1 and 1000 genomes phase 3 subpopulations were used to annotate variants with allele 
frequency information. 
 

Variant filtering 
Only variants with an exonic nonsynonymous SNV, exonic stopgain, exonic frameshift, core 
splicing, exonic nonframeshift or exonic stoploss predicted semantic effect on a protein-coding 
gene isoform were considered for further analysis. All patient variants with an allele frequency 
over 0.5% in any subpopulation of the 1000 Genomes Project or in Exome Aggregation 
Consortium (ExAC) were also marked as likely benign. In case a gene contained only a single 
heterozygous variant, the variant was marked as likely benign if it occurred at an allele 
frequency over 0.1% in any subpopulation of the 1000 Genomes Project or ExAC. All variants 
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marked as likely benign were filtered out of the candidate list of variants. All remaining variants 
made up the list of candidate causative variants for each patient. 
 

Additive secret sharing 
A two-party secret-sharing protocol allows a user to distribute “shares” of a value 𝑥 to two 
servers such that each server individually has no information about 𝑥. Collectively, the two 
servers can combine their shares to reconstruct the secret 𝑥. In this work, we use an additive 
secret-sharing scheme. To secret share 𝑥 across two parties, the user chooses a random value 𝑟 
between 0 and 𝑝 –  1 (where 𝑝 is a fixed integer). In our protocols, we use 𝑝 =  216. The user 
then gives 𝑟 to one party and 𝑥 –  𝑟 (mod 𝑝) to the other party. Since 𝑟 is uniformly random, 
neither party learns anything about 𝑥 given just their share of the input. However, by adding 
their shares together, the parties can recover the secret 𝑥 =  𝑟 + (𝑥 –  𝑟) (mod 𝑝). We write 
[𝑥] = ⟨[𝑥]1, [𝑥]2〉 to denote a secret-sharing of 𝑥, where [𝑥]1 denotes the share held by the 
first party (e.g. 𝑟) and [𝑥]2 denotes the share held by the second party (e.g. 𝑥 − 𝑟 (mod 𝑝)). 
The invariant we maintain is that [𝑥]1 + [𝑥]2 = 𝑥 (mod 𝑝). 
 

Computing on secret-shared values 

Addition on secret-shared values 
We now describe how two parties can jointly compute on secret-shared values without learning 
anything about the underlying shared values. Given shares of [𝑥] = ⟨[𝑥]1, [𝑥]2〉  and  [𝑦] =
⟨[𝑦]1, [𝑦]2〉, the first party will have [𝑥]1, [𝑦]1 and the second party will have [𝑥]2, [𝑦]2. First, we 
remark that the shares are additive meaning that a party who has shares of 𝑥 and 𝑦 can just 
add their shares together to obtain a share of the sum 𝑥 + 𝑦, or [𝑥 + 𝑦] = ⟨[𝑥]1 + [𝑦]1, [𝑥]2 +
[𝑦]2⟩. Notably, this operation does not require any communication between the two parties. 
Similarly, parties can scale their shared values by a fixed constant by scaling their local shares. 
Namely, for a constant 𝑘, we can write [𝑘𝑥] = ⟨𝑘[𝑥]1, 𝑘[𝑥]2⟩. Finally, to add a constant 𝑦 to a 
secret-shared value [𝑥], the two parties just need to compute [𝑥] + 𝑦 = ⟨[𝑥]1 + 𝑦, [𝑥]2⟩. In 
summary, these operations enable two parties to locally compute any affine function (i.e., 
linear functions of the form 𝑎𝑥 +  𝑏, where 𝑎 and 𝑏 are fixed constants) on their secret-shared 
values. 
 

Multiplication on secret-shared values 
Computing a product of two secret-shared values is more complex. Here, we describe an 
elegant technique due to Beaver(14) that we use in this work. Beaver’s multiplication protocol 
is a core ingredient in secret-sharing-based multi-party-computation protocols(15). First, we 
assume that the parties have a secret-sharing of a random product: namely, a triple 
([𝑎], [𝑏], [𝑐]), where 𝑎 and 𝑏 are random values (that do not depend on any party’s secret 
information), and 𝑐 = 𝑎𝑏 (mod 𝑝). We refer to ([𝑎], [𝑏], [𝑐]) as a “Beaver multiplication triple.” 
Beaver’s main insight is that we can leverage a secret-sharing of a random product to compute 
a secret-sharing of an arbitrary product. We describe the main protocol below: 

1. Suppose that the two parties possess a secret-sharing of two values [𝑥] and [𝑦], and 

their goal is to compute a secret-sharing of the product [𝑥𝑦]. Moreover, the two parties 

have shares of the multiplication triple ([𝑎], [𝑏], [𝑐]) where 𝑐 = 𝑎𝑏. Note that the two 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint 

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

parties only have shares of the 𝑎, 𝑏, and 𝑐, and importantly, do not know the actual 

values of 𝑎, 𝑏, and 𝑐. 

2. Each party computes and publishes their shares of 𝑥 − 𝑎 (mod 𝑝) and 𝑦 − 𝑏 (mod 𝑝). 

Specifically, the first party sends [𝑥]1 − [𝑎]1 and [𝑦]1 − [𝑏]1 to the second party, and 

the second party sends [𝑥]2 − [𝑎]2 and [𝑦]2 − [𝑏]2 to the first party. At the end of this 

step, both parties have the values 𝑥 − 𝑎 (mod 𝑝) and 𝑦 − 𝑏 (mod 𝑝). 

3. The parties then locally compute the following affine relation: 

[𝑧] = (𝑥 − 𝑎)(𝑦 − 𝑏) + [𝑎](𝑦 − 𝑏) + [𝑏](𝑥 − 𝑎) + [𝑐]. 

Specifically, the two parties compute the following: 
[𝑧]1 = (𝑥 − 𝑎)(𝑦 − 𝑏) + [𝑎]1(𝑦 − 𝑏) + [𝑏]1(𝑥 − 𝑎) + [𝑐]1

[𝑧]2 = [𝑎]2(𝑦 − 𝑏) + [𝑏]2(𝑥 − 𝑎) + [𝑐]2.
 

 
We argue that 𝑧 is a sharing of the product 𝑥𝑦. Appealing to linearity of the underlying 
operations and using the fact that 𝑐 = 𝑎𝑏, we show that 𝑧 is a secret-sharing of the product 𝑥𝑦: 
 
[𝑧]1 + [𝑧]2 = (𝑥 − 𝑎)(𝑦 − 𝑏) + ([𝑎]1 + [𝑎]2)(𝑦 − 𝑏) + ([𝑏]1 + [𝑏]2)(𝑥 − 𝑎) + ([𝑐]1 + [𝑐]2)

= (𝑥 − 𝑎)(𝑦 − 𝑏) + 𝑎(𝑦 − 𝑏) + 𝑏(𝑥 − 𝑎) + 𝑐

= 𝑥𝑦 − 𝑏𝑥 − 𝑎𝑦 + 𝑎𝑏 + 𝑎𝑦 − 𝑎𝑏 + 𝑏𝑥 − 𝑎𝑏 + 𝑐

= 𝑥𝑦.

 

 
As long as the values 𝑎, 𝑏, and 𝑐 in the multiplication triple are unknown to the two parties, 
then the values 𝑥 − 𝑎 and 𝑦 − 𝑏 completely hide 𝑥 and 𝑦 (in an information-theoretic sense). 
To summarize, Beaver’s protocol enables two (or more) parties to jointly compute a product of 
two secret-shared values with one round of communication (where each party broadcasts their 
shares of the blinded values to the other parties). With Beaver’s protocol, the problem of 
multiplying secret-shared values essentially reduces to that of generating the (correlated) 
Beaver multiplication triples. Note that the Beaver triples are completely independent of all of 
the parties’ inputs to the computation, and thus, can be generated in a separate offline phase 
prior to the main protocol execution. We discuss this more below (see “Using preprocessing for 
better online efficiency”). 
 

Generalizing Beaver multiplication triples to matrix-vector operations 
In the above, we described a protocol for computing on secret-shared values (specifically, field 
elements). A significant component of our protocols is evaluating matrix-matrix and matrix-
vector products. While we can perform the matrix operations using the elementary operations 
over the underlying elements in the matrices, this incurs unnecessary overhead. To improve 
performance, we note that Beaver’s multiplication protocol directly generalizes to computing 
products of secret-shared matrices (in fact, it extends to computing products over any ring), 
provided that the computing parties have a secret-sharing of a random matrix product (of the 
same dimensions). Specifically, for matrices 𝑿 and 𝒀, we write [𝑿] and [𝒀] to denote a secret-
sharing of 𝑿 and 𝒀, respectively (this is just a component-wise secret-sharing of the entries in 
the matrix). Addition and scalar multiplication on secret-shared matrices and vectors can be 
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done exactly as before. For multiplication, we use the direct generalization of Beaver’s protocol. 
In particular, we assume that the computing parties have a secret-sharing of a matrix [𝑨], and 
vectors [𝑩] and [𝑪] where 𝑪 = 𝑨𝑩. To compute shares of the product [𝑿𝒀] given shares of 
matrices [𝑿] and [𝒀], the two parties first reveal 𝑿 − 𝑨 and 𝒀 − 𝑩. Then, they compute the 
following affine relation on their shares: 
 

[𝒁] = (𝑿 − 𝑨)(𝒀 − 𝑩) + [𝑨](𝒀 − 𝑩) + (𝑿 − 𝑨)[𝑩] + [𝑪]. 
 
Using the same analysis as above, we have that [𝒁] = [𝑿𝒀], as desired. The total 
communication to perform a matrix vector multiplication in this way is proportional to the 
dimensions of 𝑿 and 𝒀, which can be significantly smaller than the number of elementary 
multiplications that need to be done to compute the product 𝑿𝒀. In particular, if 𝑿 is 𝑚-by-𝑘 
and 𝒀 is 𝑘-by-𝑛, then the total communication is 𝑘(𝑚 + 𝑛), whereas using Beaver 
multiplication triples to perform each of the elementary multiplications requires 
communication 2 ⋅ 𝑘𝑚𝑛. This optimization (along with further generalizations) was also 
leveraged to improve the efficiency of the privacy-preserving GWAS protocol by Cho et al(22). 
 

Yao’s garbled circuits for evaluating Boolean circuits 
Beaver’s protocol provides an efficient method for evaluating arithmetic operations (addition 
and multiplication) on secret-shared values. However, they are less suitable for other types of 
operations, such as comparisons or computing the maximum of a collection of values. While it 
is possible to express these operations in terms of additions and multiplications, doing so incurs 
considerable overhead (in terms of both computation as well as communication). A more 
efficient alternative for secure evaluation of comparisons and argmax operations is to use Yao’s 
protocol(19, 28), which is a general-purpose protocol for secure two-party computation. At a 
high level, suppose Alice and Bob each have an input 𝑥 and 𝑦, and they want to compute some 
joint function 𝑓 on their shared inputs. At the end of the computation, both Alice and Bob 
should learn 𝑓(𝑥, 𝑦) but nothing else about the other party’s input (other than what is revealed 
by 𝑓(𝑥, 𝑦)). In Yao’s protocol, the function 𝑓 is modeled as a Boolean circuit, and the inputs are 
binary-valued. In contrast, in the case of Beaver’s protocol, the underlying function is modeled 
as an arithmetic circuit (over a large finite field). Because comparisons are more naturally 
expressed as a Boolean circuit, Yao’s protocol is more suitable for performing the comparison 
and argmax operations. 
 

The ABY approach: combining Boolean and arithmetic circuits 
In this work, the computation we are interested in consists of two main ingredients: evaluating 
a matrix-vector (or matrix-matrix) product, and then applying some post-processing operations 
to the results (e.g., computing the top 𝑘 elements in the resulting vector or filtering out values 
that fall below a certain threshold). Since matrix-vector products are arithmetic computations, 
they are most well-suited for secret-sharing-based secure multiparty computation. On the 
other hand, computing comparisons and thresholds are more easily expressed as Boolean 
circuits (that operate over the binary representation of the inputs), and thus, are more 
amenable for Yao’s protocol. The ABY approach(18) combines the best of both worlds and 
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provides a general paradigm for integrating secret-sharing multi-party computation with Yao-
based multi-party computation. In this work, we rely on the following elementary building 
blocks from Demmler et al(18). 

 Evaluating a garbled circuit on secret-shared values. First, we describe how to evaluate 

a Boolean function on secret-shared values. Let 𝑓 be the Boolean function (e.g., this 

could be an argmax function or a threshold function) we want to evaluate, and suppose 

the inputs [𝒗] = ([𝒗]1, [𝒗]2) to 𝑓 are secret-shared across two-parties. To use Yao’s 

protocol to evaluate the function f on the secret-shared values, we first define the 

function 

𝑔([𝒗]1, [𝒗]2) = 𝑓([𝐯]1 + [𝒗]2 mod 𝑝), 

and then apply Yao’s garbled circuit protocol to evaluate the function 𝑔. In this case, 

the input of each party is the (binary) representation of their share of the input. At the 

end of the protocol execution, the parties learn the output  

𝑔([𝒗]1, [𝒗]2) = 𝑓([𝒗]1 + [𝒗]2 mod 𝑝) = 𝑓(𝒗). 

 Secret-sharing the output of a garbled circuit. In some cases, the output of the Boolean 

circuit is not the final output of the computation, and we need to perform additional 

arithmetic operations on the result. In this case, the outputs of the Boolean circuit 

should be a secret sharing of the output rather than the output. We use this operation 

to implement the PRIORITIZATION functionality (described further below). Suppose we 

want to compute a Boolean function 𝑓 on an input 𝒗, and we want the output 𝒛 = 𝑓(𝒗) 

to be secret-shared across the two parties. To support this, we define a new function 𝑔 

that takes in the input 𝒗 as well as a share [𝒛]2 as follows: 

𝑔(𝒗, [𝒛]2) = 𝑓(𝒗) − [𝒛]2 (mod 𝑝). 

The input [𝒛]2 belongs to the second party, and is sampled uniformly at random (by the 

second party). By construction, the output of 𝑔 is a vector [𝒛]1 where [𝒛]1 + [𝒛]2 =

𝒛 (mod 𝑝) and moreover, [𝒛]2 is sampled uniformly at random. Thus, the pair 

([𝒛]1, [𝒛]2) is a secret-sharing of 𝒛. At the end of the computation, the first party 

obtains the share [𝒛]1 while the second party holds the share [𝒛]2 (unknown to the first 

party). 

Using preprocessing for better online efficiency 
We can often reduce the cost of a secure multiparty computation (MPC) protocol by working in 
the MPC with preprocessing model(14–17). In this model, there is an independent semi-honest 
party (called the “dealer”) that generates some input-independent values for the computing 
parties. In other words, the protocol can be decomposed into an initial “offline phase” and an 
“online phase” which operate as follows: 

 Offline phase. During the offline phase of the protocol, the dealer precomputes the 

input-independent values and distributes them to the computing parties. At the end of 

the offline phase, the dealer can go offline and it does not have to be around for the 

online phase of the computation. 
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 Online phase. During the online phase of the computation, the computing parties 

obtain the secret-shared inputs from all the protocol participants (e.g., the patients or 

the doctors). They then run the protocol over the secret-shared data. At the end of the 

computation, the computing parties publish their shares of the output, which allows 

the clients to learn the output of the computation. During this phase, the computing 

parties can make use of the precomputed values they received during the offline phase 

of the protocol. 

We now briefly describe how we take advantage of preprocessing in our protocols: 

 Beaver’s multiplication protocol. Recall from our above description that Beaver’s 

protocol for multiplying secret-shared values assumes the parties have a secret-sharing 

of a random multiplication triple (which can be generated independently of all of the 

inputs to the computation). These multiplication triples would be generated by an 

independent semi-honest party and distributed to the computing parties prior to the 

main protocol execution. 

 Yao’s garbled circuit protocol: Working in the preprocessing model also enables a more 

efficient implementation of Yao’s garbled circuit protocol (which we use for securely 

evaluating Boolean circuits). Notably, since the garbled circuits used in our protocol are 

fixed (and input-independent), they can be precomputed prior to the computation. This 

means that in the online phase of the protocol, the two computing parties do not have 

to communicate the description of a large garbled circuit, which considerably reduces 

the online communication, and correspondingly, the end-to-end online protocol 

execution time. Finally, we can also reduce the online cost of the oblivious transfers 

(OTs)(29, 30) used to implement Yao’s garbled circuit protocol by precomputing OT 

correlations(31). With precomputed OT correlations, each of the 1-out-of-2 OTs on the 

input wire encodings to the garbled circuit (128-bits each) can be implemented by 

communicating 257 bits (1 bit sent from the evaluator to the garbler and 256 bits sent 

from the garbler to the evaluator). No cryptographic operations are needed. Using 

precomputed OT correlations to implement the OTs reduces both the communication 

and the computational cost of implementing the OTs. 

In our experiments, we work in the preprocessing model and assume that there is a dealer that 
generates the Beaver multiplication triples for the arithmetic computations and the OT 
correlations as well as precomputed garbled circuits for the Boolean computations. In practice, 
this dealer could be implemented by a third independent cloud provider or by the patients 
(smartphones) who are contributing their data to the protocol execution. Finally, in our 
experiments, we measure the total online cost of the computation as well as the total size of 
the precomputed values that need to be distributed prior to the start of the online 
computation.  
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Implementing the application-specific wrappers 
We now describe how we implement our application-specific wrappers (patient COHORT 
DISCOVERY and GENE PRIORITIZATION) as a combination of arithmetic and Boolean circuit 
operations. 
 

Representing phenotypic and genotypic data as vectors 
Phenotypes are represented using 11,532 distinct terms in the Human Phenotype Ontology 
(HPO) terms (see above). For each set of HPO phenotype terms Φ, we define two 11,532-
dimensional vectors, 𝒗Φ and 𝒘Φ, where each vector component corresponds to an HPO term. 
An indicator phenotype vector 𝒗Φ is a vector where the component corresponding to an HPO 
term 𝜑 is 1 if 𝜑 ∈ Φ, and 0 otherwise. A weighted phenotype vector 𝒘Φ is a vector where the 
component corresponding to an HPO term 𝜑  is its “weight” 𝑤𝜑 if 𝜑 ∈ Φ, and 0 otherwise (see 

Methods). The weight of a phenotype, 𝑤𝜑, is defined to be the marginal information content of 

the phenotype node (as described in Phrank)(13). 
 
There are 20,663 protein-coding genes in the Ensembl 75 gene set. Where gene-level genomic 
data is required for the computation, we create a 20,663-dimensional indicator genotype 
vector where each vector component corresponds to a gene. The components corresponding 
to the genes harboring a rare functional variant are set to 1 and all other components are set to 
0 (see below). 
 

Scenario 1: Secure patient COHORT DISCOVERY 
Recall that the COHORT DISCOVERY functionality takes as input a set of phenotypes from 
multiple patients, computes the pairwise phenotype similarity score between each pair of 
patients, and then identifies small clusters of patients. Suppose there are a total of 𝑛 patients. 
Let 𝒗1, … , 𝒗𝑛 be the indicator phenotype vector (i.e., a 0/1 vector) that models the patient’s 
phenotypes (as above). Let 𝒘1, … 𝒘𝑛  be the weighted phenotype vector of for each patient (an 
entry in 𝒘𝑖 is 0 if the patient does not exhibit the particular phenotype, and is equal to the 
weight of the phenotype if the patient does have the particular phenotype). We define the 
COHORT DISCOVERY functionality as follows: 

1. Let 𝑽 be the matrix whose columns consist of the vectors 𝒗1, … , 𝒗𝑛 and 𝑾 be the matrix 

whose columns consist of the vectors 𝒘1, … , 𝒘𝑛. 

2. Compute the pairwise-similarity matrix 𝑺 = 𝑽𝑇𝑾 consisting of the Phrank scores 

between each pair of patients. Note that 𝑺 is an 𝑛-by-𝑛 matrix. 

3. To identify clusters of similar patients, apply the following filtering operation to the 

entries of 𝑺. First, let 𝑠max be the maximum value among the entries in 𝑺, and define the 

threshold 𝑡 = 𝜏 ⋅ 𝑠max for some parameter 0 < 𝜏 < 1. Let 𝑺thresh be the 𝑛-by-𝑛 matrix 

where (𝑺thresh)𝑖,𝑗 = 1 if 𝑺𝑖,𝑗 > 𝑡 and (𝑺thresh)𝑖,𝑗 = 0 otherwise. Namely, 𝑺thresh is an 𝑛-

by-𝑛 indicator matrix whose 1-entries precisely correspond to the entries in 𝑺 that 

exceed the threshold 𝑡. 

4. Finally, to filter out small clusters, define the 𝑛-by-𝑛 indicator matrix 𝑺filtered where 

(𝑺filtered)𝑖,𝑗 = 1 if (𝑺thresh)𝑖,𝑗 = 1 and there are at least 𝜌 non-zero entries in the 𝑖th 
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row and the 𝑗th column of 𝑺thresh. Otherwise (𝑺filtered)𝑖,𝑗 = 0. Intuitively, this step 

filters out all pairs of patients that are not sufficiently similar to at least 𝜌 other patients 

each. The output of the algorithm is the filtered matrix 𝑺filtered. 

In the above description, both thresholds 𝜏 and 𝜌 are fixed parameters chosen based on the 
specifics of the particular scenario. In our empirical experiments, we use 𝜏 = 1 4⁄  and 𝜌 = 4. 
 
We now describe our protocol for secure evaluation of the patient COHORT DISCOVERY 
functionality (see Figure 2). We work in the two-cloud model with preprocessing, where we 
assume that the online computation is performed between two non-colluding servers and that 
there is a third independent server (the “dealer”) that implements the offline precomputation 
and distributes the precomputed values to the two cloud providers prior to the start of the 
online computation. 
 
At a high level, the online phase of our protocol works as follows. Each of the patients begins by 
secret-sharing their indicator phenotype vector and their weighted phenotype vector to the 
two non-colluding clouds servers. Next, the two clouds leverage Beaver’s multiplication 
protocol to compute a secret-sharing of the pairwise-similarity matrix 𝑺 for the patients. Finally, 
the two parties apply Yao’s garbled circuits to the shares of 𝑺 to perform the thresholding and 
filtering and obtain the final 0/1 matrix 𝑺filtered. We describe our protocol formally below: 

1. Each party secret shares its inputs 𝒗𝑖 and 𝒘𝑖 with the two cloud servers. At the end of 

this step, the two clouds have shares [𝒗1], … , [𝒗𝑛] and [𝒘1], … , [𝒘𝑛] of every party’s 

input. Equivalently, each cloud has a secret share of the matrices [𝑽] and [𝑾], where 𝑽 

is the matrix whose columns consist of the vectors 𝒗1, … , 𝒗𝑛 and 𝑾 is the matrix whose 

columns consist of the vectors 𝒘1, … , 𝒘𝑛. 

2. Using Beaver’s multiplication protocol, the two clouds compute a secret sharing of the 

product [𝑺] = [𝑽𝑇] ⋅ [𝑾]. 

3. Let 𝑓filter[𝜏, 𝜌] be the function that takes as input a pairwise-similarity matrix 𝑺 and 

performs the thresholding and filtering procedure described above (using thresholds 𝜏 

and 𝜌). Then, define the filtering procedure 𝑔filter[𝜏, 𝜌] that operates on secret-shared 

values as follows: 

𝑔filter[𝜏, 𝜌]([𝑺]1, [𝑺]2) = 𝑓filter[𝜏, 𝜌]([𝑺]1 + [𝑺]2 mod 𝑝) 

The two clouds use Yao’s garbled circuit protocol to jointly evaluate 𝑔filter[𝜏, 𝜌] where 

the first cloud provides its share [𝑺]1 as its input and the second party provides its share 

[𝑺]2 as its input. 

In the offline phase of the protocol, the dealer generates the Beaver multiplication triples, OT 
correlations, and garbled circuits necessary to implement the above-described protocol and 
distributes the precomputed values to the two computing clouds for use in the online phase of 
the protocol. We now provide some additional details on how we implement (and optimize) the 
above protocol: 

 Phenotype weights are typically represented as decimal values while our secure 

computation protocol computes over integer values (in fact, integers modulo 𝑝). While 
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it is possible to implement floating-point operations as integer operations, this incurs 

significant overhead. Instead, in this work (and similar to many previous protocols for 

secure computation), we use a fixed-point representation. In fact, since our protocols 

only care about the ordering and (relative) magnitudes of the information-scores, we 

simply scale the phenotype weights by a large multiplicative factor (in our work, we use 

29 = 512), and then round the weights to the nearest integer. Finally, we choose the 

modulus 𝑝 to be large enough so none of the arithmetic operations wrap around 

modulo 𝑝. Note that whenever we have to operate on secret-shared values in Yao’s 

protocol, we need to perform a modular reduction (mod 𝑝) within the garbled circuit 

to reconstruct the input. It is thus convenient to choose 𝑝 to be a power of two (or 

close to a power of two) so that the modulus reduction can be efficiently represented 

as a Boolean circuit. In this work, we use 𝑝 = 216. 

 Computing the threshold 𝑡 = 𝜏 ⋅ 𝑠max for an arbitrary threshold 0 < 𝜏 < 1 will require 

implementing a division operation within a Boolean circuit, which can be very expensive 

in general. However, if we choose the threshold τ to be an (inverse) power of two, then 

division reduces to performing a bit-shift (more precisely, we simply drop some of the 

least significant bits). This can be implemented with almost no overhead. For this 

reason, we use 𝜏 = 1 4⁄  in this work. If we want to efficiently support arbitrary 

thresholds that are not close to a power of two, another option is to modify the garbled 

circuit to first compute and output the maximum entry 𝑠max. Then, the parties can 

compute the threshold 𝑡 in the clear and finally, run the filtering protocol with the 

threshold given as an additional input to the computation. Note that this modified 

protocol would (only) reveal the value (but not the identity) of 𝑠max to the computing 

parties. 

 The rest of the threshold function corresponds to performing comparisons, maximums, 

and counts. All of these elementary operations can be implemented efficiently using 

building blocks from previous works(32). 

Scenario 2: Secure PRIORITIZATION 
The PRIORITIZATION functionality can be viewed as a two-party computation between a patient 
and a 3rd party genome analysis provider. In this scenario, the patient wants to obtain a short 
list of genes from the genome analysis provider, sorted based on the likelihood that a particular 
gene causes their disease. Moreover, the patient would like to do so without revealing their 
genotypic or phenotypic information to the genome analysis provider. In today’s competitive 
commercial environment, the gene-phenotype mappings, HPO structure and even enhanced 
Phrank algorithms used by the genome analysis provider often contains proprietary 
information, and we desire a protocol that additionally protects the confidentiality of the 
provider’s data.  
 
In this scenario, the patient holds an indicator phenotype vector 𝒗𝑝 (i.e., this is a 0/1 vector 

specifying the set of phenotypes a patient possesses) and an indicator genotype vector 𝒗𝑔  (i.e., 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint 

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

this is a 0/1 vector specifying the set of genes containing rare functional variants that the 
patient possesses). The genome analysis provider holds a set of weights matching genes to 
specific phenotypes. We represent this as a matrix 𝑺. The rows of 𝑺 are associated with genes 
while the columns of 𝑺 are associated with phenotypes. Essentially, we can view each row of 𝑺 
as the weighted phenotype vector associated with the corresponding gene in the provider’s 
gene-phenotype database.  
 
In our setting, the phenotype vector has dimension 11,532 (corresponding to the number of 
HPO terms in build 127), while the genotype vector has dimension 20,663 (corresponding to the 
number of protein-coding genes in Ensembl build 75). The PRIORITIZATION functionality 
identifies the genes the patient possesses that are most correlated with her phenotypes. The 
components of the vector 𝑺𝒗𝑝 can be viewed as the Phrank score(13) between the patient’s 

phenotypes and the phenotypes associated with each gene in the provider’s gene-phenotype 
database. 
 
The PRIORITIZATION functionality begins by computing the Phrank scores vector 𝑺𝒗𝑝. Next, we 

filter out all genes where the patient does not have a rare variant by computing the Hadamard 

product 𝒘 = 𝒗𝑔 ∘ (𝑺𝒗𝑝). To recall, the Hadamard product 𝒖 ∘ 𝒗 between two vectors 𝒖 and 𝒗 

is defined to be the component-wise product of 𝒖 and 𝒗. The vector 𝒘 encodes the Phrank 
score for each gene in the patient’s genome where the patient possesses a rare variant. The 
PRIORITIZATION functionality outputs the top 𝑘 genes (entries) in the vector 𝒘, which 
corresponds to the genes with the highest Phrank scores with respect to the patient’s set of 
phenotypes. Below, we will write TOP-K to denote the function that takes as input a vector 𝒗 
and outputs a 0/1 vector (of the same dimension as 𝒗) indicating the 𝑘 largest entries in 𝒗. 
 
In many cases (including the scenarios we consider), the phenotype weights are available only 
for a subset of the genes (e.g., for only the known disease-causing genes). While this can be 
handled in the basic protocol described above by setting the rows of 𝑺 to be all zeroes 
whenever a gene is not present, this incurs additional cost in the secure computation (since the 
parties still need to compute a full matrix-vector product 𝑺𝒗𝑝). A more efficient method is to 

define a “projection matrix” 𝚷 that maps a 0/1 vector over the full set of genes (20,663 genes) 
to a 0/1 vector over a reduced set of disease genes (e.g., 3,406 genes). By construction, each 
row of 𝚷 is a 0/1 vector with a single 1 in one position (corresponding to the gene that it is 
selecting for). Then, the number of rows in the matrix 𝑺 is equal to the number of genes in the 
reduced set (rather than the total number of genes in the genome). Computing the 
PRIORITIZATION functionality corresponds to computing 

𝚷𝑇 (TOPK ((𝚷𝒗𝑔) ∘ (𝑺𝒗𝑝))) 

where 𝑺 is the phenotype weights for the reduced set of genes. The matrix 𝚷𝑇 projects gene 
indices in the reduced set of genes to indices in the full set of genes. There are two main 
advantages to structuring the computation in this this way: 

 All of the matrix-vector multiplications involving 𝚷 and 𝚷𝑇 are over binary matrices and 

vectors. Evaluating binary matrix-vector products requires less communication than 
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evaluating matrix-vector products modulo 𝑝 (namely, we can use a Beaver 

multiplication triple over bits rather than over values modulo 𝑝). Introducing the 

projection matrices allows us to perform a smaller matrix-vector multiplication modulo 

𝑝 (in exchange for performing two additional matrix-vector multiplications over binary 

inputs). 

 The TOP-K computation only needs to be performed over the reduced set of genes. 

Since this is the bottleneck in the computation and in most cases, the subset of genes 

we are interested in is much smaller than the total number of genes, this yields a 

significant savings in both communication and computation. 

We now describe how we securely evaluate the PRIORITIZATION functionality. There are 
several possible ways to perform the computation: either the patient can directly interact with 
the 3rd party genome analysis provider, or it can secret-share its data to a cloud server and the 
genome analysis provider, and the resulting two-party computation occurs between the cloud 
server and the genome analysis provider. We take the latter approach here (see Figure 3), and 
in addition, we ask the client to play the role of the dealer in the offline phase of the protocol. 
Namely, the client (computer) generates the Beaver multiplication triples, the OT correlations, 
and the garbled circuit to be used in the online protocol execution. 

1. At the beginning of the protocol, the two parties have secret shares of the patient’s 

indicator phenotype vector [𝒗𝑝], the patient’s indicator genotype vector [𝒗𝑔], the 

phenotype weights [𝑺], and the projection matrix [𝚷].  

2. Using Beaver’s multiplication protocol, the two parties compute a secret sharing of the 

vector [𝒛] = ([𝚷] ⋅ [𝒗𝑔]) ∘ ([𝑺] ⋅ [𝒗𝑝]). 

3. The second party chooses a random 0/1 vector [𝒛′]2. This will correspond to its share of 

the output 𝒛′
 from the TOP-K computation. The two parties then use Yao’s garbled 

circuit protocol to evaluate the function 

𝑓([𝒛]1, ([𝒛]2, [𝒛′]2)) = TOPK([𝒛]1 + [𝒛]2 mod 𝑝) ⊕ [𝒛′]2, 

where 𝑎 ⊕ 𝑏 denote addition modulo 2. At the end of the protocol execution, the first 

party has [𝒛′]1 = TOPK([𝒛]1 + [𝒛]2 mod 𝑝) ⊕ [𝒛′]
2
 while the second party has [𝒛′]2. 

Equivalently, the two parties have a mod-2 secret-sharing of the vector 𝒛′ = TOPK(𝒛). 

The basic Boolean operations needed to perform this computation correspond to 

performing additions modulo 𝑝, computing the max value in a vector, and comparisons 

between values. All of these operations can again be implemented using standard 

garbled circuit building blocks24. 

4. To complete the protocol, the two parties use Beaver’s multiplication protocol to 

compute a secret-sharing of [𝚷𝑇𝒛′] = [𝚷𝑇] ⋅ [𝒛′]. The parties then broadcast their 

shares of the output. This suffices to reveal 

𝚷𝑇𝒛′ = 𝚷𝑇 ⋅ TOPK(𝒛) = 𝚷𝑇 ⋅ TOPK ((𝚷𝒗𝑔) ∘ (𝑺𝒗𝑝)), 

which is precisely the desired computation. 
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Experimental setup 
As discussed above, we implement our protocols in the two-cloud model, where the patients 
and data contributors first secret-share their data with two non-colluding cloud servers which 
perform the bulk of the computation. In addition, we assume an offline preprocessing step to 
generate and distribute the precomputed Beaver multiplication triples, OT correlations, and 
garbled circuits to the two non-colluding clouds. In practice, the preprocessing can be 
implemented by another independent cloud provider or by the patients participating in the 
computation. In our benchmarks, we focus on measuring the online cost of the protocol 
execution in terms of both communication as well as end-to-end protocol execution time. We 
additionally measure the total size of the precomputed values. Finally, to simulate the two non-
colluding cloud servers for the online phase of the computation, we place the two clouds on 
opposites coasts of the United States, and we measure the total protocol execution time and 
communication. 
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Tables and Figures 
Table 1 

 
Table 1. Keeping patient phenotypes and genotypes private while seeking disease diagnoses. In Scenario 1, we provide as input 
the phenotypes of over 1,000 real patients, and successfully identify among them two small groups of patients with similar 
phenotypes. Our protocol does not require any patient to share their phenotypes with anyone else (Figure 2). In Scenario 2, a 
commercial provider accelerates the diagnosis of  𝑛 = 169 patients without needing to see any patient phenotypes or genotypes 
(Figure 3). In this case, the patients do not learn much more about the commercial provider’s secret knowledgebase or exact 
approach, bar a small number of candidate genes that plausibly explain the patient’s condition. All computations are performed over 
real patient data.

 Relevant Information for Each Operation 
Running Time 

Measurements 

Scenario 1: 
Patient 
cohort 

discovery 

Diseases 
Individuals in 

identified 
cohort 

Individuals 
with 

Disease 

Total 
Patients in 

Analysis 

Avg. Similarity 
between 

Patients with 
Same Disease 

Max/Avg./Min Similarity 
Across All Patients 

Bandwidth 
(Megabytes) 

End-to-
End 
(sec) 

Nager 
Syndrome 

8 9 
1067 

56.2 
127.29/1.64/0 606 121 

Distal 
Arthrogryposis 

9 9 99.8 

Scenario 2: 
Gene 

prioritization 
(𝑛 = 169 
patients) 

Total # of 
Known 

Protein-
Coding 

Genes in 
Genome 

Total # of known 
disease genes 

Median 
# of 

Candidate 
Causative 
Genes per 

Patient 
(private) 

Total # of 
HPO 

Phenotypes 

Median # of 
Phenotypes 
per Patient 

% of 
patients 

with 
causative 
genes in 
top 10 

Median 
Similarity 

Score between 
Patient and 
Causative 

Gene 

Bandwidth 
(Megabytes) 

End-to-
End 
(sec) 

20,663 3,406 121 11,532 7 88% 22.3 429 84 
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Figure 1 

 
Figure 1. Secure multiparty computation with 2 clouds. In our simplified scenario, two patients rely on a cloud provider to perform 
some computation for them. (A) In existing protocols, outsourcing the computation to the cloud requires that the patients allow the 
provider to learn their private data. (B) Using two non-colluding clouds, patients can enjoy the same service without needing to 
share their private data. Because Rx and Ry are random numbers (see text), the provider can now exactly compute X + Y while 
learning nothing about X or Y themselves. (C) We extend this strategy here to more complex functions including any combination of 
addition and multiplication operations over numbers, vectors or matrices.
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Figure 2 

 
Figure 2. Scenario 1: Phenotypic cohort discovery without sharing any phenotypes. (A) Today, 
undiagnosed patients must share their phenotypes with one another and with test providers in 
hope of matching into a small cohort that can in turn be leveraged to identify the causative 
gene for their condition. (B) As in Figure 1, using 2 non-colluding cloud servers, patients can 
enjoy the same service without having to share their private data. In our scenario, undiagnosed 
patients can participate in cohort discovery multiple times, without revealing anything about 
themselves until they are matched (see Supplementary Figure 1 for technical details and 
Supplementary Figure 2 for real patient results).  
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Figure 3 

 
Figure 3. Scenario 2: Accelerating patient diagnosis while protecting both patient and 
commercial provider. Mendelian patients present hundreds of candidate genes, but only one 
of them may provide a diagnosis. Commercial providers compete over their ability to discover 
this causal gene. (A) Patient wants the provider to rank their candidate gene list, but they don’t 
want to reveal their private data. Neither does the provider want to entrust all their data and 
methodology to any single client. (B) Using our 2 cloud model, the patient protects all their 
sensitive data while the provider reveals only a sliver of theirs (see Supplementary Figure 4).  
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Supplementary Figures 
Supplementary Figure 1 

 
Supplementary Figure 1. Scenario 1: Patient COHORT BUILDING protocol description. As part of 
the protocol setup each patient creates two vectors based on their phenotype information: the 
indicator phenotype vector 𝒗 and the weighted phenotype weights 𝒘. The shares of each vector 
are sent to the two clouds and the secure protocol is executed between the two clouds to identify 
cohorts of phenotypically-similar patients. We use (precomputed) Beaver multiplication triples to 
compute the Phrank set similarity measure between each pair of patients. Then using Yao’s 
protocol, we threshold the values in the pairwise similarity matrix, and then filter the resulting 
values to remove small (spurious) clusters (see Methods for details).   
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Supplementary Figure 2 
                  A                                                                              B 

 
Supplementary Figure 2. Scenario 1: Small cohort discovery. (A) The pairwise Phrank similarity 
score matrix for all 𝑛 = 1,069 patients (which no one observes). (B) After clustering and 
filtering, exactly two cohorts of patients are revealed. Patients are identified by their patient 
identifiers (while their Phrank scores are completely hidden).  
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Supplementary Figure 3 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746230doi: bioRxiv preprint 

https://doi.org/10.1101/746230
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

Supplementary Figure 3. Performance measurements for secure computations. Bandwidth, 
protocol execution time and the size of the precomputed values for the cohort creation and 
gene prioritization protocols. All measurements were taken using a single-threaded execution 
on two Amazon EC2 servers, one located on the East Coast and the other on the West Coast. (A) 
For the cohort creation protocol, the bandwidth, network time, and precomputation size all 
scale quadratically with the number of patients. (B) For the gene prioritization protocol, the 
bandwidth, network time, and precomputation size all scale linearly with the size of the service 
provider’s knowledgebase. Increasing the number of genes output by the protocol does not 
have a significant impact on the bandwidth, but does slightly increase the computation time 
and the amount of required precomputation.  
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Supplementary Figure 4 

 
Supplementary Figure 4. Scenario 2: GENE PRIORITIZATION protocol description. We show how to 
securely prioritize patient candidate genes based on their likelihood for causing the patient’s 
disease using patient phenotypic and genotypic information, and without revealing any patient 
information to the genome analysis provider. The patient begins by securely uploading their 
genotypic and phenotypic information to a non-colluding cloud, who will facilitate the computation. 
(A) The gene prioritization protocol is performed between an individual and a third-party genome 
analysis provider. The individual starts by sharing their data with the non-colluding cloud and the 
server using a secure secret-sharing protocol. This ensures that neither the service provider nor the 
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non-colluding cloud can reconstruct the patient’s input data. The genome analysis provider and the 
cloud then execute a secure computation protocol to identify the prioritized list of genes most likely 
to explain the patient’s disease. (B) In the first step of the computation, the computing parties apply 
a projection from the set of all candidate disease genes to the set of genes actually present in the 
genome analysis provider’s knowledgebase (which is often a smaller subset of genes). This 
significantly reduces the computational cost of subsequent operations in the protocol. Then the two 
parties compute the Phrank score between each of the patient’s phenotypes and the phenotypes 
associated with each gene in the provider’s knowledgebase. Both of these computations rely on 
Beaver’s protocol (with precomputed Beaver multiplication triples). Next, using Yao’s garbled 
circuits, the two parties jointly identify the top 10 genes with the highest Phrank scores. The result 
is a secret-shared binary vector indicating the top 10 genes. Finally, the two parties project the 
indices of identified genes back into the set of all possible genes. This is the output of the protocol. 
This step again relies on Beaver’s multiplication protocol. (C) At the end of the protocol, the two 
clouds send back their shares of the output to the client, who adds them together to learn the top 
10 genes most correlated with their phenotypes.  
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