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Abstract

Motivation: Here we investigate deep learning-based prediction of protein secondary structure from the
protein primary sequence. We study the function of different features in this task, including one-hot
vectors, biophysical features, protein sequence embedding (ProtVec), deep contextualized embedding
(known as ELMo), and the Position Specific Scoring Matrix (PSSM). In addition to the role of features,
we evaluate various deep learning architectures including the following models/mechanisms and certain
combinations: Bidirectional Long Short-Term Memory (BiLSTM), convolutional neural network (CNN),
highway connections, attention mechanism, recurrent neural random fields, and gated multi-scale CNN.
Our results suggest that PSSM concatenated to one-hot vectors are the most important features for the
task of secondary structure prediction.
Results: Utilizing the CNN-BiLSTM network, we achieved an accuracy of 69.9% and 70.4% using ensemble
top-k models, for 8-class of protein secondary structure on the CB513 dataset, the most challenging
dataset for protein secondary structure prediction. Through error analysis on the best performing model,
we showed that the misclassification is significantly more common at positions that undergo secondary
structure transitions, which is most likely due to the inaccurate assignments of the secondary structure
at the boundary regions. Notably, when ignoring amino acids at secondary structure transitions in the
evaluation, the accuracy increases to 90.3%. Furthermore, the best performing model mostly mistook
similar structures for one another, indicating that the deep learning model inferred high-level information
on the secondary structure.
Availability: The developed software called DeepPrime2Sec and the used datasets are available at
http://llp.berkeley.edu/DeepPrime2Sec.
Contact: mofrad@berkeley.edu

1 Introduction
Proteins are macromolecules that are crucial elements for the structure
and function of cells with a wide array of responsibilities including
structural support, intra- and inter-cellular transport, catalytic activity,
defense against bacteria and viruses, muscle contraction, signaling and

regulation. Proteins accomplish their diverse functions in interactions
with their environments, which can be other macromolecules (such as
proteins, DNA, or RNA), chemical compounds, or factors such as the
pH or temperature Clark and Radivojac (2011); Cooper et al. (2000).
Proteins are polymers of small molecules called amino acids, of which
there are 20 different types, represented by the characters {A, C, D, E,
F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}, plus 4 letters indicating
ambiguities: B instead of {N − or − D}, J instead of {I − or − L},
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2 Asgari et al.

Z instead of {E − or − Q}, and X as an completely unknown amino
acid. Protein sequences can be as large as chains of 10Ks amino acids1;
meaning that the space of possible protein sequences is very large. Proteins
fold to form a particular three-dimensional structure. It has been proven
that the protein’s linear sequence can determine their tertiary structures
(3D structure) Cooper et al. (2000). The functions of proteins are highly
tied to their 3D structures. Hence, a protein sequence should theoretically
hold enough information determining its function. However, finding a
mapping from the protein primary sequence to the structure is one of the
open challenges in molecular biology Hunter (1993); Cooper et al. (2000).
The large gap between the number of known protein sequences (UniProt
database contains 116 million protein sequences to date) and the number of
known protein 3D structures (Protein Databank contains only 142K entries
for protein 3D structures to date) motivates computational methods and
in particular machine learning methods predicting structural information
from the protein primary sequences. Protein structure can be described
at three main levels: (i) primary structure referring to a linear sequence
of amino acids, (ii) secondary structure referring to the structure of the
local segments of the protein sequence categorized into 8 of secondary
structures, and (ii) tertiary structure referring to the 3D structure of
protein macromolecules. In this work, we focused on predicting protein
secondary structure from the primary sequences.

Protein secondary structure prediction can be viewed as a sequence
labeling machine learning task type, i.e. assigning a categorical label
yt ∈ Y to each element of a sequence of input elements, xt ∈ X , where t
indicates the position in the sequence. There exist eight possible secondary
structure categories (Q8 labeling) for each amino acid at position t in the
sequence: the 3-10 helix (G), α helix (H), π helix (I), turn (T), β sheet
(E), β bridge (B), bend (S), and loop (L). A simpler labeling scheme is Q3,
where the categories are divided into three main classes: helix, strand,
and loop/coil. Finding the protein secondary structure is an important
step toward the understanding of the protein folding and subsequently
its structure and function Zhou and Karplus (1999); Ozkan et al. (2007).
Thus, it can be vital for a variety of protein informatics problem settings,
e.g., protein sequence alignment Zhou and Zhou (2005); Deng and Cheng
(2011), identification of disease-causing mutations Folkman et al. (2015),
and protein function annotation Taherzadeh et al. (2016).

Secondary structure prediction is one of the primary tasks in protein
informatics Yang et al. (2016). Traditional protein secondary structure
prediction include rule-based Chou and Fasman (1974) methods as well as
machine learning approaches using amino acid context-based Finkelstein
and Ptitsyn (1971) and evolution/alignment-based representations Zvelebil
et al. (1987); Hua and Sun (2001). Recently, with the popularity of
neural network approaches, similar to many machine learning prediction
tasks, different neural network architectures have been proposed for the
protein secondary structure prediction from the primary sequences. To
the best of our knowledge, all of these architectures have been mainly
used on top of a set of fixed features (PSSM and one-hot vector) and
mostly on a fixed predictive model in each work. The most challenging
dataset for this task has been the 8-way secondary structure prediction
using the CullPDB dataset as training and CB513 as the test set Sønderby
and Winther (2014). Different deep learning architectures proposed for
this task includes: (i) deep Convolutional Generative Stochastic Network,
obtaining a test accuracy of 66.4% Zhou and Troyanskaya (2014), (ii)
Long Short-Term Memory (LSTM) recurrent neural network, obtaining
test accuracy of 67.4% Sønderby and Winther (2014), (iii) Convolutional
neural fields achieving a test accuracy of 68.3%Wang et al. (2016), (iv) bi-
directional LSTM with/without conditional random field (CRF) Johansen
et al. (2017); Jurtz et al. (2017), obtaining a test accuracy of 69.4% and

1 based on sequence lengths on UniProt

68.5% respectively, (v) gated Multi-scale convolutional neural network
(multi-scale CNN) Zhou et al. (2018) with a test accuracy of 69.3% and
70.3%.

The main contributions of the present work are 4-fold, namely (i) we
provide a systematic comparison of representations that can be used for the
secondary structure prediction task. (ii) We provide a comparison of several
important deep learning architectures for this task in order to find the best
performing model. (iii) we provide the community with a framework for
advancing deep learning techniques in the area of secondary structure
prediction, called DeepPrime2Sec (iv) We perform a detailed analysis of
the location and classes of errors.

We first implement one of the state-of-the-art neural architecture for
sequence labeling tasks in different domains (e.g., proteomics Jurtz et al.
(2017), natural language processing Lample et al. (2016); Taslimipoor and
Rohanian (2018); Rohanian et al. (2019)). Subsequently, we investigate
the role of different features in the performance of protein secondary
structure prediction. In particular, we utilize five sets of features and
their combinations: (i) one-hot vector representation, (ii) biophysical
scores of amino acids, (iii) amino-acid protein vectors, (iv) recently
introduced contextualized embeddings, and (v) Position-Specific Scoring
Matrix (PSSM). Secondly, for the best feature set in the preceding step,
we investigate the performance of different deep learning architectures
for the task of secondary structure, including convolutional-recurrent
neural network (with and without conditional random field layer), highway
connections, attention mechanism, and multi-scale CNN models. Our
results confirm that PSSM is the most informative feature for the protein
secondary structure, and other features only result in slight improvements
when they are combined with PSSM. Error analysis indicates that errors
are mostly occurring at positions were transitions between successive
secondary structure elements occur. We provide the Prime2Sec code for
further investigations.

2 Materials and Methods

2.1 Datasets

Secondary structure prediction dataset: Several benchmark datasets
exist in the literature of protein secondary structure prediction. The most
challenging dataset based on the maximum achieved accuracy using
machine learning approaches is the CullPDB dataset, which consists
of 5,534 protein sequences (CullPDB-train) for training and 513 non-
redundant sequences (CB513) for test purpose Zhou and Troyanskaya
(2014), in which sequences with more than 25% sequence identity to
training data entries were removed from the validation set.

The label for each position is selected from the Q8 scheme (explained in
§ 1). We used as performance metric accuracy, which is the most common
metric for the evaluation of protein secondary structure predictors over the
filtered CB513. Accuracy can be defined as the ratio of correctly predicted
secondary structures in amino acid level.

UniRef50 dataset for ELMo training: We use UniRef50 collection as the
training data to learn the contextualized embeddings. The primary purpose
of using this dataset instead of the whole Swiss-Prot or UniProt has been to
avoid having redundant sequences in the test set. We use 90% of sequences
for training and 10% for test purpose.

Swiss-Prot for ProtVec training: As we proposed in Asgari and Mofrad
(2015); Asgari et al. (2019) for the training of ProtVec embedding, we use
the whole Swiss-Prot dataset containing 600Kprotein sequences.
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2.2 Approach

First, to investigate the effect of different representations on secondary
structure prediction performance, we fix the predictive model and
investigate the accuracy under representation changes. For this purpose,
we re-implement the state-of-the-art architecture for sequence labeling
tasks, i.e., convolutional bidirectional LSTM model Johansen et al. (2017).
The general architecture used for secondary structure in this paper is
illustrated in 1 (a). Secondly, we examine the impact of several deep
learning architectures on top of the best feature set obtained in the first step.
Thirdly, we create an ensemble predictor on the best performing models.
Finally, we present an error analysis of the misclassification locations
and confusing secondary structure categories. The experiment steps are
detailed as follows.

Investigation on the contribution of features in protein
secondary structure prediction

We experiment on five sets of protein features to understand what are
essential features for the task of protein secondary structure prediction.
Although in 1999, PSSM was reported as an important feature to the
secondary structure prediction Jones (1999), this was still unclear whether
recently introduced distributed representations can outperform PSSM in
such a task. For a systematic comparison, the features detailed as follows
are used:

•One-hot vector representation (length: 21): vector representation
indicating which amino acid exists at each specific position, where each
index in the vector indicates the presence or absence of that amino acid.

•ProtVec embedding (length: 50): representation trained using Skip-
gram neural network on protein amino acid sequencesAsgari and
Mofrad (2015); Asgari et al. (2019), detailed in §2.2. The only difference
would be character-level training instead of n-gram based training.

•Contextualized embedding (length: 300) : we use the contextualized
embedding of the amino acids trained in the course of language
modelingPeters et al. (2018), known as ELMo, as a new feature
for the secondary structure task. Contextualized embedding is the
concatenation of the hidden states of a deep bidirectional language
model. The main difference between ProtVec embedding and ELMO
embedding is that the ProtVec embedding for a given amino acid or
amino acid k-mer is fixed and the representation would be the same in
different sequences. However, the contextualized embedding, as it is
clear from its name, is an embedding of word changing based on its
context. We train ELMo embedding of amino acids using UniRef50
dataset in the dimension size of 300.

•Position Specific Scoring Matrix (PSSM) features (length: 21):
PSSM is amino acid substitution scores calculated on protein multiple
sequence alignment of homolog sequences for each given position in
the protein sequence.

•Biophysical features (length: 16) For each amino acid we
create a normalized vector of their biophysical properties, e.g.,
flexibility Vihinen et al. (1994), instability Guruprasad et al. (1990),
surface accessibility Emini et al. (1985), kd-hydrophobicity Kyte and
Doolittle (1982), hydrophilicity Hopp and Woods (1981), and etc.

Feature combinations: We start from using single features and then
greedily use the best combinations. Since the PSSM features have a
significant contribution in improving the accuracy, we select then for every
combination of length two feature sets and more. We perform an extensive
parameter tuning of the network hyper-parameters (LSTM size, CNN filter
sizes, etc.) for each feature combination.

Data augmentation for the best set of features: as later will the reader
will see in the results, the combinations of one-hot and PSSM lead

to the best performance on the test set. Since PSSM has information
about the possible substitution of amino acids in the homolog sequences
and homologous sequences are likely to have similar functions and
structures, we come up with the idea of generating more data points using
PSSM feature (based on most possible mutations) and test it as a data-
augmentation policy. This way, we produce ten possible samples from
each training instance by changing the amino acid (or more accurately
keeping PSSM the same and change the one-hot by sampling from PSSM
vector).

Deep learning models for protein secondary structure
prediction

In addition to investigation on the relevant features, we use different deep
learning architectures on top of the selected feature in §2.2 and examine
the role of architecture for the protein secondary structure prediction. In a
general notation, each sequence labeling task can be viewed as assigning
a sequence of labels Y = (y1, y2, . . . , yT ) to the chain of elements in a
given input sequence X = (x1, x2, . . . , xT ). Using neural architectures,
we look for Y∗ maximizingPθ(Y|X).Pθ is parameterized using a softmax
function:

P (Y|X) =
exp (S(X,Y))∑
Y′ exp (S(X,Y′))

,

whereS is a score function computed through a neural network relating
the input X to the output Y. The difference between different models is in
the neural architecture parametrizing the S. We study the use of various
deep learning architectures to produce S described as follows.

(a) CNN-BiLSTM Model: As the CNN-BiLSTM model is illustrated
in Figure 1 (a), firstly convolutional filters of different window sizes
are applied on the input features, creating feature maps of different
neighborhoods. Then the feature maps are concatenated. The resulting
vector encodes the representation of different context sizes around each
amino acid in the protein sequence. Batch normalization is used to
increase the stability of training Ioffe and Szegedy (2015). Subsequently,
a fully-connected neural network projects the result into a dense vector.
In order to avoid over-fitting, dropout is used Srivastava et al. (2014).
Up to this point we encoded a sequence of amino acid features vectors
X = (x1, x2, . . . , xT ) into a dense vector V = (v1,v2, . . . ,vT ) using
a convolutional and feedforward neural network, which is enriched on
local information at each position t. However, vt does not encode global
information about the sequence. A long Short-term Memory Network
(LSTM) Hochreiter and Schmidhuber (1997), which is designed to capture
long-range dependencies, encodes the sequence information. The LSTM
creates an encoding

−→
ht of the left context of the protein at position t.

Since both left and right contexts can be crucial for the global structure
of proteins, we use a bi-directional LSTM (or shortly BiLSTM network).
The Bi-LSTM encodes each position into a representation of left and right
contexts ht = [

−→
ht;
←−
ht]. Utilizing feedforward layers (with dropout) on

top of ht, we create a vector Φ with a length of the number of possible
target labels (|Y | = 8). Φt can be regarded as S(xt, y). Applying a
softmax function on the score vector S, the label with the maximum value
in S is chosen.

(b) CNN-BiLSTM with Highway Connections: the importance of
PSSM features in the secondary structure prediction motivates a more
direct application of this representation in the last layer as a highway
connection He et al. (2016). We concatenated the output of BiLSTM ht

with the highway connection to batch-normalized PSSM feature.
(c) CNN-BiLSTM with Conditional Random Field (CRF) layer: in
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4 Asgari et al.

some natural language processing sequence labeling tasks where there
is a complex dependency between neighbor labels, e.g., named entity
recognition tasks, using a conditional random field layer on top of
the recurrent neural network enhances the prediction power by adding
constraints to the final predicted labels Lample et al. (2016). A similar
idea has been applied in Johansen et al. (2017) to the protein secondary
structure prediction. In this model, instead of parametrizing the S only
with the output of the Bi-LSTM model, we use a CRF layer to consider
the transition probability between neighboring labels as well:

S(X,Y) =
∑
t

log Φ(yt, xt) + logψ(yt−1 → yt),

where Φ comes from the output of the BiLSTM and the subsequent
feedforward layer and the ψ(yt−1 → yt) is the potential function in
the CRF model.

d) CNN-BiLSTM with Attention layer: another approach for defining
S is to write it as the weighted average of all LSTM hidden states. This
way, we would allow the model to benefit from the weighted long-term
dependencies (global context of the current amino acid). The modification
is shown in Figure 1 (d):

htj = tanh(hTt Wt + hTj Wc + bt)

etj = σ(hTtjW + b)

atj =
exp(etj)∑
j∈T exp(etj)

ct =
∑
j∈T

atjhtj

St = ReLU(cTt Ws + bs)

where ht,j is the contribution of each previous and future LSTM steps in
the current state, and at,j is the normalized step’s contributions (attention
weight), which is used to weight the LSTM h′xs . The final encoding for
the time twould be ct instead of ht. Finally a non-linear transformation of
ct creates a vector in size of the targets (8 classes) representing the score
function S.

(e) CNN: An alternative architecture for this task would be the pure use
of the convolutional neural network on the sequence axis (the order in
the sequence) to capture local information for prediction on the secondary
structure.
(f) Multiscale-CNN with a highway connection: we implemented one
of the state-of-the-art architectures proposed in Zhou et al. (2018) as part
of DeepPrime2Sec, which uses a gated version of stacked CNNs. The
ultimate output of each convolutional layer would be a gated version of its
input and the convolutional result as depicted in Figure 1 (f):

ot = zt ∗ ct + (1− zt) ∗ ot−1

zt = σ(oTt−1Wz + b)

o0 = input,

where ct is the result of the tth convolutional layer, ot is the out of
gating between the previous and the current convolutions. In the first layer,
O0 is the same as the input layer.
Ensemble of the best models: similar to previous work, to improve this
performance further using “Wisdom of Crowds principle”, we produced an
ensemble classifier on the top-k classifiers (k=5,10,20,50,100) and predict
on the test set by voting.

3 Results

3.1 Results on the role of features in secondary structure
prediction

Single features: The performance of protein secondary structure
prediction using different combinations of features is provided in Table 1.
When we used single feature sets, PSSM features performed substantially
better than other features. Even recent deep learning-based representations
were far behind. PSSM is amino acid substitution scores calculated on
protein multiple sequence alignment of homolog sequences for each given
position in the protein sequence. This result confirms that evolution
has very important information for defining the protein structure. One-
hot vector encoding performed similar to other amino-acid embedding
approaches (ELMo, ProtVec, and biophysical features). The reason
behind can be that the one-hot vectors and protein embeddings are acting
complementary to each-other; one-hot vector representation increases
the precision about the specific residue at position t, while embedding
blurs this information by providing information about the context of this
amino acid. Among the embedding methods, ELMo embedding worked
marginally better than other approaches, as it has information about long-
term past and future of the sequence, i.e., having information on a more the
global context) in comparison to ProtVec, which only includes information
about a local context within a certain context size.
Combination of features: The second set of rows in Table 1 shows the
combinations of features with PSSM (the best performing feature) starting
from combinations of two types up to five feature types. We also optimized
the hyperparameters (network sizes and parameters). The combination of
one-hot and PSSM turned out to be the most effective representation, while
using combination of features did not substantially improve the accuracy
further. A reason could be that the PSSM implicitly already includes
information about the biophysical and contextual features, at least as much
as needed for the protein secondary structure prediction, more than other
embedding approaches. Further tuning of the convolution window sizes
resulted in the accuracy of 69.9% (Table 1).
Data augmentation: Although augmenting the dataset by keeping the
PSSM and generating more one-hots made the training dataset 10x larger;
the performance could not be improved further 1. Next, we generate ten
instances from each test instance and used the best model to predict 10
secondary structures for each position, based on the augmented test set
and take the majority vote. This idea also did not boost performance. We
conclude that the most important feature to this task is the PSSM, and
we need to find a way to perform augmentation on this feature for further
performance improvements.

3.2 Results on comparison of deep learning architectures
in protein secondary structure prediction

The results on secondary structure prediction for different deep learning
architectures using the best feature set (i.e., the combination of PSSM
and one-hot representation, see §3.1) is provided in Table 2. Using only
BiLSTM and only CNN, we could achieve accuracies of 67.1% and
68.1%, respectively. Combination of CNN and BiLSTM led to the best
observed accuracy of 69.9%. Adding the CRF layer, attention layer, and
the highway connection did not further improve the performance. From
this, we may conclude that the LSTM hidden states stored sufficient
information, ensuring to provide a logical sequence of labels. The
previously reported performances on the CB513 are also provided in
Table 2. The CNN-BiLSTM architecture outperformed all, except for
the CNNH_PSS model. Based on the provided implementation and
descriptions in the Zhou et al. (2018), we attempted to reproduce the
architecture and the results in the DeepPrime2Sec. However, using this
architecture, we could not obtain better accuracy than 68.0%.
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Fig. 1: Different deep learning architectures implemented and evaluated in DeepPrime2Sec are provided as follows: (a) CNN-BiLSTM, The central neural
architecture we used for protein secondary structure; (b) The modification of the model (a) with adding highway connection to the CNN-BiLSTM for a
more direct use of PSSM features; (c) The modification of the model (a) by adding a CRF layer to consider label consistency in the prediction; (d) The
modification of the model (a) by adding an attention layer to the output of LSTM for considering a more global context; (e) Solely using convolutional
layer (f) Multiscale convolutional neural network benefiting from a gating mechanism (as proposed in Zhou et al. (2018)).

Ensemble predictor: To further improve this performance, we produced
an ensemble classifier on top-k classifiers (k=5,10,20,50,100) resulting in
the accuracy of 70.4 (Table 1) outperforming the 70.3 the state-of-the-art
performance Zhou et al. (2018).

Location analysis of misclassified amino acids: Predicting the secondary
structure of amino acids at the transition points (transition between two
distinct secondary structure) can be tricky. We had the hypothesis that

transition positions may have a larger chance of misclassification, as even
the ground-truth quality can be lower in these states Yang et al. (2016).
To study the effect of amino acid position in the misclassifications, we
performed statistical tests to determine whether the misclassification event
is dependent or independent of locating to the boundaries of the secondary
structures in the CB513 target labels. We performed both χ2 and log-
likelihood ratio (i.e., the G-test) tests and found that the misclassification
highly depends on being at the transition location (the p-values on both
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Table 1. Protein secondary structure prediction results using (i) different feature types, (ii) their combinations, (iii) extensively tuned hyperparameters for the best
feature sets, (iv) the data augmentation are presented.

Representation Convolution filters LSTM input/hidden/output CB513 Q8 accuracy

(i) Single Features
Biophysical features (16D) [3, 5, 7], 16x 400 - 800 - 400 0.573
ELMo embedding (300D) [3, 5, 7], 128x 400 - 800 - 400 0.577
ProtVec embedding (50D) [3, 5, 7], 128x 400 - 800 - 400 0.573
PSSM (21D) [3, 5, 7], 128x 400 - 800 - 400 0.694
One-hot (21D) [3, 5, 7], 16x 200 - 400 - 200 0.575

(ii) Combinations of top features
Biophysical features & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.697
ELMo & PSSM [3, 5, 7], 256x 400 - 800 - 400 0.692
ProtVec embedding & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.696
One-hot & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.698

Biophysical features & ELMo & PSSM [3, 5, 7], 256x 400 - 800 - 400 0.692
Biophysical features & ProtVec embedding & PSSM [3, 5, 7], 256x 500 - 1000 - 500 0.694
Biophysical features & one-hot & PSSM [3, 5, 7], 256x 2000 - 1000 - 2000 0.699
ELMo & ProtVec embedding & PSSM [3, 5, 7], 256x 400 - 800 - 400 0.692
ELMo & one-hot & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.692
ProtVec embedding & one-hot & PSSM [3, 5, 7], 128x 400 - 800 - 400 0.694

Biophysical features & ELMo & ProtVec embedding & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.69
Biophysical features & ELMo & one-hot & PSSM [3, 5, 7], 256x 500 - 1000 - 500 0.693
Biophysical features & ProtVec embedding & one-hot & PSSM [3, 5, 7], 256x 500 - 1000 - 500 0.694
ELMo & ProtVec embedding & one-hot & PSSM [3, 5, 7], 256x 500 - 1000 - 500 0.692

Biophysical features & ELMo & ProtVec embedding & one-hot & PSSM [3, 5, 7], 256x 1000 - 1000 - 1000 0.692

(iii) Parameter tuning for the selected features
One-hot & PSSM [3, 5, 7, 11, 21], 256x 1000 - 1000 - 1000 0.699

(iv) Data augmentation for the selected parameter setting
Augmented one-hot & PSSM in training [3, 5, 7, 11, 21], 256x 1000 - 1000 - 1000 0.692

Augmented one-hot & PSSM in testing [3, 5, 7, 11, 21], 256x 1000 - 1000 - 1000 0.68

Table 2. Protein secondary structure prediction results on different deep learning architectures implemented in DeepPrime2Sec, on top of the combination of PSSM
and one-hot representation and the ensemble of their top-k models are shown and compared to the state-of-the-art approaches on the CB513 test set.

DeepPrime2Sec Neural networks Q8 accuracy - CB513

CNN 68.1%

BiLSTM 67.5%

CNN-BiLSTM 69.9%
CNN-BiLSTM-CRF 69.0%

CNN-BiLSTM with highway connection 69.6%

CNN-BiLSTM with attention layer 69.2%

Muliscale CNN with highway connection 68.0%

Ensemble of top neural networks/features
Ensemble of 5 neural networks 70.3%

Ensemble of 10 neural networks 70.2%

Ensemble of 20 neural networks 70.3%

Ensemble of 50 neural networks 70.3%

Ensemble of 100 neural networks 70.4%
Previously reported performances in the literature
Zhou & Troyanskaya Zhou and Troyanskaya (2014) 2014 (CNN) 66.7%

Sønderby & Winther Sønderby and Winther (2014) 2014 (LSTM) 67.4%

Wang et al Wang et al. (2016) 2016 (Convolutional neural fields) 68.3%

Johansen et al Johansen et al. (2017) 2017 (biRNN-CRF) 69.4%

Johansen et al Johansen et al. (2017) 2017 (biRNN) 68.5%

Zhou et al Zhou et al. (2018) 2018 (Multi-scale CNN) 69.3%

Zhou et al Zhou et al. (2018) 2018 (Multi-scale CNN) 70.3%
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(a) Confusion matrix of the best model
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(b) Normalized confusion matrix of the best model

Fig. 2: The confusion matrices of the best performing predictor for protein secondary structure prediction on the test data (on CB513) are provided. Figure
(a) shows the standard confusion matrix. However, since the secondary structures are not balanced, for better visualization class confusions, we have l1
normalized the rows in figure (b).

Table 3. Contingency table for location analysis of the misclassified amino acids

m
is

cl
as

si
fie

d

Located at the PSS2 transition
True False

True
#
22615

#
3002

False
#
31156

#
27992

χ2- and G- tests were ≈ 0). The underlying contingency table is shown
in Table 3. Surprisingly, if we omit amino-acids at the borders from the
evaluation, the Q8 accuracy would increase to 90.3%.

A categorical analysis of the misclassified amino acids: The confusion
matrix and l1 normalized confusion matrix for the best performing model
using the combination of PSSM and one-hot vector in CNN-BiLSTM
architecture are presented in Figure 2 (a) and (b) respectively. Since
the protein secondary structure problem setting is relatively imbalanced,
the normalized confusion matrix in Figure 2 (b) can more clearly show
which classes are relatively confused with each other. The most common
secondary structure classes of the alpha helix (H), loop (L), beta sheet
(E) were predicted accurately. The classes of bend (B), turn (T) were
considerably confused with loop (L), which makes sense, as these classes
are similar to each-other and loop (L) is the most frequent one among
them. As expected based on structural similarities, bend (S), turn (T), and
loop (L) as well as 3-10 helix (G) and alpha helix (H) were also highly
confused.

4 Discussions and Conclusion
We studied the machine learning-based protein secondary structure
prediction approaches from the protein primary sequence. We focused
on finding an optimal representation and deep learning predictive model
for this task. The most challenging dataset for this task to-date is
Q8 (8 classes) on CullPDB/CB513 dataset, where the dissimilarity of

training and test set is ensured. We investigated (i) different protein
sequence representations including one-hot vectors, biophysical features,
protein sequence embedding (ProtVec), deep amino acid contextualized
embedding (ELMo), and the Position Specific Scoring Matrix (PSSM),
(ii) different deep-learning architectures including convolutional neural
networks (CNN), recurrent neural networks (in particular Bi-LSTM),
use of highway connection, attention mechanism, and multi-scale CNN
Zhou et al. (2018). We showed that PSSM and its combination with
one-hot vectors achieve the best performance in protein secondary
structure prediction. The best performing model was the CNN-BiLSTM
architecture, which captures both local and global sequence features
essential for proteins secondary structure. We explored data augmentation
of one-hot vector based on the PSSM, which was not successful. A future
direction could be exploring possible data augmentation schemes of PSSM
features.

DeepPrime2Sec provides the community with a deep learning tool
specialized for the protein secondary structure prediction covering
different architectures. The BiLSTM-CRF architecture performs
competitive to the other existing approach in the literature, and the
ensemble of the best performing model in Prime2Sec marginally
outperforms the existing methods.

In addition, we performed error analysis on the most accurate model
based on the location of misclassified amino acids as well as the
confusion matrix analysis. Strikingly, misclassified secondary structures
were significantly correlated with locating at the structural transitions.
Such a correlation is most likely due to the inaccurate assignment of
the secondary structure at the boundaries in ground-truth Yang et al.
(2016). By ignoring the boundary amino acids from the evaluation, the
Q8 accuracy would increase for an extra 20%, i.e., 90.3%. Analysis of the
confusion matrix furthermore indicates that similar secondary structures
are highly confusing (helices: H and G as well as unstructured regions: S,
T, and L) showing that the model can learn high-level information about
the secondary structures. Even if the exact secondary structure was not
predicted, the predicted structure is similar to the target structure.
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