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Abstract

Motivation: In recent years, numerous applications have demonstrated the
potential of deep learning for an improved understanding of biological processes.
However, most deep learning tools developed so far are designed to address a
specific question on a fixed dataset and/or by a fixed model architecture.
Adapting these models to integrate new datasets or to address different
hypotheses can lead to considerable software engineering effort. To address this
aspect we have built Janggu, a python library that facilitates deep learning for
genomics applications.

Results: Janggu aims to ease data acquisition and model evaluation in multiple
ways. Among its key features are special dataset objects, which form a unified
and flexible data acquisition and pre-processing framework for genomics data that
enables streamlining of future research applications through reusable
components. Through a numpy-like interface, dataset objects are directly
compatible with popular deep learning libraries, including keras. Furthermore,
Janggu offers the possibility to visualize predictions as genomic tracks or by
exporting them to the BIGWIG format. We illustrate the functionality of Janggu
on several deep learning genomics applications. First, we evaluate different model
topologies for the task of predicting binding sites for the transcription factor
JunD. Second, we demonstrate the framework on published models for predicting
chromatin effects. Third, we show that promoter usage measured by CAGE can
be predicted using DNase hypersensitivity, histone modifications and DNA
sequence features. We improve the performance of these models due to a novel
feature in Janggu that allows us to include high-order sequence features. We
believe that Janggu will help to significantly reduce repetitive programming
overhead for deep learning applications in genomics, while at the same time
enabling computational biologists to assess biological hypotheses more rapidly.

Availability: Janggu is freely available under a GPL-v3 license on
https://github.com/BIMSBIbioinfo/janggu or via
https://pypi.org/project/janggu
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Background
The recent explosive growth of biological data particularly in the field of regulatory

genomics . have continuously improved our understanding about regulatory mecha-

nism in cell biology [1]. Meanwhile, the remarkable success of deep neural networks

in other areas, including computer vision, has attracted attention in computational

biology as well. Deep learning methods are particularly attractive in this case, as

they promise to extract knowledge from large datasets without the burden of ex-

tensive pre-processing and normalization [2]. Since their introduction [3, 4], deep

learning methods have dominated computational modeling strategies in genomics
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where they are now routinely used to address a variety of questions ranging from

the understanding of protein binding from DNA sequences [3], epigenetic modifica-

tions [4, 5, 6], predicting gene-expression from epigenetic marks [7], or predicting

the methylation state of single cells [8].

Depsite the success of these numerous deep learning solutions and tools, their

broad adaptation by the bioinformatics community has been limited. This is par-

tially due to the low flexibility of the published methods to adapt to new data, which

often requires a considerable engineering effort. This situation illustrates a need for

software frameworks that allow for a fast turnover when it comes to addressing new

hypotheses, integrating new datasets, or experimenting with new neural network

architectures.

In fact, several recent packages, including pysster [9], kipoi [10] and selene [11],

have been proposed to tackle this issue on different levels. However, they are limited

in their expressiveness due to the restricted programming interface [9], a focus on

reproducibility and reusability of trained models but not the entire training process,

[10] or the adoption of a specific neural network library through a tight integration

[11]. All of them have in common that the support of different data types beyond

sequence is limited.

To address some of these shortcomings, we have developed a novel python library

for deep learning in genomics, called Janggu. The library is identically named to

a Korean percussion instrument that is shaped like an hourglass and whose two

ends reflect the two ends of a deep learning application, namely data acquisition

and evaluation. The library supports flexible prototyping of neural network mod-

els by separating the pre-processing and dataset specification from the modelling

part. Accordingly, Janggu uses dedicated genomics dataset objects. These objects

provide easy access and pre-processing capabilities to fetch data from common file

formats, including FASTA, BAM, BIGWIG and BED files (see Fig. 1), and they

are directly compatible with commonly used deep learning libraries, such as keras.

In this way, they effectively bridge the gap between commonly used file formats in

genomics and the python data format that is understood by the deep learning li-

braries. The dataset objects can be easily reused for different applications, and they

place no restriction on the model architecture to be used with. A key advantage

of establishing reusable and well-tested dataset components is to allow for a faster

turnaround when it comes to setting up deep learning models and increased flexi-

bility for addressing a range of questions in genomics. As a consequence, we expect

significant reductions in repetitive software engineering aspects that are usually

associated with the pre-processing steps.

We illustrate Janggu on three use cases: 1) predicting transcription factor bind-

ing of JunD, 2) using and improving published deep learning architectures, and 3)

predicting normalized CAGE-tags counts at promoters. In these examples ,different

data formats are consumed, including FASTA, BIGWIG, BAM and narrowPeak

files. Here, we also make use of Janggu’s ability of using higher-order sequence

features (see Hallmarks), and show that this leads to significant performance im-

provements.
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Results
Hallmarks of Janggu

Janggu offers two special dataset classes: Bioseq and Cover, which can be used to

conveniently load genomics data from a range of common file formats, including

FASTA, BAM, BIGWIG or BED files. Biological sequences (e.g. from the reference

genome) and coverage information (e.g. from BAM, BIGWIG or BED files) are

loaded for user-specified regions of interest (ROI), which are provided in BED-like

format. Since Bioseq and Cover both mimic a minimal numpy interface, the objects

may be directly consumed using keras.

Bioseq and Cover provide a range of options, including the binsize, step size, or

flanking regions for traversing the ROI. The data may be stored in different ways,

including as ordinary numpy arrays, as sparse arrays or in hdf5 format, which

allow the user to balance the trade-off between speed and memory footprint of the

application. A built-in caching mechanism helps to save processing time by reusing

previously generated datasets. This mechanism automatically detects if the data

has changed and needs to be reloaded.

Furthermore, Cover and Bioseq expose dataset-specific options. For instance, cov-

erage tracks can be loaded at different resolution (e.g. base-pair or 50-bp resolu-

tion) or be subjected to various normalization steps, including TPM-normalization.

Bioseq also enables the user to work with both DNA and protein sequences. Here,

sequences can be one-hot encoded using higher-order sequence features, allowing

the models to learn e.g. di- or tri-mer based motifs.

Finally, Janggu offers a number of model evaluation and interpretation features:

1) Commonly used performance metrics can be directly used within the framework,

including the area under the receiver operator characteristic curve (auROC) or

the area under the precision-recall curve (auPRC). 2) Predictions obtained for any

deep learning library usually take the form of numpy arrays. These arrays can be

converted back to a coverage object, which eventually ensures that the user does not

have to maintain correspondences between two sets of indices, namely the numpy-

array indices and genomic intervals. Hence, the application can be phrased more

naturally in terms of genomic coordinates, and numpy-array indices are abstracted

away by Janggu. 3) Conversion to coverage objects also offers the possibility to

export predictions to BIGWIG format or to inspect the results directly via Janggu’s

built-in plotGenomeTrack function. 4) Input feature importance can be investigated

using the integrated gradients method [12] and 5) changes of the prediction score can

studied for single nucleotide variants taking advantage of the higher-order sequence

representation. A schematic overview is illustrated in Fig. 1. Further details on its

functionality are available in the documentation at https://janggu.readthedocs.io.

Prediction of JunD binding

To showcase different Janggu functionalities, we defined three example problems to

solve entirely within the framework. We start by predicting the binding events of

the transcription factor JunD. JunD binding sites exhibit strong interdependence

between nucleotide positions [13], suggesting that it might be beneficial to take the

higher-order sequence composition directly into account. To this end, we introduce

a higher-order one-hot encoding of the DNA sequence that captures e.g. di- or tri-

nucleotide based motifs. For example, for a sequence of length N , the di-nucleotide
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one-hot encoding corresponds to a 16×N−1 matrix, where each column contains a

single one in the row that is associated with the di-nucleotide at that position. We

shall refer to mono-, di- and tri-nucleotide encoding as order one, two and three,

respectively. In contrast to mono-nucleotide input features, higher-order features

directly capture correlations between neighboring nucleotides.

For JunD target predictions, we observe a significant improvement in area under

the precision recall curve (auPRC) on the test set when using the higher order se-

quence encoding compared to the mono-nucleotide encoding (see Fig. 2A, red). The

median performance gain across five runs amounts to ∆auPRC = 8.3% between

order 2 and 1, as well as ∆auPRC = 9.3% between order 3 and 1.

While the use of higher-order sequence features uncovers useful information for

interpreting the human genome, the larger input and parameter space might make

the model prone to overfitting, depending on the amount of data and the model

complexity. We tested whether dropout on the input layer, which randomly sets a

subset of ones in the one-hot encoding to zeros, would improve model generalization

[14]. Using dropout on the input layer should also largely preserve the information

content of the sequence encoding, as the representation of higher orders is inherently

redundant due to overlapping neighboring bases.

In line with our expectations, dropout leads to a slight further performance im-

provement for tri-nucleotide-based sequence encoding. On the other hand, for mono-

nucleotide-based encoding we observe a performance decrease. We observe similar

or slightly worse performance also when using di-nucleotide-based encoding, sug-

gesting that the model is over-regularized with the addition of dropout. However,

dropout might still be a relevant option for the di-nucleotide based encoding if the

amount of data is relatively limited (see Fig. 2A).

As many other transcription factors, JunD sites are predominately localized in

accessible regions in the genome, for instance as assayed via DNase-seq [15]. To

investigate this further, we set out to predict JunD binding from the raw DNase

cleavage coverage profile in 50 bp resolution extracted from BAM files of two inde-

pendent replicates simultaneously (from ENCODE and ROADMAP, see Methods).

Raw read coverage obtained from BAM files is inherently biased, e.g. due to dif-

ferences in sequencing depths etc., which requires normalization in order to achieve

comparability between experiments. As a complementary approach, data augmen-

tation has been shown to improve generalization of neural networks by increasing

the amount of data by additional perturbed examples of the original data points

[16]. Accordingly, we compare TPM normalization and Z score normalization of

log(count + 1) in combination with data augmentation by flipping the 5’ to 3’

orientation of the coverage tracks. To test the effectiveness of normalization and

data augmentation, we swapped the input DNase experiments from ENCODE and

ROADMAP between training and test phase. The more adequate the normalization,

the higher we anticipate the performance to be on the test set.

We find that both TPM and Z score after log(count + 1) transformation lead

to improved performance compared to applying no normalization, with the Z score

after log(count+1) transformation yielding the best results (see Fig. 2B). The addi-

tional application of data augmentation tends to slightly improve the performance

for predicting JunD binding from DNase-seq (see Fig. 2B).
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Next, we build a combined model for predicting JunD binding based on the DNA

sequence and DNase coverage tracks. To that end, we used the same initial layers

as for the order-3 DNA model and the DNase-specific models using Z score after

log(count + 1)-normalization with orientation flipping. We removed their output

layers, concatenated the top most hidden layers, and added a new sigmoid output

layer. We trained the joint model from scratch using randomly initialized weights

for all layers and found that its performance significantly exceeded the performance

of the individual DNA and DNase submodels, indicating that both ingredients con-

tributed substantially to the predictive performance (compare Fig. 2A-C).

As a means to inspect the plausibility of the results apart from summary per-

formance metrics (e.g. auPRC), Janggu features a built-in genome track plotting

functionality that can be used to visualize the agreement between predicted and

known binding sites, or the relationship between the predictions and the input cov-

erage signal for a selected region (Fig. 2D). Input importance attribution using

integrated gradients [12] additionally highlights the relevance of sequence features

for the prediction, which in the case of the JunD prediction task reveals sequence

patches reminiscent of the known JunD binding motif (with the canonical sequence

motif TGACTCA) close to the center of the predicted peak (Fig. 2D).

Predicting chromatin profiles from genomic sequences

Predicting the function of non-coding sequences in the genome remains a challenge.

In order to address this challenge and assess the functional relevance of non-coding

sequences and sequence variants, multiple deep learning based models have been

proposed. These models learn the genomic sequence features that give rise to chro-

matin profiles such as transcription binding sites, histone modification signals or

DNase hypersensitive sites. We adopted two published neural network models that

are designed for this purpose, which have been termed DeepSEA and DanQ [4, 17].

We rebuilt these models using the Janggu framework to predict the presence (or

absence) of 919 genomic and epigenetic features, including DNase hypersensitive

sites, transcription factor binding events and histone modification marks, from the

genomic DNA sequence. To that end, we gathered and reprocessed the same fea-

tures, making use of Janggu’s pre-processing functionality [4]. Both published mod-

els were adapted to scan both DNA strands simultaneously in the first layer rather

than just the forward strand as this leads to slight performance improvements (see

DnaConv2D layer, Janggu documentation). Then we assessed the performance of

the different models by considering different context window sizes (500bp, 1000bp

and 2000bp) as well as different one-hot encoding representations (based on mono-,

di- and tri-nucleotide content).

First, as reported previously [17], we confirm that the DanQ model consistently

outperforms the DeepSEA model regardless of the context window size, one-hot

encoding representation and features type (e.g. histone modification, DNase hyper-

sensitive sites and TF binding sites) (see Fig. S.1). Second, in line with previous

reports [6, 4], we find the performance for histone modifications and histone mod-

ifiers (e.g. Ezh2, Suz12, etc.) to benefit from extending the context window sizes

(see Fig. 3A and S.1) By contrast, elongating the context window yields similar

performance for accessible sites and transcription factor binding-related features.
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Third, higher-order sequence encoding influences predictions for histone modi-

fication, DNase and TF binding associated features differently. Histone modifica-

tion predictions tend to perform similarly for we observe similar performance for

higher-order and mono-nucleotide based one-hot encoding higher-order and mono-

nucleotide based one-hot encoding (see Fig. 3B,C). DNase accessibility shows slight

but consistent improvements where we observe a 4% auPRC gain for half of the

DNase features between the tri- and mono-nucleotide representation (see Fig. 3D).

Finally, for the majority of transcription factor binding predictions we find mild to

significant improvements where for 213 TFs we observe a least a 5% improvement

of auPRC and for 39 TFs at least a 10% auPRC improvement is observed (see

Fig. 3E). The most substantial performance improvements are obtained for Pol3

(auPRC improved by 70.2%) and Nrsf (auPRC improved by 34.6%) (see Fig. 3B).

Predicting CAGE-signal at promoters

Finally, we used Janggu for the prediction of promoter usage of protein coding genes.

Specifically, we built a regression application for predicting the normalized CAGE-

tag counts at promoters of protein coding genes based on chromatin features (DNase

hypersensitivity and H3K4me3 signal) and/or DNA sequence features. Due to the

limited amount of data for this task, we pursue a per-chromosome cross-validation

strategy (see Methods).

We trained a model using only the DNA sequence as input with different one-hot

encoding orders. Consistent with our JunD prediction analysis, we observe that

the use of higher-order sequence features markedly improves the average Pearson’s

correlation from 0.533 to 0.559 and 0.585 for mono-nucleotide features compared

to di- and tri-nucleotide based features, respectively (see Tab. 1). Predictions from

chromatin features alone yield a substantially higher average Pearson’s correlation

of 0.777 compared to using the DNA sequence models (see Tab. 1).

Similar to the previous sections, we concatenate the individual top most hidden

layers and add new output layer to form a joint DNA and chromatin model. Consis-

tent with our results from the JunD prediction, the Pearson’s correlation between

observed and predicted values increases for the combined model (see Tab. 1 and

Fig. 4), even though the difference seems to be subtle in this scenario. The results

also show that chromatin features vastly dominate the prediction accuracy com-

pared to the contribution of the DNA sequence. This is expected due to the fact

that the DNA sequence features are collected only from a narrow window around

the promoter. On the other hand, the chromatin features reflect activation not only

due to the local context, but also due to indirect activation from distal regulatory

elements, e.g. enhancers.

Discussion
We present a novel python library, called Janggu, that facilitates deep learning in ge-

nomics. The library includes dataset objects that manage the extraction and trans-

formation of coverage information as well as fetching biological sequence directly

from a range of commonly used file types, including FASTA, BAM or BIGWIG.

These dataset objects may be consumed directly with numpy-compatible deep learn-

ing libraries, e.g. keras, due to the fact that they mimic a minimal numpy interface,
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which in turn reduces the software engineering effort concerning the data acqui-

sition for a range of deep learning applications in genomics. Janggu additionally

facilitates utilities to monitor the training, performance evaluation and interpreta-

tion. For example, model prediction or features can be inspected using a built-in

genome browser or they may be exported to BIGWIG files for further investigation.

Input feature importance can be analyzed using integrated gradient and variant ef-

fects may assessed for a given VCF format file.

We have demonstrated the use of Janggu for three case studies 1) that required

different file formats (FASTA, BAM, BIGWIG, BED and GFF), 2) different pre-

processing and data augmentation strategies, 3) that demonstrated the advantage

of one-hot encoding of higher-order sequence features (representing mono-, di-, and

tri-nucleotide sequences), 4) for a classification and regression task (JunD prediction

and published models) and a regression task (CAGE-signal prediction) and utilizing

per-chromosome cross-validation. This illustrates our tool is readily applicable and

flexible to address a range of questions allowing users to more effectively concentrate

on testing biological hypothesis.

Throughout the use cases we confirmed that higher-order sequence features im-

prove deep learning models, because they simultaneously convey information about

the DNA sequence and shape [18]. While, they have been demonstrated to outper-

form commonly used position weight matrix-based binding models [19], they have

received less attention by the deep learning community in genomics. Even though

mono-nucleotide-based one-hot encoding approach captures higher-order sequence

features to some extent by combining the sequence information in a complicated

way through e.g. multiple convolutional layers [13], our results demonstrate that it

is more effective to capture correlations between neighbouring nucleotides at the

initial layer, rather than to defer this responsibility to subsequent convolutional

layers.

Janggu also exposes variant effect prediction functionality, similar as Kipoi and

Selene [10, 11], that allow to make use of the higher-order sequence encoding.

Conclusion
We present Janggu, a novel python library that facilitates deep learning in genomics.

• Janggu provides reusable dataset components that can be used in a unified

and flexible way to set up deep learning applications in genomics in a variety

of ways, which we have demonstrated in this article.

• Coverage tracks from BAM, BIGWIG or BED can be transformed and nor-

malization. In addition, we have demonstrated that data augmentation might

further improve the generalization of models based on coverage data.

• Janggu introduces higher-order sequence encoding based on e.g. di- or tri-

nucleotides. We show that the new encoding generally improves the sequence

based models.

• Janggu provides a number of evaluation-centered utilities that facilitate the

interpretation of the models, including by inspection of the results in the built-

in genome browser or by exporting the results to BIGWIG files, by facilitating

integrated gradient to highlights important input features or by screening for

variants that potentially affect the features occurrence (e.g. TF binding). We
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expect improved accuracies for variant effect predictions through the use of

higher-order sequence encodings.

Methods
Dataset and Evaluation for JunD prediction

We downloaded JunD peaks (ENCFF446WOD, conservative IDR thresholded

peaks, narrowPeak format), and raw DNase-seq data (ENCFF546PJU, Stam. Lab,

ENCODE; ENCFF059BEU Stam. Lab, ROADMAP, bam-format) for human em-

bryonic stem cells (H1-hesc) from the encodeproject.org and the hg38 reference

genome.

We defined all chromosomes as training chromosomes except for chr2 and chr3

which are used as validation and test chromosomes, respectively. The region of

interest was defined as the union of all JunD peaks extended by 10kb with a binning

of 200 bp. Each 200bp-bin is considered a positive labels if it overlaps with a JunD

peak. Otherwise it is considered a negative example. For the DNA sequence, we

further extended the context window by +/- 150 bp leading to a total window size of

500 bp. Similarly, for the DNase signal, we extracted the coverage in 50 bp resolution

adding a flanking region of +/- 450 bp to each 200 bp window which leads to a

total input window size of 1100bp. Dataset normalization and data augmentation

was performed using Janggu dataset objects.

We implemented the architectures given in Table S.1 and S.2 for the individual

models. The individual submodels were combined by removing the output layer,

concatenating the top-most hidden layers and adding a new output layer.

Training was performed using a binary cross-entropy loss with AMSgrad [20] for

at most 30 epochs using early stopping monitored on the validation set with a

patience of 5 epochs. We trained each model 5 times with random initialization in

order to assess reproducibility. performance were measured on the independent test

chromosome using the area under the precision recall curve (auPRC).

Dataset and Evaluation of published models

Following the instructions of Zhou et. al [4], we downloaded the human genome hg19

and the same 919 features in narrowPeak format from ENCODE and ROADMAP

and implemented the neural network architecture accordingly using keras and

janggu.

All genomic regions used to train the original DeepSEA model (allTFs.pos.bed.tar.gz)

were downloaded from http://deepsea.princeton.edu/. Following their procedure, all

regions on chromosomes 8 and 9 were assigned to the test set, while the remaining

regions were used for training and validation.

We downloaded the narrowPeak files from the URLs listed in Supplementary table

1 of Zhou et. al [4], adapting broken links where necessary.

We implemented DeepSEA as described in Zhou et. al [4] and DanQ as described

in Quang et. al [17]. In addition, the models were adapted to scan both DNA strands

rather than only the forward strand using the DnaConv2D layer, available in the

Janggu library. For our investigation, we compared different context window sizes

500bp, 1000bp and 2000bp as well as mono-, di- and tri-nucleotide based sequence

encoding.
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The models were trained using AMSgrad [20] for at most 30 epochs using early

stopping with a patience of 5 epochs.

We evaluated the performance using the auPRC on the independent test regions.

Dataset and Evaluation for CAGE-tag prediction

For the CAGE-tag prediction we focused on human HepG2 cells. We downloaded

samples for CAGE (ENCFF177HHM, bam-format), DNase (ENCFF591XCX,

bam-format) and H3K4me3 (ENCFF736LHE, bigwig-format) from the ENCODE

project. Moreover, we used the hg38 reference genome and extracted the set of

all protein coding gene promoter regions (200 bp upstream from the TSS) from

GENCODE version V29 which constitute the ROI.

We loaded the DNA sequence using a +/- 350bp flanking window. For CAGE,

DNase and H3K4me3, we summed the signal for each promoter using flanking win-

dows of 400 bp, 200 bp and 200 bp to each dataset, respectively. The promoter

signals for each feature were subsequently log-transformed using a pseudo-count of

one and then Z score normalized.

The DNA and chromatin-based models are summarized in Tab. S.3 and S.4. Fur-

thermore, the joint model is built by concatenating the top most hidden layers

and adding a new output layer. We pursued a cross-validation strategies where we

trained a model on genes of all chromosomes but one validation autosome, repeating

the process for each autosome. Genes on chromosome 1 were left out entirely from

the cross-validation runs and were used for the final evaluation. The models were

trained using mean absolute error loss with AMSgrad [20] for at most 100 epochs

using early stopping with a patience of 5 epochs.

For the evaluation of the model performance, we used the Pearson’s correlation

between the predicted and observed CAGE-signal on the test dataset.

Software availability

Janggu is freely available using the pypi echosystem and via github under a GPL-

v3 license. A comprehensive documentation, including tutorials, can be found at

https://janggu.readthedocs.io.
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Figures

Tables

Table 1 Average Pearson’s correlation across the cross-validation runs between observed and
predicted normalized CAGE-counts. The models used either DNA or Chromatin (DNase and
H3K4me3) or both simultaneously as input. Furthermore, different one-hot encoding orders were
considered for the DNA sequence.

Model DNA order mean Pearson’s corr. Stand. Error
Chromatin only - 0.777 2.97× 10−5

DNA only 1 0.533 4.38× 10−3

DNA only 2 0.559 8.40× 10−3

DNA only 3 0.585 6.47× 10−3

DNA & Chromatin 1 0.775 6.01× 10−4

DNA & Chromatin 2 0.783 5.13× 10−4

DNA & Chromatin 3 0.784 5.15× 10−4

Additional Files
Additional file 1 — Sample additional file title

Additional file descriptions text (including details of how to view the file, if it is in a non-standard format or the file

extension). This might refer to a multi-page table or a figure.

Additional file 2 — Sample additional file title

Additional file descriptions text.
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Figure 1 Janggu schematic overview. Janggu helps with data aquisition and evaluation of deep
learning models in genomics. Data can be loaded from various standard genomics file formats,
including FASTA, BED, BAM and BIGWIG. The output predictions can be converted back to
coverage tracks and exported to BIGWIG files.
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D

Figure 2 Performance evaluation of JunD prediction. A) Performance comparison of different
one-hot encoding orders. Order 1, 2, and 3 correspond to mono-, di- and tri-nucleotide based
one-hot encoding, respectively. Order 1 and 2 refer to mono- and di-nucleotide based. B)
Performance comparison of different normalization and data augmentation strategies applied to
the read counts from the BAM files. Each experiment was conducted 3 times. We compared 1)
No normalization (”None”), 2) TPM normalization, and 3) Z score of log(count + 1). Moreover,
data augmentation consisted of 1) no augmentation (”none”) or 2) randomly flipping 5’ to 3’
orientations. Each experiment was conducted 5 times. C) Performance for JunD prediction for the
combined model. D) Example of a JunD binding site. The top most panel shows predicted, true
JunD binding site as well as the input DNase coverage around the peak. Underneath integrated
gradients further highlights the importance of a site reminiscent of the known JunD motif (Jaspar
motif: MA091.1).
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Figure 3 Comparison of DanQ model variants. A) auPRC comparison for the context window
sizes 500bp and 2000bp for tri-nucleotide based sequence encoding, respectively. The mark color
indicates the feature types, DNase hypersensitive sites, histone modifications and transcription
factor binding assays. B) auPRC comparison for tri- and mono-nucleotide based sequence
encoding for a context window of 2000bp. Color coding as above. C-E) Differences in auPRC
between tri- and mono-nucleotides for histone modifications, DNase accessibility and transcription
factor binding, respectively.

Figure 4 Agreement between predicted and observed CAGE signal. The example illustrates the
agreement between predicted and observed CAGE signal on the test chromsome for the joint
DNA-chromatin model with pre-trained weights and DNA tri-nucleotide based one-hot encoding.
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