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Abstract. Multiomics data analysis is the central issue of genomics science. In 

spite of that, there are not well defined methods that can integrate multomics 

data sets, which are formatted as matrices with different sizes. In this paper, I 

propose the usage of tensor decomposition based unsupervised feature extrac-

tion as a data mining tool for multiomics data set. It can successfully integrate 

miRNA expression, mRNA expression and proteome, which were used as a 

demonstration example of DIABLO that is the recently proposed advanced 

method for the integrated analysis of multiomics data set. 
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1 Introduction 

Multiomics data, including miRNA expression, mRNA expression, promoter meth-

ylation and histone modification, have recently come to be measured over the various 

biological problems. In contrast to the rapid development of measurement technology,  

the data analysis pipeline developed very slowly. This is principally because we have 

never faced the flood of data set until very recently; measuring data set has ever been 

more expensive than analyzing it. Thus, only limited efforts have been spent for anal-

ysis of high dimensional data that has ever been rarely available.  

Multiomics data is a typical high dimensional dataset; the number of samples (typ-

ically <102) is always less than number of features, i.e., that of mRNAs (~104), that of 

miRNAs (~103) and that of methylation sites (~105). There are several methods pro-

posed in order to integrate multiomics data formatted as matrices with distinct sizes.  

Fig. 1 shows typical three strategies to integrate three matrices that share  the M sam-

ples for which three distinct features whose numbers are N1, N2, and N3 are measured.  

Fig. 1(A), contraction, is simply merging three matrices such that they share M sam-

ples as rows while N1, N2, and N3 features are aligned as columns. After merging 

them, all downstream analyses are performed with assuming only one feature whose 

number is N1+N2+N3. Although this strategy looks simple, there can be multiple dis-

advantages. First of all, if the number of individual features, N1, N2, and N3, differ 

from one another so much, features having the smallest number might be neglected. 
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This might prevent us from considering three features equally. Even if the numbers 

are almost equal, if some feature has much larger amplitude than others, it also pre-

vents us from dealing with them equally. In this sense, it is very usual to normalize 

individual features before the contraction. Nevertheless, the normalization might also 

affect the outcome, because how to normalize them is quite subjective. 

 

Fig. 1.  Three distinct strategies that integrate multiomics formatted as matrices with distinct 

dimensions, 𝑀 × 𝑁1, 𝑀 × 𝑁2, and 𝑀 ×  𝑁3. (A) Contraction (B) Ensemble (C) DIABLO. 

In contrast to contraction, ensemble strategy shown in Fig. 1(B) oppositely does not 

integrate multiomics data until very last stage. The simplest ensemble strategy is to 

train individual feature independently, and decision is made upon the majority rule. 

This strategy is also simple because we do not need any new strategies considering 

integration of multi omics data set. The disadvantage of this strategy is obvious. There 

is no justification for giving one vote to individual feature. If the majority of features 

are useless, i.e., do not have any practical relationship with outcome Y, voting system 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/591867doi: bioRxiv preprint 

https://doi.org/10.1101/591867


3 

simple increases the noise. In this sense, ensemble can be worse than contraction that 

can disregard useless features during training.  

The third strategy shown in  Fig. 1(C), DIABLO [1], which is a part of mixOmics [2] 

that aims integrated analysis of multiomics data, is more advanced method. In 

DIABLO strategy, not individual features but sets (pairs) of individual features are 

employed for training. Then, outcome Y is predicted based upon ensemble strategy of 

them. Thus, DIABLO strategy has more ability to learn effective features from avail-

able multiomics data. One disadvantage is that how to relate individual features must 

be designed by human beings; this process can be quite subjective. 

In this paper, in contrast to these three strategies in Fig. 1, unsupervised strategy 

based upon tensor decomposition (TD), in short, “TD based unsupervised feature 

extraction (FE)”, is proposed and is applied to multiomics data set. As can be seen 

later, TD based unsupervised FE achieves performance competitive with that 

achieved by DIABLO strategy. 

2 Materials and Methods 

2.1 Multiomics data set 

Data set used here is included in mixOmics package1. As described in the web page 

“Case study: TCGA”2, this data set can be loaded into R using data('breast.TCGA') 

command after installing mixOmics package.  It includes 150 samples composed of 

45 Basal, 30 Her2 and 75 LumA subtypes, to which 200 mRNAs, 184 miRNAs and 

142 proteome expression are measured.  

2.2 Tensor decomposition 

We apply TD with higher order singular value decomposition (HOSVD) [3] algorithm 

to case I type I tensor [4]. Starting from three matrices, 𝑥𝑖1𝑗
mRNA ∈ ℝ200 ×150, 𝑥𝑖2𝑗

miRNA ∈

ℝ184 ×150, and 𝑥𝑖3𝑗
prot

∈ ℝ142 ×150, we generate four mode tensor 

𝑥𝑖1𝑖2𝑖3𝑗 =  𝑥𝑖1𝑗
mRNA  ∙  𝑥𝑖2𝑗

miRNA  ∙  𝑥𝑖3𝑗
prot

 (1) 

and HOSVD is applied it as 

𝑥𝑖1𝑖2𝑖3𝑗 =  ∑ ∑ ∑ ∑ 𝐺(ℓ1, ℓ2, ℓ3, ℓ4)𝑢ℓ1𝑖1

mRNA𝑢ℓ2𝑖2

miRNA𝑢ℓ3𝑖3

prot
𝑢ℓ4𝑗

150
ℓ4=1

142
ℓ3=1

184
ℓ2=1

200
ℓ1=1  (2) 

where  𝑢ℓ1𝑖1

mRNA  ∈ ℝ200×200 , 𝑢ℓ2𝑖2

miRNA  ∈ ℝ184×184 , 𝑢ℓ3𝑖3

prot
 ∈ ℝ142×142 , and 𝑢ℓ4𝑗  ∈

ℝ150×150, are singular value matrices (they are also orthogonal matrices) and G ∈
 ℝ200 ×184 ×142 ×150 is a core tensor.  

                                                           
1  http://www.bioconductor.org/packages/release/bioc/html/mixOmics.html 
2  http://mixomics.org/mixdiablo/case-study-tcga/ 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/591867doi: bioRxiv preprint 

https://doi.org/10.1101/591867


4 

3 Results  

3.1 DIABLO 

Here I briefly summarize how well DIABLO works when it is applied to data set 

described in Sec. 2.1 as denoted in the web page “Case study: TCGA”2.  The interac-

tion assumed is mRNA-miRNA, mRNA-proteome, and miRNA-proteome.   

1. Three subtypes can be discriminated with the success rate of 95 % with using more 

than two components generated by DIABLO. 

2. 15 mRNAs, 18 miRNAs and 7 proteins are selected. 

3. Using features selected in step 2, heatmap is drawn. These three subtypes are well 

separated in the heatmap. Thus, DIABLO successfully selects limited number of 

features that discriminate three subtypes. 

 

Thus, the point is if TD based unsupervised FE can achieve similar performance as 

those by DIABLO or not. 

3.2 TD based unsupervised FE 

As described in Sec. 2.2, HOSVD is applied to case I type I tensor, eq. (1). Then  two 

singular value vectors, 𝑢1𝑗 and 𝑢4𝑗, turn out to discriminate three subtypes well (Fig. 

2). In order to quantitatively evaluate how well these two singular value vector dis-

criminates three subtypes, we apply linear discriminant analysis (LDA) with using 

leave one out cross validation (LOOCV) (Table 1).  It achieved as high as 95 % accu-

racy, which is almost equal to that by DIABLO.  

Table 1.  The confusion table obtained by applying LDA to three cancer subtypes with 𝑢1𝑗  and 

𝑢4𝑗 .  LOOCV is used. Row: inference, column: true subtypes. Numbers in bold represent those 

of correctly predicted samples. 

 Basel Her2 LumA 

Basel 42 4 0 

Her2 2 25 2 

LumA 1 1 73 

Next, in order to see if the limited number of mRNAs, miRNAs and proteomes can be 

selected to discriminate three cancer subtypes well, we select subsets of these three 

features. In order that, we first need to find which 𝑢ℓ1𝑖1

mRNA, 𝑢ℓ2𝑖2

miRNA, and  𝑢ℓ3𝑖3

prot
 are most 

associated with  𝑢1𝑗  and 𝑢4𝑗 . This requires the identification of core tensor, 

𝐺(ℓ1, ℓ2, ℓ3, ℓ4), having the largest absolute values with ℓ4 = 1,4. Table 2 shows the 

list of those 𝐺(ℓ1, ℓ2, ℓ3, ℓ4) s with the descending order of absolute values of 

𝐺(ℓ1, ℓ2, ℓ3, ℓ4)s. It is obvious that  𝐺(ℓ1, ℓ2, ℓ3, ℓ4)s with 1 ≤  ℓ1, ℓ2  ≤ 2 and 1 ≤
 ℓ3  ≤ 4 have larger absolute values. Then we compute the squared summation of 

singular value vectors attributed to 𝑖1th mRNA, 𝑖2th miRNA, and 𝑖3th proteome as  
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∑ (𝑢ℓ1𝑖1

mRNA)2

2

ℓ1=1

 

∑ (𝑢ℓ2𝑖2

miRNA)2

2

ℓ2=1

 

∑ (𝑢ℓ3𝑖3

prot
)2

4

ℓ3=1

 

 

     

and select top ranked ten mRNAs, miRNAs and proteome with larger squared sum-

mation of singular value vectors. 

Table 2. 𝐺(ℓ1, ℓ2, ℓ3, ℓ4)s sorted descending order of absolute values among those having ℓ4 =
1, 4. 

rank ℓ1 ℓ2 ℓ3 ℓ4 G(ℓ1,ℓ2,ℓ3,ℓ4) 

1 1 1 1 1 -407857.582 
2 1 1 4 4 -209720.615 
3 2 1 1 4 -20452.480 
4 2 1 3 1 -11677.505 
5 2 1 4 1 -10428.742 
6 2 1 2 1 10157.467 
7 1 1 2 1 -8973.774 
8 1 2 1 4 8360.976 
9 2 1 5 4 -6628.467 

10 1 1 3 4 6623.046 
Fig. 3 shows the heatmap generated using selected 10 mRNAs, 10 miRNAs and 10 

proteome. It is obvious that three subtypes are clustered well separately; it is competi-

tively well as compared with the  heatmap generated by DIABLO2. In addition to this, 

three features that share same profiles are clustered together as in the result by 

DIABLO (see hierarchical clustering of columns in Fig. 3). This suggests that TD 

based unsupervised FE has ability to select distinct features sharing same profiles 

over three subtypes as DIABLO achieved. 

4 Discussions 

In this paper, I applied recently proposed TD based unsupervised FE, which was ap-

plied to wide range of studies [4-35], to multiomics data analysis. Apparently, the 

performance achieved by TD based unsupervised FE is at most competitive to that of 
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DIABLO.  Thus, one might wonder why TD based unsupervised FE is recommended 

in this study. There are multiple reasons for this recommendation. First, DIABLO 

used random number seed to perform analysis. This means, every time we select dif-

ferent random number seed, we inevitably have distinct sets of selected mRNAs, 

miRNAs and proteome, although overall performance remains unchanged.  This 

might be problematic because we might be interested in identification of disease caus-

ing genes. If distinct set of features are selected every time we change random number 

seed, it might prevent us from interpreting the outcome biologically. In contrast to 

this, TD based unsupervised FE can give us quite stable outcomes. Not only TD based 

unsupervised FE does not need random number seed, but also it is quite stable even 

when samples are resampled [4-35]. In this point, TD based unsupervised FE is more 

suitable to be employed than DIABLO form the biological point of views. 

 

Fig. 2.  Scatter plot of 𝑢1𝑗  (horizontal axis) and 𝑢4𝑗  (vertical axis).  

. 
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Fig. 3. Heatmap of selected 10 mRNAs (blue), 10 miRNAs (pink), and 10 proteome (cyan) .in 

columns and 150 samples (black:Basel, red:Her2, green:Luma).  Yellow: expressed expression, 

blue: depressed expression. 

Also from the computational point of views, TD based unsupervised FE is recom-

mended more than DIABLO. From the point of computational time, DIABLO re-

quires more time than TD based unsupervised FE, because DIABLO needs to learn 

from the data set and labeling while TD based unsupervised FE does not require this 

process due to unsupervised nature. In this sense, if these two achieve equally, TD 

based unsupervised FE is more recommended method than DIABLO. 
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Appendix: R code for TD based unsupervised FE 

install.packages("mixOmics") #mixOmics instlattion 

require(mixOmics) #mixOmics load  

data('breast.TCGA') #TCGA data loading  

data = list(mRNA = breast.TCGA$data.train$mrna,  

            miRNA = breast.TCGA$data.train$mirna,  

            proteomics = breast.TCGA$data.train$protein) 

install.packages("rTensor") #rTensor installation 

require(rTensor) #rTensor load  

#tensor generation 

Z <- array(NA,c(150,200,184,142)) 

for (i in c(1:150)) 

{cat(i," ") 

Z[i,,,] <-data.matrix(outer(outer(data$mRNA[i,], 

data$miRNA[i,],"*"),data$proteomics[i,],"*"))} 

#tensor decomposition 

HOSVD <- hosvd(as.tensor(Z)) 

U1 <- HOSVD$U[[1]] #x_{\ell_4,J} 

U2 <- HOSVD$U[[2]] #x_{\ell_1,i_1} 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/591867doi: bioRxiv preprint 

https://doi.org/10.1101/591867


11 

U3 <- HOSVD$U[[3]] #x_{\ell_2,i_2} 

U4 <- HOSVD$U[[4]] #x_{\ell_3,i_3} 

#150 samples scatter plot (x_{\ell_4,j}) 

plot(U1[,c(1,4)],col=breast.TCGA$data.train$subtype) 

legend(0.05,0.25,names(summary(breast.TCGA$data.train 

$subtype)),col=1:3,pch=1) 

require(MASS) #MASS load  

LD <- lda(U1[,c(1,4)],breast.TCGA$data.train$subtype,CV=T,prior=rep(1/3,3)) 

#liner discriminant anaysis 

table(LD$class,breast.TCGA$data.train$subtype) #confusion matrix 

ZZ <-order(-abs(HOSVD$Z@data[c(1,4),,,]))  

[1:20];data.frame(arrayInd(ZZ,dim(HOSVD$Z@data[c(1,4),,,])),HOSVD$Z@d

ata[c(1,4),,,][ZZ]) #sorting G with ascending order of absolute values of G  

P2 <- pchisq(rowSums(scale(U2[,1:2])^2),2,lower.tail=F) 

P3 <- pchisq(rowSums(scale(U3[,1:2])^2),2,lower.tail=F)  

P4 <- pchisq(rowSums(scale(U4[,1:4])^2),4,lower.tail=F)  

U <- 

cbind(data$mRNA[,order(P2)[1:10]],cbind(data$miRNA[,order(P3)[1:10]],data

$proteomics[,order(P4)[1:10]])) #select top 10 with larger squared summation 

of singular value vectors 

install.packages("gplots") #gplots install 

require(gplots) #gplot load  

#heatmap plot 

heatmap.2(scale(U),col=rgb(seq(0,1,by=0.1),seq(0,1,by=0.1),seq(1,0,by=-

0.1)),RowSideColors=c(rep("black",45),rep("red",30),rep("green",75)),hclustfu

n=function(x){hclust(x,method="average")},trace="none",ColSideColors=c(rep

("blue",10),rep("pink",10),rep("cyan",10))) 
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