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Abstract

Understanding the relationship between amino acid sequence and protein function
is a long-standing problem in molecular biology with far-reaching scientific implications.
Despite six decades of progress, state-of-the-art techniques cannot annotate 1/3 of
microbial protein sequences, hampering our ability to exploit sequences collected from
diverse organisms. To address this, we report a deep learning model that learns the
relationship between unaligned amino acid sequences and their functional classification
across all 17929 families of the Pfam database. Using the Pfam seed sequences we
establish a rigorous benchmark assessment and find a dilated convolutional model that
reduces the error of both BLASTp and pHMMs by a factor of nine. Using 80% of the
full Pfam database we train a protein family predictor that is more accurate and over
200 times faster than BLASTp, while learning sequence features it was not trained on
such as structural disorder and transmembrane helices. Our model co-locates sequences
from unseen families in embedding space, allowing sequences from novel families to
be accurately annotated. These results suggest deep learning models will be a core
component of future protein function prediction tools.

Predicting the function of a protein from its raw amino acid sequence is the critical
step for understanding the relationship between genotype and phenotype. As the cost of
DNA sequencing drops and metagenomic sequencing projects flourish, fast and efficient
tools that annotate open reading frames with function will play a central role in exploiting
this data [1, 2]. Identifying proteins that catalyze novel reactions, bind specific microbial
targets or work together to build new molecules will accelerate advances in biotechnology.
Current practice for functional prediction of a novel protein sequence involves alignment
across a large database of annotated sequences using algorithms such as BLASTp [3], or
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profile hidden Markov models (pHMMs) built from aligned sequence families such as those
provided by Pfam [4, 5].

While these approaches are generally successful, at least one-third of microbial proteins
cannot be annotated through alignment to characterized sequences [6, 7]. Moreover, the
run times of methods such as BLASTp scale nearly linearly with the size of the labelled
database, which is growing exponentially [8]. Running all 17,929 Pfam HMMs against a
single sequence takes a few minutes, and about 90 hours for the 54.5 million sequences
in Pfam full [9–11]. Broad protein families require muliple HMM profiles to model their
diversity [12], while more than 22% of the highly-curated families in Pfam 32.0 have no
functional annotation. More generally, models that predict function from sequence are
limited by pipelines that require substitution matrices, sequence alignment, and hand-tuned
scoring functions.

Deep learning provides an opportunity to bypass these bottlenecks and directly predict
protein functional annotations from sequence data. In these frameworks, a single model
learns the distribution of multiple classes simultaneously, and can be rapidly evaluated.
Besides providing highly accurate models, the intermediate layers of a deep neural network
trained with supervision can capture high-level structure of the data through learned
representations [13]. These can be leveraged for exploratory data analysis or supervised
learning on new tasks, in particular those with limited data. For example, novel classes can
be identified from just a few examples through few-shot learning.

This raises the question of whether deep learning can provide protein function prediction
tools with broad coverage of the protein universe, as found in the 17929 families of the
recent Pfam 32.0 release [14]. Recent work that applies deep learning is either restricted to
regimes that are not practical or representative in terms of the number of families or required
family size, or does not provide comparison to existing approaches that enjoy widespread
use. For example, DeepSF classifies sequences into 1195 SCOP fold classes [15, 16], while
DeepFam [17] considers 2892 COG families of more than 100 sequences each. SECLAF
uses hundreds of SwissProt classes with more than 150 sequences to train a deep model [18–
20]. DEEPre uses sequence and Pfam annotations to predict enzyme commission (EC)
classes [21, 22]. D-SPACE reports powerful embeddings learned by a deep model, but
does not compare classification performance with existing methods [23]. In [24] a graph
convolutional network reduces the required family size to 20 sequences, reporting 58%
accuracy. It is encouraging that novel deep learning predictions for four functional classes
were experimentally validated in [25].

Building confidence in deep learning approaches requires benchmarks that enable fair
and rigorous comparison with existing state of the art methods and among deep model
architectures. In this paper we pose protein function prediction as a sequence annotation
task. We use 1.34 million Pfam seed sequences to construct a benchmark, and assess
the performance of deep models at annotating unaligned protein domain sequences. This
benchmark has an order of magnitude both more families and fewer examples per family
than previous deep learning efforts (Supplementary Fig. 1). We show that the deep models
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are substantially faster at annotating held-out test sequences than state of the art profile
HMM and BLASTp approaches, and reduce the error rate almost ten-fold. We use the joint
representation learned across protein families in one-shot learning to annotate sequences from
small families that the model was not trained on. These findings support claims that deep
learning models have the potential to provide a general solution to the challenge of protein
functional annotation, and accelerate our ability to understand and exploit metagenomic
sequence data.

Results

We use the Pfam seed dataset to construct a benchmark1 and compare the performance
of deep learning models with existing methods including BLASTp, phmmer and HMMER.
ProtENN uses a simple majority vote across an ensemble of 13 Deep CNN (ProtCNN)
models to achieve a predictive accuracy of 99.84%, reducing both the HMM and BLASTp
error rates by a factor of 9, to 201 misclassified sequences (Table 1, Supplementary Fig. 2).
Fig. 1 shows that both ProtCNN and ProtENN generalize well to sequences that are distinct
from those in the training set. A single ProtCNN model has an error rate of 0.5%, reducing
the HMM and BLASTp error rates threefold. Furthermore the HMMs as implemented
by HMMER 3.1b yield no prediction for 445 sequences (0.35%) of the test set, increasing
the number of errors to 2229. Enforcing the Pfam curated gathering thresholds for family
membership would return multiple above-threshold hits for 8.5% of test sequences, further
decreasing the reported HMM accuracy.

Overall, the HMM makes multiple errors for both large and small Pfam families, while
ProtENN makes single errors for 151 of the 164 families where it falters. Specifically, the
201 sequences misclassified by ProtENN are drawn from 164 families of average size 141,
while a single ProtCNN misclassifies 625 sequences from 550 families. In contrast, the 1784
errors made by the HMM are drawn from 392 families of average size 1091. Fig. 2 shows
error rates for families where both the HMM and ProtENN make mistakes. We find 11
sequences that are consistently predicted incorrectly in exactly the same way by all ensemble
elements of ProtENN. Supplementary Table 6 suggests that there is some ambiguity about
their correct family label in each case. For example, our models predict that the sequence
R7EGP4_9BACE/13-173 from Pfam family DUF1282, actually belongs to the YIP1 family.
The hhsearch [4] tool predicts that DUF1282 is similar to the Yip1 family, while, BLASTp
finds that this sequence is identical to sequences annotated as the YIP1 family, agreeing
with the ProtENN prediction.

1Available for download at https://console.cloud.google.com/storage/browser/
brain-genomics-public/research/proteins/pfam/random_split, interactive notebook at https:
//www.kaggle.com/googleai/pfam-seed-random-split
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Figure 1: Comparison of model error rate (log scale) on the held-out test set for Pfam seed
sequence data as a function of (A) sequence identity (for the highest scoring pair found in
the training set as reported by BLASTp), and (B) as a function of family size. ProtENN
performs substantially better than all other models across all distances and family sizes.
Additional breakdowns of this data are available in Supplementary Fig. 3.
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Model Error rate Number of errors

HMM Top Pick 1.414% 1784

phmmer 1.531% 1932

BLASTp 1.654% 2087

k-mer 9.994% 12610

RNN 1.800% 2271

1-ResNet block CNN 1.120% 1413

2-ResNet block CNN 0.852% 1075

ProtCNN 0.495% 625

ProtENN 0.159% 201

Table 1: Performance on randomly-split data. For additional breakdown of this data see
Supplementary Figs. 3 and 4.

Sequence Annotation for Pfam full

The predictive accuracy of deep learning models typically improves as the amount of well-
labelled training data increases. Likewise, accuracy of nearest-neighbor methods models
such as BLASTp also improves, but at the expense of computational performance. To
compare these approaches on a larger dataset, we use the 54.5 million sequences of the Pfam
full database [9] and follow the protocol established for the seed benchmark: we randomly
split each family, assigning 80% of sequences to the train set and 10% each to dev and test
sets, and carry out a hyperparameter search to optimize ProtCNN accuracy for this new
task. To provide a highly accurate baseline we impute labels via the top BLASTp hit, using
the training set as the query database.

Our resulting ProtCNN model has an error rate of just 1.26% (∼69k errors), lower than
the BLASTp error rate of 1.78% (∼97k errors). ProtENN, ensembled across 13 ProtCNN
models, reduces the error even further to just 0.5% (∼25k errors). Fig. 3 shows that
ProtENN is more accurate than BLASTp across all deciles of sequence identity, and also
for sequences from all but the smallest 10% of families. This reduction in error rate is
particularly attractive when coupled with the gains in computational performance achieved
by ProtENN.
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Figure 2: Comparison of the 67 families for which there was at least one error for both
ProtENN and HMM top pick for the Pfam seed dataset. ProtENN achieves better perfor-
mance for families that lie above the line y=x, while the opposite is true for those families
that fall below this line. HMM top pick tends to have higher error rates for larger families.
Additional details are available in Supplementary Fig. 4 and Supplementary Table 8.

Computational Performance

Once trained, the deep learning models provide substantial speed improvements for protein
domain sequence annotation. Table 2 compares their computational performance with
existing methods on our Pfam seed benchmark. ProtCNN is almost twice as fast as
HMMER 3.1b, the fastest (though not the most accurate) existing method.

The BLASTp calculation for the Pfam full test set (∼10% of Pfam full) takes 34 days
on a 96 core CPU, while computing all test predictions for a single ProtCNN model takes
less than 3.6 hours on a single GPU. Our most accurate ProtCNN model for Pfam full
has just a single ResNet block, and as a result it is more than 200 times faster and more
accurate than BLASTp. The estimated prediction times for the 54.5 million sequences of
the Pfam full dataset are given in Table 3.

What does ProtCNN learn?

To interrogate what ProtCNN learns about the natural amino acids, we add a 5-dimensional
trainable representation between the one-hot amino acid input and the embedding network
(see Methods for details), and retrain our ProtCNN model on the same unaligned sequence
data from Pfam full, achieving the same performance. Fig. 4A (left) shows the cosine
similarity matrix of the resulting learned embedding, while Fig. 4A (right) shows the
BLOSUM62 matrix, created using aligned sequence blocks at roughly 62% identity [26].
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Figure 3: Comparison of model error rate on the held out test set for Pfam full sequence
data (A) as a function of sequence identity (for highest scoring pair found in the training
set as reported by BLASTp), and (B) as a function of family size.
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Inferences
per second

Time to predict all 1.34
million Pfam seed sequences

phmmer 2.52 6.15 days
HMMER 150.20 2.48 hours

HMMER (no filters) 0.66 23.58 days
BLASTp 11.27 15.2 hours

ProtCNN 247.39 1.5 hours

Table 2: Inference speed comparison of different models trained on the Pfam seed training
set. BLASTp was run on a 96 core CPU, while ProtCNN was run on a P100 GPU (See
Supplementary Table 7 for hardware details).

Inferences
per second

Time to predict all 54.5
million Pfam full sequences

BLASTp 1.85 340 days
ProtCNN 415.74 36 hours

Table 3: Inference speed comparison of different models trained on the Pfam full training
set. BLASTp was run on a 96 core CPU, while ProtCNN was run on a NVIDIA P100 GPU.

The structural similarities between these matrices suggest that ProtCNN has learned known
amino acid substitution patterns from the unaligned sequence data.

We next ask whether ProtCNN can distinguish between variants of the same protein
domain sequence with single amino acid substitutions, despite the lack of residue-level
supervision during training. To measure the predicted impact of sequence changes, we use
a single ProtCNN trained on Pfam full to calculate the model’s predicted distribution
over classes for the original and modified sequences. We then compute the KL-divergence
between these two probability distributions to quantify the effect of the subsitution on
the model prediction. Fig. 4B reports this measure for every possible single amino acid
substitution within an ATPase domain sequence. Most substitutions in the disordered region
are predicted to have negligible effect, with the exception of mutations to phenylalanine,
tyrosine and tryptophan, amino acids that are known to promote order [27]. This ATPase
domain also contains two transmembrane helices, within which the order of amino acid (using
IUPAC amino acid codes) preference according to ProtCNN is FMLVI YACTS WGQHN KRPED.
The suggestion that charged amino acids and proline are avoided within these regions again
agrees with existing knowledge. An additional example saturation mutagenesis prediction is
shown in Supplementary Fig. 5.
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Figure 4: (A) The amino acid embedding extracted from the trained ProtCNN model yields
cosine similarities in embedding space that reflect the overall structure of the BLOSUM62
matrix [26]. (B) Predicted change in function for each missense mutation in ATPase domain
AT1A1_PIG/161-352 from family PF00122.20. The ProtCNN model (trained using Pfam
full) appropriately predicts that most substitutions in the disordered region are unlikely to
change the protein’s function. Substitutions to phenylalanine, tyrosine and tryptophan are
predicted to have the largest effect on function within the disordered region, in agreement
with their known order-promoting properties [27]. The wild type sequence is available in
Supplemental Table 9.
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One-Shot Sequence Classification

Finally, we show that ProtCNN can accurately classify sequences from families that the
model has not been trained on. This is motivated by the biologically important question
of novel family identification, where each novel family is anchored by a single founder
sequence. Taking all but the final layer of ProtCNN generates a map from the space of
protein sequence to a 1100-dimensional embedding space. Since the model is trained for
classification, sequences from different families should be well-separated by this map. This
provides a variety of opportunities, such as annotation of domains of unknown function and
supervised learning on small datasets [23, 28]. Here, we proceed by training a ProtCNN
model on the 12361 Pfam seed families with more than 9 training sequences. The remaining
5568 families consist of 710 families that have a single held out test sequence, and the 4858
smallest families that have no test sequences (because they were so small, see methods). By
construction, this ProtCNN model achieves 0% accuracy on the 710 test sequences from
families not seen during training.

Prediction Method
Families Included

in Training
Overall

Error Rate
Small Family
Error Rate

Large Family
Error Rate

ProtCNN

Large only

1.0% 100.0% 0.4%

One-Shot 1-NN 0.8% 14.9% 0.7%

Two-Shot 1-NN 0.8% 9.0% 0.7%

Per-Family 1-NN 0.7% 1.3% 0.7%

Per-Instance 1-NN 0.6% 2.4% 0.6%

ProtCNN

All

0.4% 3.0% 0.4%

Per-Family 1-NN 0.7% 0.8% 0.7%

Per-Instance 1-NN 0.5% 2.3% 0.5%

Table 4: Performance when classifying using nearest neighbors in embedding space. resolution
on error rates is limited by the number of sequences in the test set (710).

We compute an average embedding for each of the 12361 large training families, and
embed a single training sequence from each of the 5568 small families held out from the
model. This yields a representative embedding for each of the 17929 families in Pfam
32.0. We then use proximity in this space to carry out one-shot learning for the smallest
classes, which were most difficult for ProtCNN to annotate. Specifically, for each of the
710 test sequences, we perform nearest-neighbor classification (Per-Family 1-NN ) using
cosine similarity in embedding space with the set of representatives. Table 4 shows that
this approach achieves a one-shot classification error rate of 15%. Increasing to two-shot
learning results in an error rate of 9%.

In Per-Family 1-NN we use all available training examples for the small classes to
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construct per-family embeddings. In contrast, Per-Instance 1-NN finds the nearest neighbor
for each test sequence among the embeddings of every training sequence. Table 4 shows
that Per-Family 1-NN is particularly powerful at accurately classifying sequences from
small families. In the final three rows, we provide an upper bound for performance by
training ProtCNN on data from all families, and repeating the experiments described above.
Again, the Per-Family 1-NN approach outperforms both ProtCNN and Per-Instance 1-NN
at accurately classifying sequences from small families. We speculate that Per-Family 1-NN
performs better than Per-Instance 1-NN due to noise reduction that results from averaging.

Discussion

Both ProtCNN and ProtENN produce state of the art accuracy for protein domain annotation
on a benchmark built from Pfam seed that is representative of known protein sequence space.
With just under 1.1 million training examples across 17929 output families of vastly different
sizes (Supplementary Fig. 1) our ProtENN models are highly accurate despite having no
access to the alignments used to train the HMMs. These results present a significant
advance over prior work; for example, 8727 families from the benchmark have at least one
test sequence and fewer than the minimum 67 training examples used for classification by
DeepFam [17]. Our ProtENN trained across Pfam full yields a three-fold reduction in
the error rate and at least an order of magnitude improvement in computational efficiency
compared to BLASTp.

We also show that the representation of protein sequence space learned by ProtCNN can
be used in one-shot learning to classify sequences from unseen protein families. This suggests
an iterative approach to novel family construction, in which a single founder sequence is
used to find additional family members, which are used to update the average embedding for
this putative new family and so forth, inspired by current methods such as PSI-BLAST [3],
jackhmmer [11] and hhblits [4]. This result suggests that a deep model trained on an existing
corpus of data (here the training sequences from large Pfam seeds) can build a new family
from a single sequence. Future work will test this approach beyond the confines of the
benchmark Pfam seed dataset.

Our ProtENN models achieve extremely high accuracy without prior knowledge of
protein sequence properties encoded through substitution matrices, sequence alignment or
hand-curated scoring functions. Additionally, the trained models enable new sequences to be
labelled much more quickly than using existing state of the art alignment-based approaches.
The embedding network in each ProtCNN model maps an input sequence to a single vector
representation that alone can be used for accurate family classification, pairwise sequence
comparison or other downstream analysis. This differs substantially from approaches such
as BLASTp, phmmer and HMMER that perform classification using explicit alignment.
We note that simpler models provide useful attribution of model decision making, and we
anticipate that similar insights will emerge from work that improves the interpretation and
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understanding of deep learning models [29–31].
In this work, we focus on protein domain sequence annotation to provide a benchmark

with broad coverage that enables comparison with the state of the art profile HMMs
provided by Pfam 32.0. Using this benchmark, we report that ResNet-based ProtCNN
models are faster and more accurate than current approaches, and that simple ProtCNN
model ensembles provide increased accuracy. The performance of ProtCNN is most clearly
limited by memory footprint, a barrier that can be overcome with additional computational
resources. The model training protocol that we describe can be applied to any set of labelled
protein sequence data; while the Pfam database is carefully curated, at least 25% of sequences
have no experimentally validation function [14], and additional experimental functional
characterization of protein sequences would be highly valuable. Our results suggest that
deep learning models can rapidly and efficiently annotate novel protein sequences, such
approaches have the potential to unlock novel molecular diversity for both therapeutic and
biotechnology applications.
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Methods

Deep Learning Models

We use unaligned sequence data to train deep learning models that learn the distribution
across protein families through joint optimization of a softmax regression loss function. The
input network maps a sequence of L amino acids to an L × 20 binary array, where each
column is a one-hot amino acid representation. Sequences are padded to the length of the
longest sequence in the batch with all-zero vectors on the right (Fig. 5A). The embedding
neural network maps the L× 20 array containing the one-hot amino acid representation of
the sequence to an L× F array that contains an embedding for each sequence residue (see
Fig. 5B). For residues outside the set of the 20 natural amino acids, we use a column of
zeros. All processing in the the subsequent embedding network is designed such that it is
invariant to the padding that was introduced for a given sequence. Details of neural network
hyperparameters that were tuned using the development set are provided in Supplementary
Tables 2, 3, 4 and 5, and used in Supplementary Figure 2. Fig. 5 depicts the input, embedding
and prediction networks that make up each deep learning model. The input and prediction
networks have the same functional form for all models, while the embedding network varies.

Our ProtCNN networks use residual networks (ResNets [32], a variant of convolutional
neural networks that train faster and are more stable, even with many layers [32]). Fig. 5C
depicts the ResNet architecture, which includes dilated convolutions[33]. The ProtCNN
networks are translationally invariant, an advantage for working with unaligned protein
sequence data. Convolutional architectures build up layered representations spanning many
residues. An n-dilated 1d-convolution takes standard convolution operations over every nth
element in a sequence, allowing local and global information to be combined without greatly
increasing the number of model parameters. An important composite hyperparameter
is the receptive field size of each per-residue feature, which describes the length of the
subsequence that affects its value. Using dilated convolutions enables larger receptive
field sizes to be obtained without an explosion in the number of model parameters. For
this rigorous benchmark setup, Supplementary Fig. 2 suggests that larger receptive fields
correspond to higher accuracy values (though see the note below about memory footprint).
To our knowledge, this is the first application of dilated convolutions to protein sequence
classification.

The L × F array is then pooled along the length of the sequence ensuring invariance
to padding. The prediction network maps the output of the embedding network F to
a distribution over labels using a multi-class logistic regression model, where the vector
of probabilities is obtained as SoftMax(Wf + b) and W and b are learned weights and
biases. The model prediction is the most likely label under this distribution. At train time,
the log-likelihood and its gradient with respect to the parameters of the prediction and
embedding networks are computed using standard forward and back propagation.

ProtCNN is orders of magnitude faster at making predictions than BLASTp; the basic
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Figure 5: Architecture descriptions of neural networks. (A) Adding padding to a sequence
for batching. (B) The model architecture shared by all neural networks includes the Input
(red), Embedding (yellow), and Prediction (green) Networks. (C) ResNet architecture used
by the ProtCNN models.
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numerical operations required can be parallelized both along the length of the sequence and
across multiple sequences, and can be accelerated on modern hardware. In addition to the
CNN models we also trained a recurrent neural network (RNN) with single-layer bidirectional
LSTM [34], which achieved accuracy of 0.982 on the Pfam seed dataset. Further details
are provided in the Supplementary Information. Replicate Deep CNN models trained on
different orderings of the same data with different random parameter initializations were
found to make distinct errors, which led us to use an ensemble of ProtCNN models that we
call ProtENN.

Overall those ProtCNN models that perform best tend to have the largest memory
footprint, to some extent irrespective of how that memory footprint is achieved. Increasing
the number of model parameters via the number of filters, the kernel size and/or the number
of ResNet blocks, and increasing the batch size can all produce performance improvements.
Fundamentally, the memory footprint of the models we trained was limited by the amount
of memory available on a single GPU, necessitating trade offs among these different factors.
We didn’t explore TPUs, multiple GPUs or CPUs, all of which could result in better models.
This suggests that there is headroom for future machine learning developments on this task.
Among the experiments that we ran, perhaps surprisingly, the best performing ProtCNN
for Pfam full consisted of a single residual block with 2000 filters, a kernel size of 21, and
a batch size of 64.

Model Training

We use the Adam optimizer [35]. The learning rate is subject to exponential decay following
a warm-up period, although the warm-up period was not tuned. At train time, we present
the model with randomly-drawn batches. Consistent with popular experience [36], we find
that it is important to use gradient clipping for the RNN, and adaptive gradient clipping
worked significantly better than static gradient clipping [37]. In response, we use adaptive
gradient clipping for all the deep models. For more information on training and inference
performance across the different models, see the Supplementary Methods, and Table 7.

Rigorous Benchmark Dataset

To benchmark the performance of different models at unaligned protein domain sequence
classification and compare deep models to current state of the art models including profile
HMMs we use the highly curated Protein families (Pfam) database [9, 14]. The 17929
families of the Pfam 32.0 release are labelled using HMMs that provide broad coverage of
the known protein universe; 77.2% of the ∼137 million sequences in UniprotKB have at least
one Pfam family annotation, including 74.5% of proteins from reference proteomes [14, 20].
Many domains have functional annotations, although at least 22% of Pfam domains have
“unknown function”. The HMM for each Pfam family is built from a manually curated family
seed alignment, containing between 1 and 4545 protein domain sequences of length 4-2037
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amino acids. Some basic statistics about the Pfam family seed sequences can be found in
Supplementary Fig. 1.

We split each Pfam family with at least 10 seed sequences randomly into disjoint dev2

(10%, rounding down to the nearest integer) and test (10%) sets, allocating remaining
sequences to the training set (Table 5). Of the 17929 Pfam seed families, 4858 families
have < 10 seed sequences and are only present in the train set. This results in heldout test
sequences for 13071 families, where 2819 families have exactly one sequence in each of the
test and dev sets. Including families that only exist as training examples makes the task
harder because there are more ways each test sequence can be misclassified. Note that we do
not expect the HMM-based approach to achieve 100% accuracy because the training data is
a subset of the seed data set used in Pfam. For reproducibility, we provide the split Pfam
seed dataset for download,3 and at Kaggle, together with an interactive Jupyter notebook.4

For the HMMs, we retain the alignment information from the whole Pfam seed for all
splits to avoid any artifacts introduced by realignment, and enable optimal performance.
During training this provides the HMM with information about the held-out test sequences
used to measure performance, meaning that the reported accuracy should be taken as an
upper bound. In contrast all alignment information is removed from the data for our deep
learning models and for the other baselines.

Number of examples Number of families
Train 1086741 17929
Dev 126171 13071
Test 126171 13071

Table 5: Number of training and testing examples for the randomly split Pfam seed data.
Note that 16755 families have sequences in the dev and test sets for the Pfam full data.

phmmer

We take the set of unaligned training sequences as a sequence database, and using phmmer
from HMMER 3.1b [11] we query each test sequence against this database to find the closest
match. Those test sequences that return hits above the default phmmer reporting threshold
are then annotated with the label of the training sequence hit with the highest bit score.
Out of the 126171 sequences in the test set, 42 did not return a hit using this approach. All
training sequences that are not reported as hits by the phmmer function are assumed to
have a zero bit score match to that query sequence.

2A dev (development) set is a set used to tune hyperparameters that is separate from the test set, to
avoid overfitting.

3https://console.cloud.google.com/storage/browser/brain-genomics-public/research/
proteins/pfam/random_split

4https://www.kaggle.com/googleai/pfam-seed-random-split
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Our strategy of working with the Pfam seed sequence set circumvents the computationally
intensive process of evaluating phmmer and profile HMM performance on the full set of
∼54.5 million Pfam sequences. We did a small amount of tuning to increase the speed of
running phmmer so as to give a fair comparison; more information can be found in the
supplement.

k-mer

An alignment-free approach is provided by a k-mer (or n-gram) based model, where each
sequence is represented by the set of k-mers that it contains. We train a multi-class logistic
regression model on vectors of k-mer counts using the same stochastic gradient descent
procedure as used by our deep models (Supplementary Table 1).

BLASTp

BLASTp [38] is one of the most well known algorithms for searching for similar sequences,
and among the current state of the art. It uses an alignment to rank sequences according to
their similarity to a target sequence, and from this, a user can impute functional annotation
by ascribing known functions of similar sequences. We use BLASTp as a 1-nearest neighbor
algorithm by first using makeblastdb (version 2.7.1+) with the training data, and then
query sequences from that database using blastp -query, taking only the top hit. This
implementation returns no hit for 259 (0.21%) of the 126171 sequences in the Pfam seed
test set.

HMM top pick implementation

Profile HMMs are widely regarded as a state of the art modeling technique for protein
sequence classification. We used hmmbuild from HMMER 3.1b to construct a profile HMM
from the aligned train sequences for each family in Pfam 32.0. We implement a simple top
pick HMM strategy (see Methods) to avoid any handicap from the filters built into HMMER
3.1b. To further obtain the best possible profile HMM performance we retain the alignment
from the entire Pfam seed, avoiding dependence on any particular realignment method. We
then use the hmmsearch function from HMMER 3.1b to search all 17929 profiles against the
set of unaligned test sequences using the default parameter settings.

The scores for each hit are recorded, and the profile with the highest score called as the
HMM prediction for that test sequence. To ensure the HMMER 3.1b statistical filters do
not hamper performance, we manually turn them off to the extent that at least one hit is
reported for each test sequence, and take the top scoring hit. To implement this, for those
test sequences with no profile hit after this first pass, we employ a second hmmsearch pass
using the ‘--max’ option, which turns off all filters and runs full Forward/Backward inference
on every target to increase the sensitivity of the search at a significant cost in speed [39]. In
experiments that retain the HMMER 3.1b filters for hmmsearch, we found that 8.5% of test
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sequences returned multiple hits above the family specific gathering thresholds that are used
by Pfam to regulate family membership. Reporting these results would have resulted in a
significantly lower precision score for HMMER than for the deep models, which is why we
have chosen instead to remove the statistical filter and report the top hit (Supplementary
Fig. 1).

The positive results obtained in the absence of rigorous statistical filters likely reflect
the fact that we are working with sequences that were originally classified by Pfam, and so
passed the rigorous statistical thresholds set for inclusion in a Pfam family. Those sequences
that did not pass these filters, and hence were not included in any Pfam family may well
have posed a more significant challenge to our implementation. For this reason we do not
recommend that this HMM implementation is used in settings other than working with
these benchmark datasets. For Pfam full we do not use the HMMs as a baseline because
these models were used to label the data, so will achieve 100% accuracy by default. The
Pfam full dataset has 17772 families overall, and our test and dev sets contain sequences
from 16755 families.
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