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Zoonosis, the natural transmission of infections from animal to human, is a far-reaching
global problem. The recent outbreaks of Zika virus and Ebola virus are examples of viral
zoonosis, which occur more frequently due to globalization. In case of a virus outbreak,
it is helpful to know which host organism was the original carrier of the virus. Once the
reservoir or intermediate host is known, it can be isolated to prevent further spreading
of the viral infection. Recent approaches aim to predict a viral host based on the viral
genome, often in combination with the potential host genome and using arbitrary selected
features. This methods have a clear limitation in either the amount of different hosts
they can predict or the accuracy of the prediction. Here, we present a fast and accurate
deep learning approach for viral host prediction, which is based on the viral genome
sequence only. To assure a high prediction accuracy we developed an effective selection
approach for the training data, to avoid biases due to a highly unbalanced number of
known sequences per virus-host combinations.
We tested our deep neural network on three different virus species (influenza A virus,
rabies lyssavirus, rotavirus A) and reached for each virus species a AUC between 0.94
and 0.98, outperforming previous approaches and allowing highly accurate predictions
while only using fractions of the viral genome sequences. We show that deep neural
networks are suitable to predict the host of a virus, even with a limited amount of
sequences and highly unbalanced available data. The deep neural networks trained for
this approach build the core of the virus host predicting tool VIDHOP (VIrus Deep learning
HOst Prediction).
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INTRODUCTION

Zoonosis, more specifically the cross-species transmission of viruses, is a significant threat to
human and livestock health, because during a viral breakout it can be difficult to asses from
where specific viruses originated1;2. However, this information can be crucial for the effective
control and eradication of an outbreak, as the virus needs time to fully adapt to the new human
or animal host before it can spread within the new host species. Only with this information can
the original host be separated from humans and livestock. Such isolation can limit the zoonosis
and thus can also limit the intensity of a viral outbreak.

Various different computational tools for predicting the host of a virus by analyzing its DNA
or RNA sequence have been developed. These methods can be divided in three general
approaches: supervised learning3–5, probalistic models6 and similarity rankings7;8. All of these
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approaches require features with which the input sequence can be classified. The features
used for classification are mainly k-mer based with various k sizes between 1-8. In the case
of probabilistic models and similarity rankings, not only the viral genomes but also the host
genomes have to be analyzed.

Still today, it is largely unknown how viruses adapt to new hosts and which mechanisms are
responsible for enabling zoonosis2;9;10. Because of this incomplete knowledge it is likely to choose
inappropriate features, i.e., features of little or no biological relevance, which is problematic for
the accuracy of machine learning approaches. In contrast to classic machine learning approaches,
deep neural networks have the ability to learn features, necessary for the solving a specific task,
by themselves.

In this study, we present a novel approach, using deep neural networks, to predict viral hosts
by analyzing either the whole or only fractions of a given viral genome. We selected three
different virus species as individual datasets for training and validation of our deep neural
networks. These datasets consist of genomic sequences from influenza A virus, rabies lyssavirus
and rotavirus A, together with the information of 49, 19 and 6 different known host species,
respectively. These known viral hosts are often phylogentically close related (see Figure 2)
and previous prediction approaches have combined single species or even generas to higher
taxonomical groups to reduce the classification complexity to the price of prediction precision4;6.
In contrast, our approach is capable of predicting on host species level, providing much higher
accuracy and usefulness of our predictions.

Our training data consists of hundreds of genomic sequences per virus-host combination. The
amount of sequences per combination is unbalanced. Meaning that some classes are much more
common than others. We provide an approach to handle this problem by generating a new
balanced training set at each training circle.
Typically the training of recurrent neural networks on very long sequences is very time consuming
and inefficient. TBPTT11 tries to solve this problem by splitting the sequences. We provide
a method to regain prediction accuracy lost through this splitting process, leading to a fast
efficient learning of long sequences on recurrent neural networks.
In conclusion, our deep neural network approach is capable of predicting far more complex
classification problems then previous approaches3–6;12. Meaning, it is more accurate for the same
amount of possible hosts and can predict for more hosts with a similar accuracy. Furthermore,
our approach does not require any host sequences, which can be helpful due to the limited
amount of reference genomes of various species, even ones which are typically known for zoonosis
such as ticks and bats13;14.

METHODS

General workflow

The general workflow of our approach is designed to achieve multiple goals: (I) select, preprocess
and condense viral sequences with as little information loss as possible (II) correctly handle
highly unbalanced datasets to avoid bias during the training phase of the deep neural networks
(III) present the output in a clear user-friendly way while providing as much information as
possible.
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Our workflow for creating deep neural networks to predict viral hosts consisted of five major
steps (see Figure 1). First, we collected all nucleotide sequences of influenza A viruses, rabies
lyssaviruses and rotaviruses A with a host label from the European Nucleotide Archive (ENA)
database15. We curated the host labels using the taxonomic informations provided by the
National Center for Biotechnology Information (NCBI), leading to standardized scientific names
for the virus taxa and host taxa. Standardization of taxa names enables swift and easy filtering
for viruses or hosts on all taxonomic levels.Next, the sequences from the selected hosts and
virus are then divided into three sets: the training set, the validation set and the test set. We
provide a solution to use all sequences of an unbalanced dataset without biasing the training
in terms of sequences per class, while limiting the memory needed to perform this task. Then,
the length of the input sequences is equalized to the 0.95 quantile length of the sequences and
subsequently further truncated in shorter fragments and parsed into numerical data to facilitate
a swift training phase of the deep neural network. After the input preparation the deep neural
network predicts the hosts for the subsequences of the originally provided viral sequences. In
the final step, the predictions of the subsequences are analyzed and combined to a general
prediction for their respective original sequences.

deep neural
network 
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validate 20%

test 20%

create
subsets
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combine predictions
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Host n
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Figure 1. The general workflow consists of several steps. First, suitable viral sequences have to be collected
and standardized. Next, these sequences will be distributed into the training set, validation set and test set.
The sequences are then adjusted in length and are parsed into numerical data, which is then used to train the
deep neural network. The neural network predicts the host for multiple subsequences of the original input. The
subsequence predictions are then combined to a final prediction.

Collecting sequences and compiling datasets

Accession numbers of influenza A viruses, rabies lyssaviruses and rotaviruses A were collected
from the ViPR database16 and Influenza Research Database17 and all nucleotide sequence
information were then downloaded from ENA (status 2019-07-12).
From the collected data we created one record per virus species with all known hosts that
had at least 100 sequences. All available sequences were used for each of these hosts (see Figure 2).

To train the deep neural network we divided our dataset into three smaller subsets, a training
set, a validation set and a test set.
Classically, in neuronal network approaches the data is divided into a ratio of 60% training
set, 20% validation set and 20% test set with a balanced number of data points per class.
Since in our example nucleotide sequences are the data points and the different hosts are the
classes, this would lead to an unbiased training with respect to sequences per host. One major
disadvantages is that for huge unbalanced datasets, such as typical viral datasets, the majority
of sequences would not be used. This is because the host with the smallest number of sequences
would determine the maximum usable amount of sequences per host (see Figure 3a).
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Figure 2. At the top the examined virus species are listed with the total amount of used nucleotide sequences
shown in brackets. On the left the potential host species are listed together with the total number of available
sequences for this three viruses. The matrix lists the corresponding number of sequences for each virus-host
combination used in this study. Dendrograms indicate the phylogenetic relationships of the investigated viruses
and host species. As it can be seen, there is a strong imbalance in available viral sequences per virus-host pair.
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A more appropriate approach to deal with large unbalanced datasets is to define a fixed validation
set and a fixed test set and create variable training sets from the remaining unassigned sequences.
In the following we call this the generator approach. For each training circle (epoch), a new
training set is created by randomly selecting the same number of unassigned sequences per host.
The number of selected sequences per host corresponds to the number of unassigned sequences
of the smallest class. With this generator approach bias in the training set in terms of sequences
per host is avoided while making use of all available sequences. Especially hosts with large
quantities of sequences benefit from the generation of many different training sets with random
sequence composition.

Class
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validate 20%

test 20%
Class
2

Class
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validate 20%

test 20%

training 60%random
selection

Class
1

Class
2

Class
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Figure 3. Comparison between the classic approach (a) of creating a balanced dataset and the generator
approach (b). In the classic approach the class with the smallest amount of data points defines the amount of
usable data points for all classes. The generator approach creates every epoch a new random composition of
training data points from all data points which are not included in any of both fixed validation set and test set.
For every epoch, the training set is balanced according to the data points per class. The generator approach can
use all available data in a unbalanced dataset, without biasing the training set in terms of data points per class,
while limiting the amount of computer memory needed.

Input preparation

The training data needs to fulfill several properties to be utilizable for neural networks. The
input (here, nucleotide sequences) has to be of equal length and also has to be numerical. To
achieve this, the length of the sequences was limited to the 0.95 quantile of all sequence length
by truncating the first positions or in the case of shorter sequences by extension. For sequence
extension different strategies were tested and evaluated (see Figure 4, Supplement Table S1):

• Normal repeat: repeats the original sequence until the 0.95 quantile of sequence length is
reached, all redundant bases are truncated.

• Normal repeat with gaps: between one and ten gap symbols are added randomly between
each sequence repetition.

• Random repeat: appends the original sequence with slices of the original with the same
length as the original. For this purpose, the sequence is treated as a circular list, that the
end of the sequence is followed by the beginning of the sequence.

• Random repeat with gaps: like random repeat but repetitions are separated randomly by
one to ten gap symbols.
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• Append gaps: adds gap symbols at the end of the sequence until the necessary length is
reached.

• Online: uses the idea of Online Deep Learning 18 , i.e., slight modifications to the original
training data are introduced and learned by the neuronal network, next to the original
training dataset. In our case, randomly selected subsequences of the original sequences are
provided as training input. Therefore more diverse data is provided to the neural network.

• Smallest: all sequences are cut to the length of the shortest sequence of the dataset.

After applying one of the mentioned input preparation approaches, each sequence is divided in
multiple non-overlapping subsequences (see Figure 4). The length of these subsequences ranged
between 100 and 400 nucleotides, depending on which length results in the least redundant
bases. Using subsequences of distinct shorter length than the original sequences is a common
approach in machine learning to avoid inefficient learning while training long short-term memory
networks on very long sequences (see, Truncated Backpropagation Through Time approach19).
Finally, all subsequences are encoded numerically, using one hot encoding to convert the
characters A, C, G, T, -, N into a binary representation (e.g., A = [1, 0, 0, 0, 0], T = [0, 0, 0, 1, 0],
− = [0, 0, 0, 0, 0]). Other characters that may occur in the sequence data were treated as the
character N.

{One Hot Encoding

A = [0,0,0,0,1]
C = [0,0,0,1,0] ...
N = [1,0,0,0,0]

Repeat input sequences.
Cut off at specified length.

Split each long sequence 
in multiple subsequences.

Parse the sequences.Get samples from subsets.

Figure 4. Conversion of given input sequence data into numerical data of equal length on the example of the
normal repeat method. Each sequence is extended through self-repetition and is then trimmed to the 0.95
quantile length of all sequences. Sequences are then split into multiple non-overlapping subsequences of equal
length. Each subsequence is then converted via one hot encoding into a list of numerical vectors.

Deep neural network architecture

The performance of the neural network is greatly determined by its underlying architecture.
This architecture needs to be complex enough to fully use the available information but at the
same time small enough to avoid overfitting effects.
All our models (i.e., the combination of the network architecture and various parameter such as
the optimizer or validation metrics) were built with the Python (version 3.6.1) package Keras20

(version 2.2.4) using the Tensorflow21 (version 1.7) back-end.
In this study, two different models were built and evaluated to predict viral hosts only given the
nucleotide sequence data of the virus (see Figure 5). The architecture of our first model consists
of a three bidirectional LSTM layers22, in the following referred to as LSTM architecture (see
Figure 5a). This bidirectional LSTM tries to find longterm context in the input sequence data,
presented to the model in forward and reverse direction, which helps to identify interesting
patterns for data classification. The LSTM layers are followed by two dense layers were the
first collects and combines all calculations of the LSTMs and the second generates the output
layer. Each layer consists of 150 nodes with exception to the output layer, which has a variable
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number of nodes. Each node of the output layer represents a possible host species. Since each
tested virus dataset contains different numbers of known virus-host pairs, the number of output
nodes varies between the different virus datasets. This architecture is similar to those used in
text analysis, but specifically adjusted to handle long sequences, which are typically problematic
for deep learning approaches.
The second evaluated architecture uses two layers of convolutional neural networks (CNN) nodes,
followed by two bidirectional LSTM layers and two dense layers. In the following we will refer
to this as the CNN+LSTM architecture (see Figure 5b). Similar to the LSTM architecture, each
layer consists of 150 nodes with exception to the output layer. The idea behind this architecture
is that the CNN identifies important sequence parts (first layer), combines the short sequence
features to more complex patterns (second layer), which can then be put into context by the
LSTMs, which are able to remember previously seen patterns.

Input 

combine 

Results 

Prediction

Dense

Purpose:

Node type:

Context specific
pattern recognition

bidir-LSTM

(a)

Input 

Pattern
recognition

temporal
order

combine 
Results 

Prediction

CNN Dense

Purpose:

Node type: bidir-LSTM

(b)

Figure 5. Comparison of the two evaluated architectures. The first architecture (a) is similar to neural networks
for text analysis. The bidirectional LSTM analyzes the sequence forwards and backwards for important patterns,
having an awareness of the context as it can remember previously seen data. This architecture is a classic
approach for analyzing sequences with temporal information, like literature text, stocks, weather. The second
architecture (b) uses CNN nodes, which are common in image recognition, to identify important patterns and
combines them into complex features that can then be associated by the bidirectional LSTM layers. This
architecture is typically used in either more unordered data, such as images, or data with more noise, such as
base-caller output of nanopore sequencing devices.

Deep neural network training

The training was done using the generator approach as described above (see Figure 3b), i.e.,
having a fixed validation set and test set while the training set was newly compiled during
every epoch. All classes had an equal amount of sequences during each epoch, leading to an
unbiased training in regards to likelihood to observe each class. Both neural networks were
trained for 500 epochs during all performed tests. After each epoch, the quality of the model
was evaluated by predicting the hosts of the validation set, comparing the prediction with the
true known virus-host pairs. As metrics the accuracy and the categorical cross entropy were
used. If the current version of the model performed better, i.e., it had a lower validation loss or
higher validation accuracy than in previous epochs, the weights of the network were saved.
After training the model weights with the lowest validation loss and model weights with the
highest validation accuracy were applied for predicting the test set.

Final host prediction from subsequence predictions

Given a viral nucleotide sequence the neural network returns the activation score of the
corresponding output nodes of each host. The activation scores of all output nodes add up
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to 1.0 and can therefore be treated as probabilities. Thus, the activation score of each output
node represents the likelihood of the corresponding species to serve has a host of the given virus
sequence. Due to the splitting of the long sequence into multiple subsequences (see Figure 4),
the neural network predicts potential hosts for every subsequence. The predictions of the
subsequences are then combined to the final prediction of original sequence. Several approaches
to combine the subsequence predictions into a final sequence preditction were evaluated:

• Standard: shows the original accuracy for each subsequence.

• Vote: uses a majority voting over all subsequences to determine the prediction.

• Mean: calculates the mean activation score per class over all subsequences and predicts
the class with the highest mean activation.

• Standard deviation: calculates the standard deviation of each subsequence prediction and
uses them as a weight for the corresponding subsequence to calculate their mean activation
score.

Table 1. Comparison of host prediction results in regards to the different approaches that can be used to merge
prediction scores of subsequences. In this example, a viral nucleotide sequence was split into five subsequences
and each of them were used to predict the corresponding host. Depending on the subsequence activation score
merging approach, the final host prediction can vary.

subsequences 1 2 3 4 5 Voting Mean Std-div
Human 0.4 0.69 0.0 0.15 0.4 - 0.328 0.0575
Swine 0.3 0.3 0.01 0.1 0.22 - 0.186 0.0299
Avian 0.3 0.01 0.99 0.75 0.38 - 0.486 0.1457

std (weight) 0.0471 0.2786 0.4643 0.2953 0.0805 - - -
predicted Human Human Avian Avian Human Human Avian Avian

After combining the host predictions of a given viral sequence’s subsequences the single most
likely host can be provided as output. However, this limits the prediction power of the neural
network. For example, a virus which is able to survive in two different host species will likely
have a high activation score for both hosts. Our tool VIDHOP reports all possible hosts that
reach a certain user-defined activation score threshold or it can report the n most likely hosts
where n is also an user adjustable parameter.

RESULTS & DISCUSSION

To evaluate our deep learning approach, we applied it to three different datasets, each containing
a great number of either influenza A virus, rabies lyssavirus or rotavirus A genome sequences
and the respectively known host species. We tested two different architectures and six different
input sequence preparation methods. For all twelve combinations, a distinct model was trained
for 500 epochs and their prediction accuracies were tested, using none or any of the described
subsequence prediction approaches.
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Rotavirus A dataset

The rotavirus A dataset consists of nearly 50,000 viral sequences, which are associated to one
of six phylogentically distinct host species. For the LSTM architecture all sequence input
preparation strategies except append gaps and smallest, perform with an accuracy over 84%
(see Table 2). However, there are significant differences in the host prediction accuracy between
the two different architectures of the neural network. Overall, the LSTM architecture achieves
an higher accuracy than the CNN+LSTM architecture with 85.83% and 81.30%, respectively.
The highest accuracy was observed with the combination of the LSTM architecture and the
normal repeat input preparation. Note that the LSTM architecture has difficulties learning
some training sets (see LSTM and smallest). This is probably due to the relatively long input
sequence, since the LSTM must propagate the error backwards through the entire input sequence
and update the weights with the accumulated gradients. The accumulation of gradients over
hundreds of nucleotides in the input sequence may cause the values to shrink to zero or result
in inflating values23;24.
The host prediction based on 356 nucleotide long subsequences of the rotavirus A dataset
reaches already a high accuracy of 85.83%. Both the LSTM and the CNN+LSTM architectures
are able to identify important features, almost independent from the input preparation. The
main differences between the two architectures in the prediction accuracies derive from the
applied input preparation strategy. In total, the host prediction quality of rotavirus A sequences
achieves an area under the curve (AUC) of 0.98 (see Supplement Figure S1). This is not totally
unsuspected, since it is known that rotaviruses A show a distinct adaptation to their respective
host26.

Table 2. Host prediction accuracy in percent on the rotavirus A dataset with different architectures and input
preparation strategies. The input preparation strategy with the highest accuracy for each architecture is marked
grey. Expected accuracy by chance is ∼ 16.67%.

rotavirus A
input vs
architecture

normal
repeat

normal
repeat
gaps

random
repeat

random
repeat
gaps

append
gaps

online smallest

LSTM 84.62 85.83 85.46 85.09 43.33 84.58 13.33
CNN+LSTM 70.73 75.34 81.30 77.50 38.41 77.60 75.83

Rabies lyssavirus dataset

The rabies lyssavirus dataset consists of more than 13,000 viral sequences, which are associated
to 19 different host species, including closely and more distantly related species. The applied
input preparation has a great impact on the prediction accuracy of the rabies lyssavirus dataset,
with random repeat being the best performing (see Table 3). Despite using only an subsequence
length of 100 bases the accuracy of each subsequence prediction is very high. The LSTM
architecture reaches a higher accuracy then the CNN+LSTM architecture for the rota lyssavirus
dataset with 74.02% and 71.98%, respectively. The highest accuracy per subsequence is reached
with the combination of the random repeat input preparation and the LSTM architecture.
Compared to the rotavirus A dataset the higher amount of host species and closer relation
between them makes the rabies lyssavirus dataset harder to predict. In total, the host prediction
quality of rabies lyssavirus sequences achieves an AUC of 0.98 (see Supplement Figure S2).
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Table 3. Host prediction accuracy in percent on the rabies lyssavirus dataset with different architectures and
input preparation strategies. The input preparation strategy with the highest accuracy for each architecture is
marked grey. Expected accuracy by chance is ∼ 5.26%.

rabies lyssavirus
input vs
architecture

normal
repeat

normal
repeat
gaps

random
repeat

random
repeat
gaps

append
gaps

online smallest

LSTM 58.21 68.75 74.02 72.37 18.3 64.36 65.00
CNN+LSTM 53.93 68.43 71.98 71.69 18.27 37.02 72.10

Influenza A virus dataset

The influenza A virus dataset is with more than 310,000 viral sequences and 49 associated
possible host species (around 40 of them are closely related avian species) the most complex of all
evaluated datasets. Like in the rotavirus A and rabies lyssavirus dataset, the LSTM architecture
outperforms the CNN+LSTM architecture with 44.20% and 43.54% host prediction accuracy
(see Table 4). The predictions based on 386 nucleotide long influenza A virus subsequences
reached comparable accuracies for all input preparation methods except append gaps and
smallest, were it performed worst. The overall best performing variant is a combination of
the LSTM architecture with the random repeat input preparation. The deep neural network
achieved and AUC of 0.94 (see supplement Figure S3). Despite the close evolutionary distance
between the given host species, the trained neuronal network was able to identify potential hosts
accurately. We assume that some of the influenza viruses which are part of the investigated
dataset are capable of infecting not only one but several host species, i.e., a single viral sequence
can occur in more than one host. However, since we consider only one distinct host species
for every single tested viral sequence within the test set, the measured accuracy is most likely
underestimated.

Table 4. Host prediction accuracy in percent on the influenza virus A dataset with different architectures and
input preparation strategies. The input preparation strategy with the highest accuracy for each architecture is
marked in grey. Expected accuracy by chance is ∼ 2.04%.

influenza A
input vs
architecture

normal
repeat

normal
repeat
gaps

random
repeat

random
repeat
gaps

append
gaps

online smallest

LSTM 39.27 42.86 44.20 43.54 33.96 41.53 2.04
CNN+LSTM 40.78 43.54 43.11 43.48 33.86 9.96 30.51

General observations

Overall, the host prediction quality for short subsequences for all three datasets is very high,
indicating that an accurate prediction of a viral host is possible even if the given viral sequence
is only a fraction of the corresponding genome’s size. The best performing architecture was the
LSTM, achieving the highest accuracy for all three datasets. Nevertheless, for a fast prototyping
it makes sense to use CNN+LSTM as it trains around 4 times faster and reaches comparable
results. Furthermore the CNN+LSTM architecture showed no difficulty in learning long input
sequences (see Supplement Figure S4), while the LSTM architecture frequently remained in a
state of random accuracy for a long time during training (see Supplement Figure S5).
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We observed random repeat to be the most suited input preparation, as it achieved the highest
accuracy most of the times. This approach provides the neural network with an almost random
selection of the original sequence, since the first subsequences are always the beginning of the
original sequence, whereas the last subsequences consist of random selections. A completely
random selection as in the online approach seems to be too diverse. Non-random approaches
such as normal repeat seem to lead to a faster overfitting of the training set, thus limiting the
ability of the deep neural network to identify general usable features.
Smallest and append gaps proved to be unsuitable methods for input preparation. Here append
gaps leads to a prediction of subsequences without usable information because they consist only
of gaps, whereas smallest limits the available information so much that a prediction becomes
inaccurate.

Combining subsequence host predictions results in higher accuracy

Among the tested subsequence prediction combination approaches, std-div was observed to
perform best (see Table 5). With the combination of all subsequence predictions the accuracy
rises between 1.7%– 6%, with a mean increase of 4.8%. This shows that a combination of the
host prediction results of all subsequences of a given viral sequence can increase the overall
prediction accuracy. Presumably, the prediction combination approaches can compensate for the
possible information loss, caused by the sequence splitting process during the input preparation.

Table 5. Evaluation of the subsequence host prediction combination methods on the investigated datasets and
the respective best working input preparation. The combination method with the highest accuracy for each
combination is marked in grey.

combination method
vs training setup

Standard Voting Mean Std-div

LSTM rotavirus A, normal repeat gaps 85.83 87.50 86.67 87.50
CNN+LSTM rotavirus A, random repeat 81.30 85.00 85.00 85.83
LSTM rabies lyssavirus, random repeat 74.02 79.21 80.00 80.00
CNN+LSTM rabies lyssavirus, random repeat 71.98 77.11 77.63 77.63
LSTM influenza A, random repeat 44.20 47.85 49.18 49.29
CNN+LSTM influenza A, normal repeat gaps 43.53 47.35 49.39 49.39
mean accuracy 66.81 70.67 71.31 71.61

Deep learning outperforms other approaches

Besides evaluating our deep learning approach on the three virus datasets, we compared our
results with a similar study. Our approach predicts hosts on the species level, whereas most
other studies are limited to predicting the host genera4;6 or even higher taxonomic groups3;12.
In a relatively comparable study, Le et al.5 also tried to predict potential hosts for influenza A
viruses and rabies lyssaviruses. In their study they mainly tested three different approaches,
which were mostly combinations of already published methods4;8;12, including a support vector
machine approach and two sequence similarity approaches. They tried to predict hosts on a
species level, too.

The rabies lyssavirus dataset from Le et al. consisted of 148 viruses and 19 associated bat hosts
species. For this dataset the group reached an accuracy of nearly 80%. Our rabies lyssavirus
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dataset consists of 13,476 viruses and has 19 associated hosts species, too, but none of which is
a bat species. In comparison, with an accuracy of around 80% our approach performed very
similar , however, in contrast to our analysis, Le et al. used an unbalanced dataset, which often
leads to an overestimation of the prediction accuracy. Furthermore, the presented accuracy from
Le et al. is based on an n-fold cross-validation, making more difficult to compare with other
studies, since the quasi standard for accuracy determination is a 10-fold cross-validation. When
applying a 10-fold cross-validation, their host prediction accuracy for their rabies lyssavirus
dataset drops under 65%.

The influenza A dataset from Le et al. consisted of 1,200 viral sequences and six associated
hosts species. For this dataset they reached a host prediction accuracy of around 60% (under
40% when applying a 10-fold cross-validation). Our influenza A dataset consists of 310,945
viral sequences and has 49 associated hosts species, including the six species from the Le et al.
dataset. Our deep learning approach reached a host prediction accuracy of 49.39%, which is in
comparison quite good, given that we had to predict for more than eight times the number of
potential host species with closer phylogenetic relationships among them.

For the rotavirus A dataset no comparable study could be found.

CONCLUSION

In this study, we investigated the usability of deep learning for the prediction of hosts for distinct
viruses, based on the viral nucleotide sequences alone. We established a simple but very capable
prediction pipeline, including possible data preparation steps, data training strategies and a
suitable deep neural network architecture. In addition, we provide different three neural network
models, which are able to predict potential hosts for either influenza A viruses, rotaviruses A or
rabies lyssaviruses, respectively. These deep neural networks use genomic fragments shorter than
400 nucleotides to predict potential virus hosts directly on a species level. In contrast to similar
approaches this is a more complex task than performing host prediction only on the genera
level4;6 or even higher taxonomic groups3;12. Moreover, our approach is able to predict more
hosts with an comparable accuracy than previous approaches and more accurate when limited
to the same amount of potential host species. Additionally, we addressed multiple problems
that arise when using DNA or RNA sequences as input for deep learning, such as unbalanced
datasets for training and the problem of inefficient learning of recurrent neural networks (RNN)
on long sequences. We evaluated different solutions to solve these problems and observed that
splitting of the original virus genome sequence in a nearly random way in combination with
merging the prediction results of the generated subsequences leads to a fast and efficient learning
on long sequences. Furthermore the use of unbalanced datasets is possible if a new balanced
training set is generated by random selection of available sequences for each single epoch during
the training phase.
With the use of deep neural networks for host predicting of viruses it is possible to rapidly
identify the host, without the use of arbitrary selected learning features, for a large number of
host species. This allows to identify the original host of zoonotic events and makes it possible
to swiftly limit the intensity of an viral outbreak by separating the original host from humans
or livestock.
In future approaches it could be interesting to investigate the use of newly developed deep
neural network layers, such as transformer self-attention layers27. This layer type has been
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shown to perform well with character sequences28, such as DNA or RNA sequences, potentially
allowing for a furthermore increase in the prediction quality.
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SUPPLEMENTARY DATA
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Figure S1. ROC curve for the rota dataset, calculated on the test set. The AUC of the micro-average ROC
curve is 0.98, for the macro-average 0.98 and when using mean vote to predict to most likely host the AUC is
0.92.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic for rabies lyssavirus

micro-average ROC curve (area = 0.98)

macro-average ROC curve (area = 0.97)

mean vote ROC curve (area = 0.89)

Figure S2. ROC curve for the rabies dataset, calculated on the test set. The AUC of the micro-average ROC
curve is 0.98, for the macro-average 0.98 and when using mean vote to predict to most likely host the AUC is
0.89.
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Figure S3. ROC curve for the influenza dataset, calculated on the test set. The AUC of the micro-average ROC
curve is 0.94, for the macro-average 0.93 and when using mean vote to predict to most likely host the AUC is
0.74.
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Figure S4. Training accuracy and validation accuracy over 1000 epochs on the influenza A dataset. With the
CNN+LSTM architecture the deep neural network shows no difficulties to learn.
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Figure S5. Training accuracy and validation accuracy over 1000 epochs on the influenza A dataset. With the
LSTM architecture the deep neural network remained in a state of random accuracy for ca. 200 epochs.

Table S1. Comparison of the functional principle of the input expansion. Note that for real data, the raw data
sequence would be hundreds of bases long. Furthermore, in this example ACT is the shortest sequence of our
dataset, but still longer than the input length expected by the neural network.

input
sequence

normal
repeat

normal
repeat
gaps

random
repeat

random
repeat
gaps

append
gaps

online smallest

ACT ACTACTAC ACT-ACT- ACTCTATA ACT-CTA- ACT—– CT ACT
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