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Abstract9

Microbiome dynamics influence the health and functioning of human physiology and the10

environment. These dynamics are driven in part by interactions between large numbers of mi-11

crobial taxa, making large-scale prediction and modeling a challenge. Here, we identify states12

and dynamical features relevant to macroscopic processes, such as infection in the human body13

and geochemical cycling in the oceans, by modeling the dynamics as stochastic motion on a14

potential energy-like landscape. We show that gut disease processes and marine geochemical15

events are associated with reproducible transitions between community states, defined as topo-16

logical features of the landscape. We find a reproducible two-state succession during recovery17

from cholera in the gut microbiomes of multiple patients. Recurrence of the late disease state18

prolongs disease duration. We find evidence of dynamic stability in the gut microbiome of a19

human subject after experiencing diarrhea during travel, in contrast to residual instability in20

a second human subject after clinical recovery from Salmonella infection. Finally, we find the21

structure of marine Prochlorococcus communities in the western Atlantic and north Pacific22

oceans to smoothly vary with temperature and depth. However, annual water column cycling23

in the Atlantic drives periodic state transitions across depths. Our approach bridges the small-24

scale fluctuations in microbiome composition and large-scale changes in state and phenotype,25

improves analyses of how changes in community composition associate with phenotype with-26

out requiring experimental characterization of underlying mechanisms, and provides a novel27

assessment of microbiome stability and its relation to human and environmental health.28

Importance29

Time series of microbial communities are difficult to analyze due to the large number of interacting30

taxa. We developed a novel analysis based on topology to detect compositional states and state31

transitions in microbial time series. Our method generalizes across biological systems and can32

identify gut microbiome dynamics associated with recovery from disease in multiple patients on33

the order of weeks, and marine bacterial dynamics driven by geochemical cycling on the order of34

years. We furthermore propose a novel definition of ecological stability that distinguishes between35

complete and incomplete recovery from infection in human gut microbiomes. Our method requires36

minimal assumptions regarding biological mechanisms. Overall, our analysis complements current37

methods for identifying key ecological processes in microbial communities, and suggests further38

developments in modeling that may improve prediction of microbial dynamics.39

Introduction40

Complex microbial ecosystems (‘microbiomes’) inhabit a diversity of environments in the biosphere,41

including the global ocean [42], soil [12], and the human gut [43]. Large-scale alterations in the com-42

position of microbiomes is often associated, whether as driver or consequence, with environmental43

processes such as seasonal geological cycling and nutrient fluctuations [14]; physiological processes44
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such as menstrual cycles [15]; and clinical phenotypes such as irritable bowel syndrome [3]. Anal-45

ysis and prediction of the large-scale dynamics of microbiome composition is thus a pressing issue46

in multiple fields of study.47

As with many biological systems, understanding of the dynamics of microbiomes is complicated48

by their high dimensionality. Numerous variables define the state of a microbiome; these include49

frequencies of microbial taxa and their genetic alleles, which are decoupled due to genomic plasticity50

and horizontal gene transfer [31, 32], and environmental conditions such as temperature, pH, and51

biochemical concentrations. A microbiome thus has a vast number of potential configurations in52

which it may, in principle, fluctuate on a short time scale. By contrast, systemic phenotypes, such53

as human gut infections or aquatic algal blooms, persist for much longer than bacterial generation54

time, and community compositions may be diverse within a phenotype [14]. Furthermore, due55

to the diverse biology of microbiomes across habitats, it may be desirable to have a quantitative56

framework that can be generalized across biological systems.57

One approach to analyzing microbiome dynamics has been to infer the network of underlying58

pairwise interactions between taxa by calculating the inverse covariance matrix from time series59

data, often as a basis for modeling population dynamics using Lotka-Volterra equations [13, 25,60

41]. Such approaches are useful for predicting fine-grained taxon-taxon interactions of importance,61

and are challenged by the compositional nature of microbiome data [39] and possible role of higher-62

order interactions [4]. A complementary coarse-grained approach is to cluster samples according63

to compositional similarity, and conceptualize dynamics as stochastic transitions between clusters64

[2, 9]. Such approaches can be used to identify large-scale shifts in compositional state, with the65

implicit assumption that each temporal sample can be assigned to one of a finite number of discrete66

categories.67

We propose to supplement these methods with a potential landscape approach. Potential land-68

scapes provide a framework for modeling the dynamics of high-dimensional, complex systems such69

as microbiomes by representing the configurations of a dynamical system—here, the possible com-70

positions of a microbiome—as coordinates in phase space, where similar configurations are located71

close together. The system dynamics are considered as stochastic motion on the resultant manifold,72

with topological features corresponding to the probable configurations of the system and trajec-73

tories between them. Features of the potential landscape, such as valleys and peaks, represent74

more and less probable compositional states, respectively, and are related to notions of attractors75

and basins of attraction in dynamical systems theory. This approach predicts that, over time,76

the system evolves along the contours of the landscape towards a local minimum of the potential;77

thus, the shape of the landscape in principle predicts the dynamics. Thus, the landscape encodes78

the underlying interactions between components, in our case microbial taxa, without explicit as-79

sumptions regarding underlying biological mechanisms (Fig. 1A). In biology, attractors and basins80

of attraction have been found in theoretical and experimental studies to correspond to states of81

population survival and extinction [6, 7, 35]; cell phenotypes in differentiating stem cells [44, 46]82

and transformed cancer cells [23, 27]; and probable states of brain activity [19]. These results show83

that topological features of the potential landscape can be thought of as metastable states asso-84

ciated with phenotypes of biological and clinical relevance as well as the dynamics of phenotypic85

transitions, and that revealing the potential landscape may have implications for modeling and86

predicting the dynamics of complex biological systems. Similarly to clustering, the composition87

can be approximated by the metastable state or states to which it belongs at a given time, and88

the trajectory of the system in phase space over time can be approximated by a succession of89

such states. However, it is important to note that this definition of system states derives from an90

underlying continuous potential landscape, and thus differs from clustering methods.91

To characterize features of the microbial potential landscape, we used topological data analysis92

(TDA), specifically the Mapper algorithm [34, 40] to infer the topological features of the potential93

landscapes for three published microbial time series data sets, two human gut microbiomes—one of94

stool samples collected from seven cholera patients from disease through recovery [22], one from two95

mostly healthy adult males [8]—and one of marine Prochlorococcus communities spanning multiple96

depths collected from one site in the Atlantic Ocean (BATS) and one in the Pacific (HOT) [28]. We97

selected these data sets in part to test our method by recapitulating biology known from the original98

studies, and in part to discover novel features not addressed by prior methods. Briefly, Mapper99

represents the underlying distribution of data in a metric space as an undirected graph, where100

each vertex comprises a non-exclusive subset of data points spanning a patch of phase space. An101

edge is drawn between each two vertices that share at least one data point (Fig. 1A), representing102
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connectivity between patches. We complement Mapper with a novel graph-theoretical analysis to103

estimate the value of the potential over each patch of phase space represented by a vertex, determine104

local minima, and define metastable community states (Fig. 1B). In both human gut and marine105

systems, we find that significant physiological and environmental events, including recovery from106

infection and geochemical cycling, correspond to recurrent successions of state transitions. We107

show that these successions are an informative coarse-grained view of microbiome dynamics, with108

implications for the assessment of ecological resilience.109

Results110

Dynamics of human gut microbiome recovery from cholera infection111

We found the cholera phase space to be partitioned by clinical phenotype, i.e. diarrhea or recovery112

(Fig. 2A). The original study [22] recognized phases of progression according to equal-time divisions113

of the diarrhea and recovery periods, respectively, of each patient. Our identification of disease114

substates,in contrast, is based on community composition and integrated across data from all115

patients. We found the diarrhea region was further subdivided into two states, 2 and 7 (Fig. 2B).116

Patients C, E, and G occupied state 7 for prolonged durations immediately before clinical recovery;117

patients A, B, and F stably occupied state 7 for approximately 20 hours, but switched to other118

states for the last few time points before clinical recovery (Fig. 2C). In the case of patient A, the119

final few time points were associated with state 5, which represented an intermediate region of the120

phase space between the diarrhea- and recovery-associated neighborhoods. These results suggest121

that state 2 constituted a universal ‘early’ diarrhea state, and state 7 a universal ‘late’ diarrhea122

state, with distinct community compositions. The original study noted taxa which consistently123

changed in abundance between the start and end of the diarrhea phase, for example Streptococcus124

and Fusobacterium [22], here we show that these compositional shifts are observable on the whole-125

community scale.126

Generally, patients occupied state 7 for longer than they did state 2, suggesting that the127

stability of the late state in a given patient influences disease duration. To quantify stability, we128

calculated a temporal correlation function for each state-patient pair during the diarrhea phase.129

Monotonically decreasing correlation functions indicate metastability; slopes become more negative130

with decreasing stability. While this analysis revealed that all patients transiently occupied state131

2, with greatest persistence in patient C, patients A, C, and E had non-monotonic correlation132

functions for state 7, coinciding with prolonged times to recovery compared to the rest of the cohort,133

with patients B and F exhibiting the expected monotonic decrease (Fig. 2D). This indicated that134

patients A, C, and E repeatedly entered and exited state 7, suggesting that prolonged diarrhea in135

these three patients may have been additionally influenced by the instability or inaccessibility of136

alternative, healthy states, and that (re-)assembly of the healthy microbial community constitutes137

a non-trivial step in recovery.138

Dynamics of two healthy adult microbiomes with transient diarrhea139

In contrast to the cholera data set, the two healthy adult gut microbiome time series from David140

et al. [8] were separated by subject (Fig. 3A). Despite being clinically healthy for most of the141

observation period, both subjects’ microbiomes experienced perturbations: subject A traveled142

from his residence in the United States to southeast Asia, twice experiencing traveller’s diarrhea;143

and subject B, also based in the US, suffered an acute infection by Salmonella. Previous studies [8,144

18] noted that, while the microbiome of A returned to its original state after travel, recovery from145

Salmonella left the microbiome of B in an alternative state. Confirming this, we found that subject146

A occupied the same regions of phase space before and after travel, while subject B occupied disjoint147

regions before and after infection. We further found that the post-Salmonella samples of subject148

B distributed over several connected components, showing that the gut microbiome of subject B149

remained in flux across several distinct compositional substates even after being clinically marked150

as having recovered (Fig 3B).151

The large connected components representing the pre- and post-travel healthy samples of sub-152

ject A and the pre-Salmonella healthy samples of subject B were each divided into several states153

(Supplementary Information Fig. 1), suggesting that the clinical ‘healthy’ phenotype of an indi-154

vidual is a probability over multiple compositionally distinct states. The existence of states in155
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microbiome phase space proposes a novel metric for microbiome resilience: comparing the distri-156

bution of samples across states between time windows. Subject A occupied states with identical157

probability before and after travel, exhibiting resilience; in contrast, subject B post-infection did158

not restore the pre-infection probability across states, despite some samples sharing states with159

pre-infection healthy samples (Fig. 4A). Thus, the restoration of the microbial community to a160

‘healthy’ state cannot be confirmed with a single time point.161

Temporal correlation functions further showed that subject A, as well as subject B before162

infection, repeatedly visited the same set of states; in contrast, subject B after infection transiently163

occupied several states without repetition (Fig. 4B). This shows that not only did the microbiome164

of subject B enter an alternative state, or probability across states, post-infection, but that this165

alternative state was not fully stabilized. It is possible that the pre-infection probability across166

states was restored in subject B after the end of the observational period.167

Recurrent seasonal dynamics of Prochlorococcus communities in the Pa-168

cific and Atlantic169

Compared to the phase spaces of human gut microbiomes, which may be discretized by individual170

or phenotype, the Prochlorococcus phase space was organized by gradients of depth (Fig. 5A) and171

temperature (Supporting Fig. 4), indicating that, in these environments, small changes to envi-172

ronmental conditions result in small changes to community structure. The phase space possessed173

multiple states (Fig 5B), with state 4 largely representing shallow fractions of the water column174

≤ 100m; states 2, 3, and 6 deeper fractions; and state 1 intermediate depths. State 5 represented175

an infrequently-occupied region sampled only by the 140m fraction at BATS on January 27, 2004,176

and by the 125m fraction at HOT on January 31, 2008. As such, state 5 possibly constitutes an al-177

ternative state for deep water fractions in mid-winter. Communities differing in depth rarely shared178

compositions, and transitioned between states, in many cases periodically across calendar years179

(Fig. 5C), showing that some communities experienced abrupt periodic shifts in environmental180

conditions due to geochemical events.181

Despite the graduated variation of composition with depth and temperature, the range of182

compositional dissimilarity across the range of environmental conditions is sufficient to constrain183

given depth fractions to a neighborhood of phase space, such that shallow- and deep-fraction184

Prochlorococcus communities rarely occupy the same compositional states over time (Fig. 5C).185

However, it is known that the BATS water column undergoes an annual late winter upwelling [28],186

intermixing communities that otherwise inhabit different depths, and homogenizing environmental187

conditions across depths. We predicted that mixing would drive communities at all depths at BATS188

to converge on a common state, while no convergence would be observed at HOT. Accordingly,189

we observed a transition to state 1 by all depths at BATS in January of each year. After June,190

depths 1-20m and 120-200m relax toward states characteristic of shallow and deep depth fractions,191

respectively, while state 1 persists longer in intermediate depths 40-100m. By contrast, no such192

upwelling occurs at HOT, and the probability of a given depth fraction occupying any state remains193

uniform over the calendar year; the distribution is especially stationary for shallow depths (Fig. 5C).194

This periodicity was also evident in periodic correlation functions for BATS, and non-periodic for195

HOT (Fig. 5D).196

Robustness of potential estimation197

Given that the data sets analyzed here are among the largest longitudinal microbiome data sets198

currently available, we asked whether the biological hypotheses could have been obtained from199

sparser data sets. We focused on our finding that microbiome phase spaces are structured by200

latent variables representing host phenotypes or environmental conditions, and examined whether201

this structuring was robust to data rarefaction. We found that the partitioning of the phase202

space by clinical phenotype in the case of the cholera patients, by subject in the case of the two203

healthy adult humans, and the gradation by depth in the case of Prochlorococcus communities,204

are robust to all rarefaction tests performed. In the case of cholera patients, nodes remained205

divided into those representing mostly samples from the diarrhea phase and those representing206

the recovery phase, with edges being more dense between nodes of the same phenotype than207

those of different phenotypes (Supporting Information Fig. 3). In the case of the two healthy208

adult humans, nodes were consistently dominated by samples from one subject, with edges being209

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 14, 2019. ; https://doi.org/10.1101/584201doi: bioRxiv preprint 

https://doi.org/10.1101/584201


more dense between nodes representing the same subject than those representing different subjects210

(Supporting Information Fig. 4). For the Prochlorococcus data set, nodes aggregating samples211

from similar depth fractions were more densely connected than those representing disparate depths212

(Supporting Information Fig. 5).213

Discussion214

We identified unrecognized dynamics governing large-scale phenotypes in microbial time series215

data by using TDA to infer the shape of a potential landscape from 16S and ITS ribosomal RNA216

time series data. Our results reveal the role of latent physiological and environmental variables217

[29], such as disease phenotype and phase of geochemical cycles, in organizing microbiomes over218

time. We observed common dynamics across instances of ecological processes in the two gut and219

one environmental timeseries datasets we studied. Using our approach, one can thus begin to220

infer general mechanisms that determine large scale phenotypes of clinical and environmental im-221

portance. The elements of our method—the definition of a metric phase space using the square222

root of the Jensen-Shannon divergence, the representation of the phase space using TDA, and223

the characterization of topological features using the adapted kNN density estimator and shortest224

graph distance searches—are specifically advantageous for analyzing high-dimensional composi-225

tional data. Compared to representational methods such as PCA, our method benefits from using226

all distance information; and compared to clustering techniques, our method does not require227

specifying the number of states, such as required in k-means.228

While subjects in both human gut data sets experienced transient infection by bacterial pathogens,229

the large-scale dynamics differed between the two groups. We found that multiple cholera patients230

followed a trajectory of early- to late-stage disease states. In contrast, the two healthy subjects231

from the year-long data set experienced apparently random jumps between states during Salmonella232

infection and traveler’s diarrhea, respectively. This discordance between the two human gut mi-233

crobiome datasets suggests that microbial infections can potentially be classified into ‘ordered’234

and ‘disordered’ types. Ordered infections are characterized by a reproducible trajectory through235

phase space, while disordered infections are characterized by unpredictable progression through236

phase space. The latter case represents a version of the ‘Anna Karenina principle,’ meaning indi-237

vidual microbiomes are more dissimilar during a particular perturbation than during health [45],238

while the former represents an inversion of the principle. Scale is likely important in this dis-239

tinction: independent of the deterministic or stochastic nature of the perturbation induced by240

an infection, if its magnitude is smaller than ‘baseline’ fluctuations of the healthy microbiome,241

variations between individuals will remain the dominant variable in organizing the phase space. If242

the magnitude of the perturbation is larger, it may overwhelm individual variability and cause the243

phase space to instead appear organized by phenotype. Thus, data on the variability of healthy244

microbiomes over time between and within individuals will be crucial to characterizing the impact245

of a given disease on the microbiome.246

Our analysis of the David et al. data set shows that the microbiome of a healthy individual247

transitions between states over time. While key dominant taxa may persist, no single large-scale248

compositional state defines healthy physiology. However, an individual microbiome may occupy249

states with the same probability during two separate ‘healthy’ time windows. Integrating the250

information over time for each of the healthy periods, the physiological phenotype can be inferred251

to be stable despite the system state being dynamic. Put differently, if one interprets states as252

microstates of the microbiome composition, a systemic clinical or environmental phenotype could253

then be regarded as a macrostate, and a resilient ‘healthy’ microbiome will remain in a stable254

macrostate over time.255

This notion of resilience as identical probability across states before and after a perturbation256

can be generalized to a notion of dynamic stability, defined as stationary probability across states257

over time. Dynamically stable microbiomes do not necessarily stabilize within a single state,258

but revisit a given set of states with fixed probability. Our temporal correlation analysis shows259

that dynamically stable microbiomes, such as subject A and subject B pre-infection from the260

study in [8], are characterized by non-monotonic temporal correlation functions, indicating the261

microbiome revisits the same states over time. In contrast, unstable microbiomes, such as subject262

B post-infection, exhibit monotonically decaying correlation functions, indicating the microbiome263

transiently occupies compositional states without recurrence. Dynamical instability can persist264

after infection even in the microbiome of an individual clinically marked as having recovered from265
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infection, as in the case of subject B, revealing additional nuances to the association between266

stability and health in human microbiomes. The ability to assess resilience from data in the absence267

of detailed knowledge of the underlying network of microbe-microbe interactions complements268

model-based methods that analytically solve for fixed points and linear stability [5].269

For the two human gut microbiome data sets, we observe some of the same phenomena as the270

original studies: for the seven cholera patients, certain taxa were differentially abundant throughout271

the progression of disease [22]; and for subject B of the two healthy males, that the pre-Salmonella272

microbiome composition was not recovered by the end of the experiment [8]. In the first case, we273

remark that differential abundance of individual taxa does not necessarily imply the existence of274

large-scale compositional states consistent across patients and disease phases, such as we describe275

here. In the second case, we additionally found multiple states in the pre- and post-perturbation276

healthy phases of both subjects, and showed that restoration of a healthy and resilient microbiome is277

associated with the recovery not of a specific composition but of a distribution across compositional278

states.279

We point out several caveats regarding our method. First, though we defined the phase space280

using the Jensen-Shannon distance, other metrics may be used, and the results of analysis using281

different metrics for the same data should be compared in future applications. Second, due to282

the lack of an established protocol for selecting Mapper hyperparameters, we used a heuristic283

method to choose their values for our analyses. A more rigorous optimization method is desirable,284

especially one developed against synthetic data from de novo simulations where the ‘ground truth’285

of the parameters, and thus the shape of the potential landscape, are known a priori. Third, we286

use Mapper to create a representation of the potential landscape, but the landscape and question287

of whether it is effective to model microbiome dynamics in a given case using a potential landscape288

are independent of Mapper and TDA, and other methods may be used. Fourth, we assume the289

data accurately represent the compositions of the sampled communities, when in fact challenges290

exist with translating sequencing data into compositions [16, 17]; addressing these challenges is291

outside the scope of this manuscript.292

In real ecosystems such as those under study, several factors may complicate the basic prediction293

of the potential landscape that real ecosystems evolve toward configurations of lowest potential,294

and thus limit predictive power. First, real systems are open to their environment and subject295

to external perturbation; the dynamics of an ecosystem experiencing strong driving forces may296

deviate from that predicted by the potential landscape. In addition, strong stochastic fluctuations297

in microbial populations may weaken the predictive power of the potential landscape; however,298

in this case, the potential landscape may still form an informative ‘deterministic skeleton’ of the299

dynamics [1]. Third, high dimensionality may also increase the number and complexity of paths300

by which the system evolves toward lower potential. Finally, the time scales of sampling may differ301

from those that are predictable by the potential landscape; for example, the potential landscape302

may well predict the dynamics of gut microbiome relaxation after a meal on the time scale of303

hours, but this may not be captured by daily sampling. Nolting [30] and Abbott [1] discuss some304

of these factors in detail. As above, analysis of synthetic data generated by theoretical population305

dynamics models may help elucidate the limits of potential landscape inference and prediction.306

In addition to offering a novel quantitative description of microbiome states and dynamics,307

we hope our analysis will, in time, facilitate predictive modeling of the dynamics and forecast-308

ing of major state transitions in the microbiome. As an example, our approach to identifying309

states from microbial time series can be used to infer state transition probabilities under different310

conditions, and thus can serve as a basis for fitting the parameters of Markov chain models [9,311

11]. Alternatively, the theory of critical transition forecasting [6, 7, 26, 37, 36] is closely linked312

to the concept of the potential: as perturbations destabilize a system, it ascends the potential313

gradient and eventually reaches a tipping point from where it can rapidly enter into an alternative314

stable state. Topological analyses, in turn, may enable characterization of the system state and315

potential based on past observations, and real-time estimation of its stability and state transition316

probability. Both of these approaches allow modeling and prediction of major dynamical events317

without detailed knowledge of underlying mechanisms, and may prove pivotal to understanding318

complex, data-rich biological systems not limited to microbiomes, but also including, for instance,319

gene regulatory networks and animal ecosystems.320
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Methods321

Human gut microbiome data and preprocessing322

The publicly available data that we re-analyzed here were generated by David et al [8] accessible323

on the European Nucleotide Archive (ENA) under the accession number ERP006059, and by Hsiao324

et al [22] on the NCBI Short Read Archive (SRA) under the accession number PRJEB6358. The325

downloaded reads were trimmed with V-xtractor version 2.1 [21] to ensure the amplicon sequences326

could be aligned across consistent fractions of the 16S rRNA variable regions. Trimmed reads327

were then clustered into OTUs at a Levenshtein distance of two using CrunchClust version 43 [20]328

and classified up to the family level using MOTHUR version 1.36.1 [38] and Silva release 128 [33]329

reference sequences.330

Prochlorococcus data331

Data from Malstrom et al [28] was obtained from the Biological and Chemical Oceanography Data332

Management Office (https://www.bco-dmo.org), accession number 3381.333

Mapper334

Conceptually, the Mapper algorithm accepts as input a matrix of distances or dissimilarities be-335

tween data, and aims to represent the shape of the distribution of data points in high-dimensional336

phase space as an undirected graph. In this graph, vertices represent neighborhoods of phase space337

spanned by subsets of adjacent data points, and edges represent connectivity between neighbor-338

hoods. In brief, it does this by dividing the data into overlapping subsets that are similar according339

to the output of at least one filter function that assigns a scalar value to each data point, perform-340

ing local clustering on each subset, and representing the result as an undirected graph, where each341

vertex represents a local cluster of data points, and edges between vertices represent at least one342

shared data point between clusters.343

Distance matrix344

We interpreted microbiome relative abundances to be probability distributions, and thus used the345

square root of the Jensen-Shannon divergence as a metric [24]. However, it is important to note346

that any other metric can be used in place of the Jensen-Shannon distance, such as an Euclidean347

calculated from centered [25] or isometric [39] log-transformed relative abundances.348

Filter functions and binning349

For the filter functions used by Mapper to bin data points, we performed principal coordinate350

analysis (PCoA, also known as classical multidimensional scaling) in two dimensions on the pairwise351

distance matrix, and used the ranked values of principal coordinates (PCo) 1 and 2 as the first and352

second filter values for Mapper, following Rizvi et al. [34]. PCo ranks are an appropriate filter for353

our purposes, as it assigns similar filter values to points that are relatively close together in the354

original phase space. We wish to note that while PCoA leads to loss of information, the following355

local clustering step is performed using subsets of distances from the original distance matrix, and356

is thus not affected. The data points were then binned by overlapping intervals of the two ranked357

principal coordinates. For hyperparameters specifying these bins and their overlaps, see Table 1.358

Local clustering359

The algorithm first performs hierarchical clustering from all pairwise distances between data points360

within a bin of filter values. Then, it creates a histogram of branch lengths using a predefined361

number of bins, and uses the first empty bin in the histogram as a cutoff value, separating the362

hierarchical tree into single-linkage clusters. The algorithm thus finds a separation of length scales363

within each neighborhood of phase space represented by a bin of the filter values. We used the364

default number of histogram bins, 10, for each data set (Table 1).365
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Creating the undirected Mapper graph366

The final output is produced by representing each local cluster of data points as a vertex, and367

drawing an edge between each pair of vertices that share at least one data point. When plotting,368

the size of each vertex represents the number of data points therein.369

Selection of hyperparameters370

The Mapper algorithm is relatively new, and there are currently no standard protocols to optimize371

the values of the hyperparameters. For our purposes, it was important that the algorithm achieved372

a sufficiently high resolution in partitioning data, but also adequately represented connections373

between regions of phase space. We thus used the following heuristic to set the number of intervals374

and percent overlap for each data set.375

1. The largest vertex in the resultant Mapper graph should represent no more than ≈ 10% of376

the total number of data points in the set;377

2. the number of connected components representing only one data point should be minimized.378

We acknowledge that a heuristic determination of appropriate hyperparameter values leaves379

much to be desired; as such, we recommend future in-depth theoretical explorations of how the380

Mapper output depends on the choice of hyperparameters.381

Potential estimation382

We estimated the potential for each vertex by calculating the k-nearest neighbors (kNN) density
[10] for each constituent data point i:

kNN(i, k) =

∑k
j dij

k
(1)

where dij is the distance between points i and j, choosing k equal to 10% of the number of samples
in each data set, rounded to the nearest integer. kNN varies inversely with density, making it a
proxy for the potential. For a vertex V representing n points, we define its potential as

U(V ) =

∑n
i∈V kNN(i, k)

n2
(2)

The n2 term in the denominator compensates for the differing sizes of vertices.383

State assignment384

We then defined states as topological features of the landscape surrounding local minima of U . We
designated each vertex with lower U than its neighbors to be a local minimum of the potential.
Connected vertices tied for minimum U were each assigned to be a local minimum. To approximate
a gradient, we converted the undirected Mapper graph to a directed graph, with each edge pointing
from the the vertex with greater U to the one with lower U . For each non-minimum vertex, we
found the graph distance dg to each local minimum constrained by edge direction. We defined the
state Bx of a minimum Vx as the set of vertices V with uniquely shortest graph distance to Vx:

V ∈ Bx if dg(V, Vx) < dg(V, Vy) (3)

for all x 6= y and Vy ∈M , where M is the set of all local minima (Fig 1B). Vertices equidistant to385

multiple minima were defined to be unstable regions unassigned to any state. Multiple connected386

minima were defined as belonging to the same state. Notably, one data point may be associated387

with multiple vertices and states, or an unstable region and at least one state: we interpreted this388

to mean that the point is near a saddle point separating states, and as the ‘true’ coordinates of the389

saddle point are unknown, the data point is assigned to all such states and/or an unstable region390

with uniform weight.391
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Calculating the temporal correlation function392

Given that a system occupied state Bx at time t, we defined the temporal correlation to be the
expectation that it will still (or again) occupy state Bx at time t+ τ :

fx(t) =

{
1 if system is associated with state Bx at time t
0 otherwise.

(4)

corrx(τ) = 〈fx(t+ τ)〉 (5)

We calculated the correlation function for each state x visited by a subject during a characteristic393

period and for all sampled intervals of length τ , where fx(t) = 1. For the cholera data set, we394

calculated correlation functions for each state visited by each subject over the disease period. For395

the data set of two healthy adult males, we calculated correlation functions for each state visited396

by each subject in each healthy period, either before or after infection. For the Prochlorococcus397

data set, we calculated correlation functions for each state at each depth fraction at either site.398

Where a data point is associated with multiple states, we weigh the association with each state399

as f ′x(t) =
1
pfx(t), with p the total number of unique states associated with the system at time t,400

with the unassigned/unstable state regarded as a single distinct state.401

Rarefaction test402

We created random subsets of each data set representing 90%, 50%, and 10% of the original data403

points, repeating 10 times for each data set and downsampling ratio. We then created Mapper404

graphs representing the rarefied data using the same hyperparameters as for each of the full data405

sets. We colored the vertices to indicate the same features as for the full data sets: for the cholera406

data set, by fraction of samples belonging to the diarrhea or recovery phase; for the two healthy407

adult gut microbiomes data set, by fraction of samples obtained from each subject; and for the408

Prochlorococcus data set, by the mean depth from which samples originated. We ordered the409

vertices by feature value and used a circularized linear layout algorithm, such that vertices with410

similar feature values are adjacent. Finally, we used shading to display edge densities.411

Software and data412

The main repository for the study can be found on GitHub, at http://github.com/kellylab/413

microbial-landscapes.414

An open-source implementation of Mapper in R, TDAmapper, was used for the main analysis415

and can be found at http://github.com/wkc1986/TDAmapper. This package was forked from the416

original implemented by Daniel Müllner which is maintained by Paul T. Pearson and can be found417

at https://github.com/paultpearson/TDAmapper.418
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Figure 1: Using Mapper to characterize the microbial phase space. A. Using the Mapper algorithm
to infer the potential landscape of a toy ecosystem. The mutually antagonistic interaction between
species X and Y leads to denser sampling of the phase space where either X or Y is abundant
and the other is rare than in other regions; configurations in which X and Y are similar in density
are unstable, as small uncertainties in numerical advantage will eventually lead to the dominance
of one species over the other. This probability density is analogous to an inverse of the potential
landscape. Mapper infers a ‘skeleton’ of density from the data represented as a point cloud. This
representation preserves major features of the landscape such as the two densely-sampled clusters
separated by a sparsely-sampled region. B. Identification of local minima and metastable states in
the Mapper graph shown in A. Data density for each vertex is estimated by the mean kNN density
(see Methods) for samples associated with that vertex. The graph is converted to a directed graph,
with each edge pointing in the direction of increasing kNN density. A local minimum, highlighted in
pink, is defined as a vertex that has lower kNN than all its neighbors. Finally, the state associated
with a local minimum is defined as the set of vertices that have uniquely shortest directed graph
distance to that minimum. Non-minima vertices with equal graph distances to multiple local
minima are unassociated with any state (grey).
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Figure 2: The phase space of the cholera gut microbiome. A. Mapper representation of the
combined cholera data reveals disease- and healthy-associated neighborhoods of the phase space.
Color: fraction of samples in each vertex associated with diarrhea. Connected components of the
Mapper graph representing only one sample are not shown. Disjoint regions of phase space are
represented as separate connected components. B. Partitioning of the phase space into metastable
states. Vertices unassigned to any state are colored in grey. C. Left: progression of subject
compositions during the diarrhea phase by state, showing persistence of states over time. Y axis
and color indicate state index, with color indexing as in B. Where a sample was associated with
multiple states, all were included. Right: frequency of samples associated with each states during
the diarrhea phase for each subject with colors as in B. D. Temporal correlation function for the
diarrhea phase of each subject. Lines: smoothed empirical mean; ribbons: standard error of the
mean. Values outside the range of 0 ≤ y ≤ 1 omitted.
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Figure 3: The phase space of two healthy adult male gut microbiomes. A. Mapper representation
of the combined daily time series of two healthy adult human gut microbiomes. Connected com-
ponents of the Mapper graph representing only one sample are not shown. B. Regions of phase
space occupied by each subject before after perturbation.
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Figure 4: States and dynamics of two healthy adult male gut microbiomes. A. Frequency of states
for healthy periods before and after perturbation. X axis: state index. Y axis: frequency of
samples. B. Temporal correlation functions for the three most probable states during each event
in the ‘healthy’ phases of each subject. Lines: smoothed empirical mean; ribbons: standard error
of the mean.
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Figure 5: The landscape of Prochlorococcus communities. The combined phase space of two
Prochlorococcus communities inhabiting the Atlantic and Pacific Oceans, respectively. Connected
components of the Mapper graph representing only one sample are not shown. A. Vertices colored
by mean depth in meters of represented samples. B. Partitioning of the phase space into states.
C. Successions of states for each site-depth fraction combination. Dotted lines indicate samples
during January. Colors indicate states as in B. D. Temporal correlation functions for each state
per site-depth fraction combination.
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Tables602

Data set # intervals for (rank(PCo1), rank(PCo2)) % overlap # bins
Cholera (15, 15) 70 10

Two healthy adult males (30, 30) 50 10
Prochlorococcus (20, 20) 60 10

Table 1: Hyperparameters used to generate the Mapper representation of each data set.

Additional Files603

Supplementary information604

Supplementary figures showing the results of the data rarefaction test. Supplementary figure605

showing the temperature gradients across the Prochlorococcus phase space.606
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