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Abstract

The Bacteria Biotope (BB) task is biomedical relation extraction (RE) that aims to study
the interaction between bacteria and their locations. This task is considered to pertain to
fundamental knowledge in applied microbiology. Some previous investigations have used
feature-based models; others have presented deep-learning-based models such as convolutional
and recurrent neural networks used with the shortest dependency paths (SDPs). Although
SDPs contain valuable and concise information, sections of significant information necessary
to define bacterial location relationships are often neglected. In addition, the traditional
word embedding used in previous studies may suffer from word ambiguation across linguistic
contexts.

Here, we present a deep learning model for biomedical RE. The model incorporates feature
combinations of SDPs and full sentences with various attention mechanisms. We also used
pre-trained contextual representations based on domain-specific vocabularies. In order to
assess the model’s robustness, we introduced a mean F1 score on many models using different
random seeds. The experiments were conducted on the standard BB corpus in BioNLP-
ST’16. Our experimental results revealed that the model performed better (in terms of both
maximum and average F1 scores; 60.77% and 57.63%, respectively) compared with other
existing models.

We demonstrated that our proposed contributions to this task can be used to extract rich
lexical, syntactic, and semantic features that effectively boost the model’s performance.
Moreover, we analyzed the trade-off between precision and recall in order to choose the
proper cut-off to use in real-world applications.

Keywords Biomedical text mining - Relation extraction - Deep learning - Attention networks - Contextual
word embeddings - Domain-specific language

1 Introduction

Due to the rapid development of computational and biological technology, the biomedical literature is expanding
at an exponential rate [I]. This situation leads to difficulty manually extracting required information. In
BioNLP-ST 2016, the Bacteria Biotope (BB) task [2] followed the general outline and goals of previous
tasks defined in 2011 [3] and 2013 [4]. This task aims to investigate the interactions of bacteria and its
biotope; habitats or geographical entity, from genetic, phylogenetic, and ecology perspectives. It involves the
Lives_ in relation, which is a mandatory relation between related arguments, the bacteria and the location
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where they live. Information pertaining to the habitats where bacteria live is particularly critical in applied
microbiology fields such as food safety, health sciences, and waste processing [2, Bl 4]. An example relation
between bacteria and their location in this task is shown in Figure

In recent years, significant efforts have focused on challenging BB tasks. Several studies have been proposed
that incorporate feature-based models. TEES [5], which adopted support vector machine (SVM) with a
variety of features based on shortest dependency paths (SDPs), was the best-performing system with an F1
score of 42.27% in the BioNLP-ST’13 [4]. The VERSE team [6], which placed first in BioNLP-ST’16 with
an F1 score of 55.80%, utilized SVM with rich features and a minimum spanning dependency tree (MST).
Feature-based models, however, heavily depend on feature engineering, which sometimes is limited by its lack
of domain-specific knowledge [7].

Since 2014, deep learning (DL) methods have garnered increasing attention due to their state-of-the-art
performance in several natural language processing (NLP) tasks [§]. Unlike the feature-based models, DL
models demand less feature engineering because they can automatically learn useful features from training
data. Examples of popular DL models that have successfully been applied for biomedical relation extraction
include Convolutional Neural Networks (CNNs) [9, [T0, [IT] 2] and Recurrent Neural Networks (RNNs)
[13, [14].

Other than features-based models in the BB task, several previous studies using DL approaches have
significantly outperformed traditional SVM approaches. For example, in BioNLP-ST’16, DUTIR [I5] utilized
CNN models to achieve an F1 score of 47.80%; TurkuNLP [16] used multiple long short-term memories
(LSTM) with SDPs to achieve an F1 score of 52.10% and was ranked second in the competition. DET-BLSTM
[17] applied bidirectional LSTM (BLSTM) with a dynamic extended tree (DET) adapted from SDPs and
achieved an F1 score of 57.14%. Recently, BGRU-Attn [I8] proposed bidirectional gated recurrent unit
(BGRU) with attention mechanism and domain-oriented distributed word representation. Consequently, it
became the state-of-the-art DL system without hand-designed features for the BB task with an F1 score of
57.42%.

Despite the success of DL in previous studies, there are still several limitations to be considered. Although
SDPs have been shown to contain valuable syntactic features for relation extraction [I6], 17, 18], [T9] 20} 21],
they still may miss some important information. For example, in Figure [T} the word “in”, which should play
a key role in defining the relation between the bacteria “mycobacteria” and the biotope “Queensland” is
not included in SDP (represented by blue lines) because there is no dependency path between “in” and any
entities. To overcome the limitation of SDPs, some studies have used sequences of full sentences to extract
biomedical relations from texts [22] 23] 24]. However, it is very difficult for DL models to learn enough
features from only sequences of sentences. Instead of learning from full sentences, attention networks have
demonstrated success in a wide range of NLP tasks [25] [26] 27, 28] 29] 30, B1]. In addition, BGRU-Attn [I8]
first used the Additive attention mechanism [29] for the BB task to focus on only sections of the output from
RNN instead of the entire outputs and achieved state-of-the-art performance. Other attention techniques
such as Entity-Oriented attention [30] and Multi-Head attention [31] still have not been explored for this task.
From the aspect of word representation, traditional word embeddings [32] [33] only allow for single context-
independent representation. This situation can lead to word sense ambiguation across various linguistic
contexts [34]. Contextual representations of words [35] and sentences [36] based on language-understanding
models addressed this problem and achieved state-of-the-art performance on general-purpose domain NLP
tasks [35] [36, 37, 38, B9]. Nevertheless, [40] has shown that the word-embedding models pre-trained on
a general-purpose corpus such as Wikipedia are not suitable for biomedical-domain tasks. Finally, the
training process of DL approaches with many randomly initialized parameters is non-deterministic—multiple
executions of the same model may not result in the same outcome. To solve this issue and provide a statistical
comparison of models’ performances, [41], [42] reported the mean F1 score of the same model architecture
initialized with different parameter settings (random seeds). This evaluation metric indicates the average
behavior of a model’s performance and is more suitable for the biases and trends in real-world applications
[43]. However, the mean F1 score had never been explored in prior studies of the BB task.

In this study, we propose a hybrid model between a RNN and a feed-forward neural network such as a
CNN. We use the RNN to extract full-sentence features from long and complicated sentences. We also apply
the CNN to capture SDP features that are shorter, more valuable, and more concise. In addition, because
attention mechanisms have been proven to be helpful in the BB task [I8], we incorporate several kinds of
attention mechanisms—Additive attention, Entity-Oriented attention, and Multi-Head attention—into the
model. Furthermore, we integrate domain-specific contextual word representation into the model to provide
word-sense disambiguation. Sentence representation was also introduced to improve the full-sentence model
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by embedding sequence sentence information from a pre-trained language understanding model. To address
the uncertainty of a single run model’s performance measured by the maximum F1 score, we used the mean
F1 score as an evaluation metric for comparisons of the models.

/N

Atypical mycobacteria causing non-pulmonary disease in Queensland

Figure 1: Example of the BB relation in a BB task. Bacteria “mycobacteria” and location “Queensland” are
shown in blue, bold text. The dependencies are represented by arrows; SDPs are indicated in blue.

2 Methods

In this section, we describe the proposed DL model for extracting BB relations from the given biomedical
literature (Figure [2)).

2.1 Text preprocessing

We used the TEES system [5] [I6] to run the pipeline of the text preprocessing steps. Tokenization and
part-of-speech (POS) tagging for each word in a sentence were generated using the BLLIP parser [44] with
the biomedical-domain model. The dependency grammar resulted from the BLLIP was further processed
using the Stanford conversion tool [45] to obtain the Stanford dependencies (SD) graph.

We then used Dijkstra’s algorithm to determine the SDPs between each pair of entities: bacteria and biotope.
The SDPs represented the most relevant information and diminished noises by undirected graph (Figure [1)).
An entity pair was neglected if there was no SDP between the entities. While the dependency paths only
connect a single word to others within the same sentence (intra-sentence), there are some cross-sentence
(inter-sentence) associations that can be very challenging in terms of the extraction task. In order to compare
with other existing works [B] [15] [16, [I7, [I8], only intra-sentence relations were considered.

To ensure the generalization of the models, we followed the protocol of previous studies [I7) 18] that blinded
the entities in a sentence. The bacteria and location mentions were replaced by “entity_1” and “entity_ 2”
respectively. For example, as shown in Table |1, we can generate two BB relation candidates (termed
“instances”) from a sentence “Long-term Helicobacter pylori infection and the development of atrophic
gastritis and gastric cancer in Japan.”, where the bacteria and location mentions are highlighted in bold italics
and italics, respectively. After entity blinding, we converted all words to lowercase to simplify the searching
process and improve text matching.

Table 1: Bacteria-biotope relation candidates (instances) in a sentence after entity blinding. The bacteria
and location mentions are highlighted in bold italics and italics, respectively.

Entity pair Bacteria-biotope relation candidate after entity binding

(Helicobacter pylori, gastric) Long-term entity 1 infection and the development of atrophic
gastritis and entity 2 cancer in Japan.

(Helicobacter pylori, Japan) Long-term entity 1 infection and the development of atrophic
gastritis and gastric cancer in entity_ 2.

2.2 Input embedding representations

The input representations used in our model were divided into full-sentence and SDP features. Let {wq,
wa, ..., Wy} and {s1, S2, ..., sy} denote the full sentence and SDPs of a sentence that are represented by
different embeddings. Each word w; in a full sentence was represented by word vector, POS, and distance
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Figure 2: The overall architecture of our proposed model with the combined full-sentence and SDP models,
together with various attention mechanisms.

embeddings. FEach word s; in the SDP was represented by word vector, POS, and distance embeddings
together with positional encoding (PE). The detailed embeddings used in our model are explained below.

For a full sentence in the RNN model, word embedding was a 200-dimensional word vector, the pre-trained
biomedical word-embedding model [46], built from a combination of PubMed and PMC texts using Word2Vec
[32]. Part-of-speech embedding was initialized randomly at the beginning of the training phase.

Distance embedding [I8, 47] is derived from the relative distances of the current word to the bacteria and
location mentions. For example, in Figure[I] the relative distances of the word “in” to bacteria “mycobacteria”
and location “Queensland” are —4 and 1, respectively. To construct the distance embedding D(l) for each
relative distance, every dimension d(I) of the distance embedding is initialized using equation , where [ is
the relative distance and s refers to the maximum of the relative distances in the dataset. All d(!) dimensions
form the distance vectors [disty, dists], which represent the distance embeddings D(I) of the current word to
the bacteria and location mentions, respectively.

d(l) = tanh(é) (1)
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For SDP in the CNN model, we used PE [31] to inject some information about the absolute position of the
words in the sentence. The PE vectors were initialized by sine and cosine functions of different frequencies;
these functions embed information based on their relative position. Because PE has the same dimension as
the word embedding, we can sum these two vectors.

word pos |
)

In summary, the overall input embedding representation for a word w; in full sentences is z; = [w AR
wdst: qp®ist2] - Similarly, for a given word s; on the SDP the overall input embedding representation is z; =
pos (_iistl . wdisb}
1 K3 ) 1 °
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2.3 A DL model based on full sentences and SDPs

2.3.1 Full-sentence model

We employed BLSTM [48] to learn global features from full sentences. The BLSTM can be used to encode
the sequential inputs both forward and backward, and it has been shown to outperform one-way LSTM in
many studies [I3], 47, 48], 49, 50]. Given a full sentence of M tokens, {z1, 22, ..., zp}, at the t-th time step,
the BLSTM takes the current input representation (z;), previous hidden state (h;—1), and previous memory
cell (¢;—1) as its inputs to generate the current hidden state (h;) and memory cell (¢;).

2.3.2 SDP model

The multiple-filter-widths CNN model [5I] was proposed for SDP model to learn local features from SDPs.
For a given SDP sequence of N tokens, {21, 22, ..., 2x}, let z; € R¥ be the k-dimensional input embedding
vector corresponding to the i-th word in the sequence. The CNN takes an input sequence of length N to
generate the feature map (¢;) by convolutional filters and max pooling operations. Compared with LSTM,
the CNN model is expected to be better at extracting high-quality features from short and concise SDPs [52].

2.4 Attention mechanisms

Attention mechanisms have recently been successfully applied to biomedical relation extraction tasks [14) [18]
30]. These attention networks are able to learn a vector of important weights for each word in a sentence
to reflect its impact on the final result. We propose the use of three attention mechanisms—Additive,
Entity-Oriented, and Multi-Head—to improve our relation extraction. Figure 2] shows how these attention
mechanisms are integrated into our proposed DL model.

2.4.1 Additive attention

The Additive attention focuses on sentence-level information. It was first used by [29] to improve neural
machine translation and recently applied to the BB task [I8]. The idea of Additive attention is to consider all
LSTM hidden states with different attention weights when deriving the context vector. The context vector
depends on the sequence of hidden states {h1, ha, ..., hi}. Each hidden state contains information about
the whole input sequence with a strong focus on the parts surrounding the i-th word. The context vector (¢;)
was computed as a weighted sum of these hidden states (h;) using equation . The attention weight (a;) of
each hidden state (h;) was then computed using equation . The additive attention assigned a score (a;) to
the pair of input at position 7, which was parameterized using a feed-forward network with a single hidden
layer. The model was then jointly trained with other parts of the model. The attention score function is
shown in equation , where v, is the weight matrix to be learned.

k
Cc = Z aihi (2)
i=1
a; = softmax(score(h;)) (3)
score(h;) = v, tanh(h;) (4)

2.4.2 Entity-Oriented attention

This attention focuses on word-level information. It has been used by [29] [3T] and has been shown to be
effective at drug-drug interaction (DDI) extraction [30]. This attention was used to determine which words
in a sentence most influence the relationship between a pair of entities. This attention mechanism was
applied after our word-embedding layer to quantify the concentration of word-level information. We exploited
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two attention weights (a;), j € {1,2}, which denoted the relevance degree of each word (w;) of a sentence
with respect to the j-th entity mention (e;). The attention score (a]) was calculated using the dot product
operation (-) of the current word embedding vector (u.,,) and the j-th entity word-embedding vector (u; ).
The score was then normalized by the dimensionality of word embedding vector (m) using equation . The

attention weight (a;) of word (w;) to both entities was computed using equation
al = softmaz(— L) (5)

i
1 2
0 = 23 0

2.4.3 Multi-Head attention

The Multi-Head attention focuses on extracting local features in multiple subspaces. It was used by [31] for
machine translation. These authors showed that the model jointly attended to information from different
representation subspaces at different positions. Instead of performing a single scale dot-product attention,
[31] found to be beneficial if the queries (), keys (k), and values (v) of the same dimension (dj) were linearly
projected h times with different learned projections. For each head, we computed the dot products (-) of the
queries of length (n) with all keys. We then divided each by v/dj and applied the softmax function to obtain
the attention score using equation @ The context weight (¢;) on the values was computed using equation
(8). To obtain Multi-Head feature representations, the context weights from h heads were concatenated
using equation @D Compared with CNNs, Multi-Head feature representation (h,;) uses h parallel attention
mechanisms with different low-dimensional projection instead of a fixed-width convolutional filter. Inspired
by the transformer network [31], stacks of Multi-Head attentions were employed in our model with residual
connections and PE. Figure [3] shows the overview architecture of the CNN model and Multi-Head attentions
as our SDP model.

¢k

score(h;) = softmax( e ) (7)

= Z v;score(h;) (8)
i=1

hout = [c1; €25 .. ¢ 9)

2.5 Contextual representations

The choice of how to represent words or sentences poses a fundamental challenge for NLP communities. There
have been some advances in universal pre-trained contextual representations on a large corpus that can be
plugged into a variety of NLP tasks to automatically improve their performance [35] [36]. By incorporating
some contextualized information, these representations have been shown in [35, [36, 387, 38, [39] to alleviate the
problem of ambiguation and outperform traditional context-free models [32], 33]. In this study, we propose
two contextual embedding models pre-trained on a biomedical corpus of words and sentences.

2.5.1 Contextual word representation

The contextual word vector used in our proposed model was generated by ELMo [35]. ELMo learned word
representations from the internal states of a bidirectional language model. It was shown to improve the
state-of-the-art models for several challenging NLP tasks. Context-free models such as Skip-gram [32] and
GloVe [33] generate a single word representation for each word in their vocabulary. For instance, the word
“cold” would have the same representation in “common cold” and “cold sensation” [34]. On the other hand,
contextual models will generate a representation of the word “cold” differently based on context. This
representation can be easily added to our proposed model by reconstituting the 200-dimensional word vectors
with the new pre-trained contextual word vectors. Currently, the ELMo model, pre-trained on a large
general-purpose corpus (5.5 billion tokens), is freely available to use [35]. However, [40, 53] showed that
domain-irrelevant word-embedding models pre-trained on large, general-purpose collections of texts are not
sufficient for biomedical-domain tasks. Therefore, we present a domain-specific, contextual, word-embedding
model pre-trained on a bacterial-relevant corpus. Inspired by the relevance-based word embedding [54],
the corpus to pre-train our proposed contextual word embedding model included relevance-based abstracts
downloaded from PubMed, which contain only sentences with bacterial scientific names from the BB task (118
million tokens). To evaluate the effectiveness of our proposed domain-specific, contextual, word-embedding
model, we compared it with the contextual model pre-trained on randomly selected abstracts from PubMed
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Figure 3: Illustration of the SDP model architecture to extract local features based on a CNN model or N
stacks of Multi-Head attentions.

with the same number of tokens. All of the pre-trained models were fine-tuned with the BB dataset in order
to transfer learned features from the pre-train models to our task.

2.5.2 Contextual sentence representation

Our contextual sentence embedding was constructed by BERT [36]. BERT represents words based on a
bidirectional approach and learns relationships between sentences. Hence, BERT representation unambiguously
represents both words and sentences. However, due to the limited computational resource to pre-train BERT
using our biomedical corpus the available pre-trained BERT on general-purpose corpus was adopted and
fine-tuned with the BB task.

2.6 Training and classification

The output layer used the softmax function [55] to classify the relationship between pairs of bacteria and
biotope mentions. The softmax layer takes the output of BLSTM for full-sentence feature, the output of
Multi-Head attention networks for SDP feature, and the sentence embedding from BERT as its inputs (Figure
. These inputs are fed into a fully connected neural network. The softmax layer’s output was the categorical
probability distribution over each class type (c¢) by equation .

p(c|s) = softmax(Wy - s + bg) (10)

where Wy and by are weight parameters and s is the feature representation of sentences. For the binary
classification, we used the cross-entropy cost function (J(#)) as the training objective by equation .

J(0) = —(ylog(p) + (1 — y) log(1 — p)) (11)

where y is the binary indicator (0 or 1) if the class label is correct for each predicted sentence and p is
the predicted probability. Additionally, we applied Adam optimization to update the network weights with
respect to the cost function.
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2.7 Data

2.7.1 Training and test datasets

The dataset provided by the BB task [2] of BioNLP-ST’16 consists of titles and abstracts from PubMed
with respect to reference knowledge sources (NCBI taxonomy and OntoBiotope ontology). All entity
mentions—Bacteria, Habitat, and Geographical—and their interactions were manually annotated from
diverse-backgrounds annotators. Each bacteria-biotope pair was annotated as either a negative or positive
Lives__in relation. The relations can be defined as inter-sentence and intra-sentence. In our study, we also
followed previous studies [5] [15] [16] 17, [I8] in simply excluding inter-sentence instances from the dataset. This
procedure resulted in the removal of 107 and 64 annotated instances from the training data and development
data, respectively. Table [2] lists the statistics of the preprocessed BB dataset used in our experiments.

Table 2: Statistics of a preprocessed BB dataset.

Train | Dev | Test

Avg.word in SDPs 4.81 | 4.86 | 4.58

Avg.word in full sentences 27.22 | 29.92 | 28.12
Positive instances 248 173 -
Negative instances 275 332 -

Total instances 523 505 532

2.7.2 The pre-training corpus of contextual word representations

In order to get the proposed domain-specific word embeddings (specific-PubMed ELMo), we pre-trained ELMo
on the bacterial-relevant abstracts downloaded from the PubMed database. These specific abstracts contain
roughly 118 million words that use all of the bacteria names that are noted in the BB dataset as keywords.
An example keyword is the bacteria mention “mycobacteria” (Figure . Furthermore, we pre-trained another
domain-general word embeddings (random-PubMed ELMo) on randomly selected PubMed abstracts with
a similar corpus size to evaluate the performance of the domain-specific model. To reduce the memory
requirement of both pre-training models, we only used the words in the training, development, and test sets
to construct the vocabularies.

2.8 Hyper-parameter setting

We used the Pytorch library [56] to implement the model and empirically tuned the hyper parameters using
3-fold cross validation on the training and development data. After tuning, the dimensions of the contextual
word embedding (ELMo), context-free word embedding, POS embedding, distance embedding, and sentence
embedding (BERT) were 400, 200, 100, 300, and 768, respectively. The dimension of PE was set to either
200 or 400 for the context-free or contextual word embeddings, respectively. The hidden unit numbers of
BLSTM and the filter numbers of CNN were 64. The convolutional window sizes were 3, 5, and 7. For the
Multi-Head attention mechanism, we used three stacks of Multi-Head attentions with respect to the residual
connections; the number of heads for each stack was 2. Before the output layer, we applied a dropout rate of
0.5 to the concatenation of full-sentence, SDP, and sentence-embedding features. The mini-batch was set
to 4, and a rectified linear unit (ReL.U) was used as our activation functions. We set the learning rate to
0.001 for Adam optimization. Despite the underfitting problem, we used different parameters of the only
full-sentences model, denoted as “full-sentence” in the Influence of full-sentence and SDP features section.
The dropout rate was set to 0.1, and the hidden unit number of LSTM was 32.

2.9 Evaluation metrics

For our model, the final results on the test dataset were evaluated using the online evaluation service provided
by the BB task of the BioNLP-ST’16. Due to the removal of inter-sentence examples, any inter-sentence
relations in the test dataset that counted against our submission were considered to be false negatives.

As discussed above, a large number of local minima in DL models can lead to larger parameter spaces.
Evaluating a single model several times tends to result in performance convergence under different parameter
initializations (or random seeds). To alleviate this problem, we reported the mean F1 score instead of only
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the maximum F1 score reported by previous studies [5, [6] [15] [16] [I7, [I8]. To calculate the mean F1 score, we
built 30 models as suggested by [41]. These models were trained using the same architecture but with different
random seeds. Then, we evaluated the F1 score of each model on the same test set using an online evaluation
service. With these F1 scores, we then calculated the minimum, maximum, mean, and standard deviation to
assess the robustness of the model. In this study, we used the mean F1 score as the main evaluation metric;
the maximum F1 score was still used to compare with other previously used models.

3 Results

We assessed the performance of our model as follows. First, we compared our model with existing models in
terms of maximum and average F1 scores. Then, we evaluated the effectiveness of each contribution used
by the model: feature combination between full sentences and SDP, attention mechanisms, contextual word
representation, and contextual sentence representation. Here, we discuss the overall experimental results of
this proposed model.

3.1 Performace comparisons with existing models
3.1.1 Maximum F1 score comparisons

Table [3]lists the maximum F1 score of our model compared with those of prior studies. In the BB task [2],
each team evaluated the model on the test set using an online evaluation service. Most of the existing systems
were based either on SVM or DL models. The SVM-based baseline [5] was a pipeline framework using SVMs
on SDPs with an F1 score of 42.27%. Similarly, [6] proposed a utilized SVM with rich feature selection
that yielded an F1 score of 55.80%. Compared with SVM-based models, DL-based models automatically
learn feature representations from sentences and achieve state-of-the-art performance. For example, DUTIR
[15] utilized a multiple-filter-widths CNN to achieve an F1 score of 47.80%. TurkuNLP [16] employed a
combination of several LSTMs on the shortest dependency graphs to obtain the highest precision of 62.30%
and an F1 score of 52.10%. BGRU-Attn [18] proposed a bidirectional GRU with the attention mechanism
and biomedical-domain-oriented word embedding to achieve the highest recall of 69.82% and an F1 score of
57.42%. These results reveal that our proposed model achieved the best performance in the official evaluation
(i.e., the highest F1 score: 60.77%). In contrast with the previous state-of-the-art model (BGRU-Attn [I8]),
our model achieved more balanced precision (56.85%) and recall (65.28%). The results revealed that our
model could leverage both full-sentence and SDP models along with contextual representations to capture
the vital lexical and syntactic features of given sentences. Therefore, our model can combine the advantages
of all contributions to achieve a good trade-off between precision and recall, which resulted in its superior
performance in the BB corpus.

Table 3: Performance comparison (maximum F1 score) with existing models. The listed results derive
from the corresponding papers. F: F1 score; R: recall; P: precision. Our model used all of the proposed
contributions (the results from the last row in Table . The highest scores are highlighted in bold.

Methods Team F R P

SVM-based TEES [5] 42.27 38.35 61.61
VERSE [6] 55.80 61.50 51.00

DUTIR [15] 47.80 39.70 60.00

TurkuNLP [16] 52.10 44.80 62.30

DL-based DET-BLSTM [I7] 57.14 57.99 56.32
BGRU-Attn [I8] 57.42 69.82 48.76

Our model 60.77 65.28 56.85

3.1.2 Mean F1 score comparisons

Table 4] lists the results of our model compared with other DL models: TurkuNLP [16] and BGRU-Attn [I§]
based on mean F1 scores. Our model achieved the highest mean F1 score and the lowest standard deviation.
This finding indicates that our model is more robust to randomness and highly consistent in its performance.
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To provide a statistically significant comparison of our model’s performance, we also performed a two-sample
t-test with the hypothesis that two populations (our model and a compared model) were equal in terms of
their mean F1 scores (null hypothesis Hy). The results revealed that we rejected the null hypothesis with a
p-value less than 0.001 (or more than 99.9% confidence). This fact implied that our model’s mean F1 score
was significantly better than that of other models.

Table 4: Performance comparison (mean F1 score) with existing models. These results, from existing models,
derive from the model reimplementation. The highest scores are highlighted in bold except for the standard
deviation (SD). The p-value was calculated using the two-sample t-test for the difference of mean F1 score.

Model FL score p-value
Mean SD Min Max
TurkuNLP [I6] 46.18 4.64 35.07 51.99 <0.001
BGRU-Attn [I8] 50.22 2.79 43.05 55.54 <0.001
Our model 57.63 1.15 54.41 60.77 -

3.2 Effects analysis of each proposed strategy

In the following sections, we evaluate the effectiveness of each model contribution: combined full-sentence and
SDP models, attention mechanisms, contextual word representation, and contextual sentence representation
(Tables . To overcome the variant problem in model evaluation, each experiment used the mean F1 score
for model selection and evaluation.

3.2.1 Influence of full-sentence and SDP features

Table [Al lists the mean F1 score of 30 DL models with different random seeds. The mean F1 score obtained
from the experiment indicated that the use of full-sentence and SDP models together outperformed the
separated models. The data in Table [5| also demonstrate that CNN achieved better performances than
BLSTM when BLSTM and CNN were separately applied to the full sentences and SDPs, respectively. This
result suggests that our model effectively combines the SDP and full-sentence models to extract more valuable
lexical and syntactic features. These features were generated not only from two different sequences (full
sentences and SDPs) but also two different neural network structures (BLSTM and CNN).

Table 5: The effectiveness of the application of full-sentence and SDP features according to the mean F1
scores of 30 different random seeds. All of the highest scores are highlighted in bold except for the standard
deviation (SD).

Model F1 score
Fulls SDPs Mean SD Min Max
- CNN 43.79 3.39 37.02 51.82
BLSTM - 41.22 14.49 12.82 49.93
BLSTM CNN 45.96 2.87 42.09 52.19

3.2.2 Influence of Attention mechanisms

After we measured the effectiveness of the full-sentence and SDP features, we additionally explored the effects
of the Additive, Entity-Oriented, and Multi-Head attention mechanisms. The attention mechanisms were
applied to concentrate the most relevant input representation instead of focusing on entire sentences. Table
[6] lists the productiveness of each attention mechanism integrated into our full-sentence and SDP models.
According to [3I], Multi-Head attention networks were first proposed with the use of PE to insert valuable
locality information. Because Multi-Head attention networks were employed with PE, we applied PE to
CNN in order to fairly compare the effectiveness of Multi-Head attention. The use of the Additive attention
mechanism improved the mean F1 score by 0.53%. Entity-Oriented attention improved the average F1 score
from 49.02 to 50.24%. These results show that attention mechanisms might highlight influential words for
the annotated relations and help reveal semantic relationships between each entity. This approach improved
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the overall performance of our model. Finally, the stacks of Multi-Head attention networks were the primary
contributor to our model. The experimental results revealed that the proposed model using Multi-Head
attention together with SDPs increased the mean F1 score by 3.18% compared with the proposed model
using CNN. Our proposed model used stacks of Multi-Head attentions with residual connections instead of
CNN, as shown in the overall architecture of Figure

Table 6: The effectiveness of the integrated attention mechanisms according to mean F1 scores for 30 different
random seeds. All of the highest scores are highlighted in bold except for the standard deviation (SD). The
first-row results derive from the best results of previous experiments (i.e., the last row in Table . Note:
“PE” denotes positional encoding, “Attn” denotes the use of only Additive attention, “EAttn” denotes the
use of both Additive and Entity-Oriented attentions, and “MAttn” denotes the use of Multi-Head attention.

Model PE F1 score
Fulls SDPs Mean SD Min Max
BLSTM CNN X 45.96 2.87 42.09 52.19
BLSTM CNN v 48.49 4.76 38.75 55.40
BLSTM-Attn CNN v 49.02 3.62 42.03 56.51
BLSTM-EAttn CNN v 50.24 3.72 43.14 55.72
BLSTM-EAttn MAttn v 53.42 2.51 46.67 56.70

3.2.3 Influence of domain-specific contextual word representation

Table [7] lists the effectiveness of our domain-specific, contextual word representation to our model after
previous contributions (combined features and attention mechanisms). The contextual word representation
(ELMo) was proposed to provide word sense disambiguation across various linguistic contexts and handle
out-of-vocabulary (OOV) words using a character-based approach. The results in Table [7| reveal that every
ELMo model outperformed the traditional word2vec model. One possible explanation for this finding is that
the ELMo model uses a character-based method to handle OOV words while word2vec initializes these OOV
word representations randomly. The ELMo model can also efficiently encode different types of syntactic and
semantic information about words in context and therefore improve overall performance. The use of our
proposed contextual word model with a domain-specific corpus (specific-PubMed ELMo) achieved the highest
average F1 score of 55.91%. This score represented an improvement by 2.49%, 1.61%, and 2.10% compared
with the score deriving from the use of PubMed word2vec, general-purpose ELMo, and random-PubMed
ELMo, respectively. These improvements reveal the importance of taking relevant information into account
when training contextual embedding vectors. We also noted that the general-purpose ELMo achieved slightly
better performance compared with the random-PubMed ELMo. However, the latter was pre-trained on a
biomedical-domain corpus; the size of the pre-trained corpus of the former (5.5 billion tokens) is significantly
larger than that of the latter (118 million tokens), which resulted in the higher-quality word embeddings and
better semantic representations.

3.2.4 Influence of contextual sentence representation

In order to use sentence embeddings as fixed features from the pre-trained BERT, [36] suggested that the
best-performing method involved concatenating the feature representations from the top four 768-dimensional
BLSTM hidden layers of the pre-trained model. However, we found that it was better to sum up the last four
768-dimensional hidden layers into the 768-dimension sentence embedding. This situation may have been due
to the small training dataset. The addition of contextual sentence representation from the fine-tuned BERT
model improved the mean F1 score by 1.68% (Table . The results suggest that the fine-tuned BERT model
could enhance the full-sentence model to encode crucial contextual representations of long and complicated
sentences.

3.3 Discussion

Our proposed model can take advantage of the proposed contributions in order to construct rich syntactic
and semantic feature representations. Our model significantly outperforms other existing models in terms
of both mean F1 score (57.63%; SD = 1.15%) and maximum F1 score (60.77%). The mechanisms that
largely support stable performance include the Multi-Head attentions and domain-specific contextual word
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Table 7: The effectiveness of domain-specific contextual word representation according to the mean F1 scores
of 30 different random seeds. All of the highest scores are highlighted in bold except for the standard deviation
SD). The first-row results derive from the best results of previous experiments (i.e., the last row in Table
|g§D. Note: “PubMed word2vec” denotes the context-free word model, “general-purpose ELMo” denotes the
general-purpose contextual word model, “random-PubMed ELMo” denotes the domain-general contextual
word model based on 118 million randomly selected tokens abstracts from PubMed, and “specific-PubMed
ELMo” denotes the domain-specific contextual word model based on 118 million bacterial-relevant abstracts
from PubMed.

Pre-trained word model F'l score
Mean SD Min Max
PubMed word2vec 53.42 2.51 46.67 56.70
general-purpose ELMo 54.30 3.61 42.76 56.51
random-PubMed ELMo 53.81 3.65 38.89 57.01
specific-PubMed ELMo 55.91 1.49 51.24 57.48

Table 8: The effectiveness of the contextual sentence representation by the mean F1 scores of 30 different
random seeds. All of the highest scores are highlighted in bold except for the standard deviation (SD). The
first-row results derive from the best results of previous experiments (i.e., the last row in Table @

) F1 score
Sentence representation
Mean SD Min Max
without 55.91 1.49 51.24 57.48
with 57.63 1.15 54.41 60.77

representation, which are responsible for mean F1 score increases of 3.18% and 2.49%, respectively. A possible
advantage of Multi-Head attention compared with CNN is the ability to determine the most relevant local
feature representations from multiple subspaces to the BB task based on attention weights. In addition,
domain-specific contextual word representation is beneficial to the proposed model for capturing contextual
embeddings from a bacterial-relevant corpus. The box-and-whisker plot in Figure [4 shows the mean F1 score
distribution of the existing DL models and our final proposed model (blue boxes). The boxplot illustrates the
performance of our model after incrementally adding each of the main contributions (grey boxes). The mean
F1 score of each model is shown as a line. The blue boxes indicate the comparison of our final model and two
reimplemented TurkuNLP [16] and BGRU-Attn [I8]. The mean F1 score of our model was 57.63%, which
exceeds that of the TurkuNLP and BGRU-Attn models by 11.45% and 7.41%, respectively. In other words,
our proposed model generally achieves better performance in terms of both mean and maximum F1 scores.
Furthermore, the inter-quartile range of our proposed model is much smaller than that of other DL models.
This finding demonstrates that the performance of our model is more robust and suitable for real-world
applications.

For binary classification problems, F1 score is a common metric for evaluating an overall model’s performance
because it conveys both precision and recall into one coherent metric. In some applications, however, it is
more important to correctly classify instances than to obtain highly convergent results (i.e., high precision).
On the other hand, some other applications place more emphasis on convergence rather than correctness
(high recall). We experimented with using a frequency cut-off to explore how the probabilities output by the
model function as a trade-off between precision and recall. Figure [5[shows the precision-recall curve (PRC)
of our proposed model. When applied to real-world scenarios, users of the model are responsible for choosing
the right cut-off value for their applications. For example, in semi-automated text-mining applications for
knowledge management researchers never want to miss any bacteria-biotope relations. As a result, models
with a high recall will be chosen to prescreen these relations. On the other hand, automated text-mining
applications for decision support systems will require more precise relations. In Figure [5] our model with the
default (0.5) cut-off value achieved an F1 score of 60.77% with balanced 56.85% recall and 65.28% precision.
With a cut-off of 0.025, our model achieved the highest recall at 70.54% with 50.11% precision and an F1 score
of 58.59%. With this cut-off value, our model outperformed the existing highest-recall model (BGRU-Attn
[18]) by both 0.72% recall and 1.35% precision. Similarly, the line plot shown in Figure |5 shows that our
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Figure 4: Box-and-whisker plot of average F1 score distributions of the deep-learning-based relation extraction
models on the BB task. The comparison between our model and existing deep-learning-based models is
shown in blue; the improvement of our model after adding each of the proposed contributions is shown in
grey. Note: “Attns” denotes the use of integrated attention mechanisms.

model with a 0.975 cut-off achieved the highest precision (72.60%), recall (46.90%) and F1 score (56.99%).
This model also outperformed the existing highest-precision model (TurkuNLP [I6]) by 10.30% in precision
and 2.10% in recall.

To determine the factors that adversely affected the performance of our proposed model, we manually analyzed
the correct and incorrect predictions from a development set compared with other existing models. We found
that the proposed model could detect true negatives (TNs) better than other reimplemented models. This
finding arose mainly because full-sentence features boosted the model’s ability to predict an entity pair as a
false relation. For example, the sentence “ Rickettsia felis was the only entity__ 1 found infecting fleas, whereas
Rickettsia bellii was the only agent infecting ticks, but no animal or human entity_ 2 was shown to contain
rickettsial DNA.”, where SDP are shown in bold, was predicted to be a false relation by our model. Other
models predicted this sentence to be a true relation because of the word “shown” in the SDP. In addition,
we found that false positives (FPs) were generally caused by the complex and coordinate structures of full
sentences. A complicated sentence and a long distance between two entities can lead to relation classification
failures. Examples of these adverse effects include the sentences “The 210 isolates with typical LPS patterns
(119 Ara- clinical, 13 Ara- soil, 70 entity__ 1 entity_ 2, and 8 reference National Type Culture Collection
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Figure 5: The precision-recall curve for our proposed model showing the trade-off between the true positive
rate and the positive predictive value for our model using different probability thresholds (cut-off values).

strains) also exhibited similar immunoblot profiles against pooled sera from patients with melioidosis and
hyperimmune mouse sera.” and “Testing animal and human sera by indirect immunofluorescence assay against
four rickettsia antigens (R. rickettsii, R. parkeri, R. felis, and R. bellii), some opossum, entity__ 2, horse,
and human sera reacted to entity_ 1 with titers at least four-fold higher than to the other three rickettsial
antigens.” In each of these sentences, the SDPs are highlighted in bold.

3.4 Limitations of our model

One of the most important limitations of our model is that it cannot extract inter-sentence relations between
the bacteria and the biotopes. Hence, all true inter-sentence relations become false negatives. Inter-sentence
relation extraction is much more challenging because it requires a more nuanced understanding of language to
classify relations between entities in different sentences and clauses characterized by complex syntax. Because
the size of our BB dataset is quite small, it is very difficult for DL models to learn sufficient high-quality
features for the target tasks. However, this challenging task is left for future work. Furthermore, there is a
large repertoire of biomedical literature and domain resources that are freely accessible and can be used as
unlabeled data for semi-supervised learning and transfer learning methods [57, 68, [59].

4 Conclusions

We have presented a DL extraction model for the BB task based on a combination of full-sentence and
SDP models that integrate various attention mechanisms. Furthermore, we introduced a pre-trained,
contextual, word-embedding model based on the large bacteria-relevant corpus and fine-tuned contextual
sentence representation. These embeddings encouraged the model to effectively learn high-quality feature
representations from pre-trained language modeling. We evaluated our proposed model based on maximum
and mean F1 scores. The experimental results demonstrated that our model effectively integrated these
proposed contributions. The results showed that we could improve the performance of relation extraction to
achieve the highest maximum and average F1 scores (60.77% and 57.63%, respectively). Our proposed model
significantly outperformed other state-of-the-art models. Additionally, our model is more robust to real-world
applications than the previous RE models.

Despite our model exhibiting the best performance on the BB task, some challenges remain. In particular,
inter-sentence relations between bacteria and location entities have not been taken into account by any
existing deep-learning-based models; this situation is likely due to insufficient training data. In the future, we
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plan to develop a new approach to increase the quantity and quality of limited training data for the target
task using transfer learning and semi-supervised learning methods.
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