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Abstract

Classi�cation of protein sequences is one big task in bioinformatics and has many applications. Di�erent machine
learning methods exist and are applied on these problems, such as support vector machines (SVM), random forests
(RF), and neural networks (NN). All of these methods have in common that protein sequences have to be made machine-
readable and comparable in the �rst step, for which di�erent encodings exist. �ese encodings are typically based on
physical or chemical properties of the sequence. However, due to the outstanding performance of deep neural networks
(DNN) on image recognition, we used frequency matrix chaos game representation (FCGR) for encoding of protein
sequences into images. In this study, we compare the performance of SVMs, RFs, and DNNs, trained on FCGR encoded
protein sequences. While the original chaos game representation (CGR) has been used mainly for genome sequence
encoding and classi�cation, we modi�ed it to work also for protein sequences, resulting in n-�akes representation, an
image with several icosagons.
We could show that all applied machine learning techniques (RF, SVM, and DNN) show promising results compared to
the state-of-the-art methods on our benchmark datasets, with DNNs outperforming the other methods and that FCGR
is a promising new encoding method for protein sequences.

1 Introduction

PProtein classi�cation is one big challenge in bioinformatics
[Heider et al., 2009], and has therefore many applications, rang-
ing from genomic annotations towards clinical applications,
such as drug resistance prediction in human immunode�ciency
virus (HIV) for personalized therapies. To this end, di�erent
machine learning methods exist and have been applied, e.g.,
support vector machines (SVM) [Beerenwinkel et al., 2003],
random forests (RF) [Heider et al., 2011, Löchel et al., 2018],
or neural networks (NN) [Wang and Larder, 2003]. Gener-
ally, the protein sequences have to be made ”machine-readable”
in a �rst step. Di�erent protein encodings exist, which can
be roughly separated into sequence-based or structure-based
encodings. �ese sequence-based encodings include sparse
encoding [Hirst and Sternberg, 1992], amino acid composi-
tion [Matsuda et al., 2005], reduced amino acid alphabets [So-
lis and Rackovsky, 2000], physicochemical properties [Heider
and Ho�mann, 2011], or Fourier Transformation [Nagarajan
et al., 2006]. Structure-based encodings include quantitative
structure-activity relationship (QSAR) [Cherkasov et al., 2014],

Electrostatic Hull [Dybowski et al., 2011], or Delaunay triangu-
lation [Yu et al., 2013]. For a comprehensive review on encod-
ings of protein sequences see Spänig and Heider [2019]. A�er
encoding, the encoded sequences can be used for training of
di�erent machine learning models, such as SVMs, RFs, or deep
neural networks (DNNs). Due to the fact that DNNs have been
shown to outperform other methods in image classi�cation, we
will introduce a modi�ed chaos game representation (CGR) for
proteins and will show the performance of this encoding on
HIV drug resistance prediction datasets in comparison to the
state-of-the-art models. Moreover, we made our new frequency
matrix chaos game representation (FCGR) for protein-encoding
available as an R package kaos.

�e chaos game representation (CGR) algorithm is a recur-
rent iterative function system, which can be used to create frac-
tals from sequences of symbols, i.e., from an alphabet A={s1,…,
sn}. For n=3 and A={1,2,3}, the CGR algorithm can be used to
construct, e.g,. the Sirpinski triangle, a fractal structure con-
structed by smaller triangles [Barnsley, 2012]. Je�rey [1990]
was the �rst who applied the CGR algorithm to DNA sequences,
i.e., n=4 and A={A,C,G,T} , thus the resulting fractals are con-
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Figure 1: Chaos Game Representation for DNA. A) Division of the square. B) Way walked to draw points. C) HIV genome (NCBI Reference
Sequence: NC 001802.1)

structed from squares instead of triangles. �e underlying idea
of the CGR algorithm for DNA is summarized in Figure 1. Each
symbol is set at one corner (here: 4). Starting from the middle,
the next dot is put half the way towards the next symbol in the
sequence. �e second (and all remaining dots) are put half the
way from the last position in the direction to the next symbol
(exemplarily shown in Figure 1B.

Since the development of the CGR and its application in life
science, it has been used mainly for the analyses and com-
parison of whole genome sequences [Joseph and Sasikumar,
2006]. It has been shown that CGR is an excellent represen-
tation for genomes and that CGR-driven phylogeny leads to re-
liable predictions [Deschavanne et al., 1999]. In particular the
comparison between genomes by using CGR is very easy and
fast [Hoang et al., 2016]. Extensions of CGR include color grids
[Deschavanne et al., 1999] and frequency matrix CGR (FCGR)
[Almeida et al., 2001]. Wang et al. [2005] used FCGR to cal-
culate the image distance between genomes in order to gener-
ate phylogenetic trees. Rizzo et al. [2016] showed that DNNs
trained on genomes encoded with FCGR yielded very accurate
predictions. �ey used a convolutional neural network (CNN)
to divide bacteria in three di�erent phyla, order, family, and
genus and showed a very high accuracy for the method. While
these studies focused only on FCGR for DNA, there exist also
a smaller number of studies dealing with the encoding of pro-
tein sequences. Yu et al. [2004] employed the CGR algorithm
for protein classi�cation by separating the amino acids in four
groups based on their properties and used multifractal and cor-
relation analysis to construct a phylogenetic tree of Archaea
and Eubacteria. In another approach the amino acids were re-
translated into DNA for CGR [Yang et al., 2009]. Basu et al.
[1997] used CGR by grouping the amino acids in twelve groups

and used a twelve-sided regular polygon for the representation.
Most of the studies with CGR on proteins have in common that
they make use of the original approach to create the CGR, i.e.,
they go half the way of the distance to the next symbol to pro-
duce the CGR images. However, by using this approach, re-
sulting CGR images are very noisy for alphabets with n > 4.
In this study, we introduce the use of Sierpinskin-gons, also
known as, n-�akes or poly�akes [Tzanov, 2015], which can be
constructed by varying the distances and thus result in well-
structured fractals. Moreover, we will make use of DNNs and
FCGR for proteins and analyze the impact of the scaling factor
as well as the resolution on the classi�cation performance on
HIV drug resistance datasets.

2 Methods

2.1 Dataset
HIV-1 is known for its high mutation rate, which o�ers the
virus the opportunity to quickly evolve drug resistance. �us,
prediction of drug resistance is crucial for personalized ther-
apy of the patient. Protein sequences of the HIV-1 protease
(PR) and reverse transcriptase (RT) originating from subtype
B strains with data for seven PIs (RTV: Ritonavir, IDV: In-
dinavir, SQV: Saquinavir, NFV: Nel�navir, APV: Amprenavir,
ATV: Atazanavir, LPV: Lopinavir), three NNRTIs (NVP: Nevi-
rapine, EFV: Efavirenz, DLV: Delavirdine), and �ve NRTIs (3TC:
Lamivudine, ABC: Abacavir, AZT: Zidovudine, D4T: Stavudine,
DDI: Didanosine) with IC50 ratios were collected from the
HIV Drug Resistance Database [Rhee et al., 2003]. �e data
was separated into susceptible and resistant by drug-speci�c
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Table 1: Data used in the study
NNRTI NRTI PI

DLV EFV NVP 3TC ABC AZT D4T DDI APV IDV LPV NFV RTV SQV

positive 455 447 415 195 179 322 336 306 424 384 223 303 349 457
negative 263 274 318 429 440 299 285 317 278 374 278 472 379 304

cuto�s. Rhee et al. [2006] We removed sequences from the
datasets for which no resistance information was available and
excluded ATV from our classi�cation approach, since too many
sequences lacked IC50 information. Table 1 gives a summary
of the data used in the study for each drug.

2.2 Implementation of the chaos game
representation algorithm

We implemented an R package kaos (downloadable from
CRAN), which can be used to create CGR and FCGR with n-
�akes. �e kaos package accepts any kind of alphabets and
creates the (F)CGR image based on the given sequence and
user-speci�ed resolution. �e package o�ers the options to
create an CGR image with dots (option ”points”) or an FCGR
(option ”matrix”) with di�erent gray-levels. For the FCGR,
the user has to specify a resolution to specify the columns of
the matrix. It is also possible to set the scaling factor (”sf”)
which is needed to construct n-�akes. For protein sequences
with twenty proteinogenic amino acids, the CGR representa-
tion results in twenty edges and twenty icosagons within a
larger icosagon. �e contraction ratio between the outer and
the inner polygon can be calculated by the following equation
[Strichartz, 2000]:

r =
sin(π

n
)

sin(π
n
) + sin(π

n
+ 2πm

n
)

for m =
⌊n
4

⌋
(1)

�e ratio for the distance between the actual point and the
target edge (i.e., the scale factor sf) can be calculated by the the
following equation:

sf = 1− r (2)

By default, the CGR package automatically creates the alpha-
bet based on the given symbols or words in the sequence (vec-
tor of symbols or words) and takes this number as n to calculate

the scaling factor by equation 1. �e number is also needed to
calculate the coordinates for the edges of a polygon in an unit
circle with the following equation:

x[i] = r · sin(2πi
n

+ θ)

y[i] = r · cos(2πi
n

+ θ)

i: edge; n: number of edges, θ: angel of orientation

(3)

An CGR object contains the gray-level matrix with given res-
olution as an encoding for further analyses. In case of n=4, the
CGR algorithm �lls the whole matrix, otherwise it uses the unit
circle.

Figure 2 shows examples created with the CGR package,
namely the FCGR representation of the genomic DNA sequence
of HIV with a resolution of 200, of the HIV RT sequence with
a resolution of 50 and sf = 0.5, as well as of the HIV RT se-
quence with a resolution of 20 and sf20, the scaling factor for
protein sequences with n-�akes. As mentioned before, the scal-
ing factor is crucial in order to structure the fractal, which can
be clearly seen by comparing the two FCGR representations.
�e CGR package o�ers prede�ned alphabets for numbers be-
tween 0-9, amino acids, DNA, and for the le�ers a-z as capital-
and lowercase le�ers.

2.3 Development of prediction models
In order to evaluate the impact of the resolution and the scal-
ing factor on subsequent classi�cation, we used eight di�er-
ent con�gurations for the CGR images and trained DNNs, RFs,
and SVMs, with the se�ings for protein sequences (”amino”), to
force 20-edges (see �gure 3).

We performed a strati�ed hold-out validation scheme where
20 % of the data was randomly selected for validation and 60 %
was used for building the models to evaluate the machine learn-
ing models. �e remaining 20 % of the data was used as test
data for the DNNs. We did not take this data for the SVMs and
RFs, due to the fact that we wanted to keep the training data
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Figure 2: A) FCGR of genomic DNA sequence of HIV (NCBI Reference Sequence: NC 001802.1) with resolution of 200. B) AAQ18891.1 reverse
transcriptase, partial [Human immunode�ciency virus 1] with resolution of 50 and sf = 0.5, C) AAQ18891.1 reverse transcriptase, partial
[Human immunode�ciency virus 1] resolution = 50, sf20
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Figure 3: Di�erent se�ings for producing the FCGR pictures. We
used di�erent combinations of resolution and scale factor to produce
the FCGR images. �e resolution was set to 10, 20, 100, and 200, while
the scaling factor was set to 0.5 and sf20, i.e., the optimal scaling factor
for n=20.

consistent with the DNNs. We then performed a 10-fold cross-
validation with the remaining data (i.e., without the validation
data). We trained models for SVMs, RFs, and DNNs with the
di�erent con�gurations mentioned before. All cells containing
only zeros in all data were removed prior training of the SVMs
and RFs.

For the SVMs we applied the e1071 package [Meyer et al.,

Training
Data

Training
Data

Validation
Data

Data

Test
Data

80 % - 20 %  
random, stratified

random, stratified split
60 % - 20 %

different #neurons
(20,19,18)
(20,18,17)

…
(5,4,3)

best configuration
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(5,...,50) 1000 trees

10-fold CV
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Figure 4: Development of prediction models.

2019] with the linear kernel and default se�ings, for the RFs
the randomforest package [Breiman, 2001] with default se�ings
and 1000 trees, and for the DNNs the deepnet package [Rong,
2014] in R. We trained the DNNs with tangens hyperbolicus as
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activation function. In addition, we varied the numbers of neu-
rons (up to 20) in three hidden layers and number of training
epochs (see Figure 4).

We evaluated and compared the models based on the area
under the receiving operating characteristics curve (AUC) with
the R package pROC [Robin et al., 2011]. �e best hidden layer
con�guration was selected based on the best average AUC. For
the DNNs, we calculated the AUC also for the varying training
epochs. Moreover, we used the R package ROCR [Sing et al.,
2005] to draw precision-recall curves for the best-performing
models.

2.4 Evaluation of FCGR as encoding
We calculated the average FCGRs of positive and negative sam-
ples, i.e., the average for each cell in the FCGR matrices of pos-
itive and negative sequences, respectively, in all datasets. Next,
we calculated the di�erences between the average FCGR of the
positive and the average FCGR of the negative samples. Sig-
ni�cance of the di�erences were calculated based on Student’s
t-tests, resulting p values were corrected for multiple testing
by the method of Bonferroni. Moreover, in order to visualize
the predictive quality of the di�erent encodings in a model-
independent manner, we used < φ, δ > diagrams as imple-
mented in the R package phiDelta [Armano and Giuliani, 2018].
For this purpose we plo�ed the < φ, δ > diagrams for the en-
coding used by Heider et al. [2011] and the FCGR encoding with
the di�erent se�ings used in the current study. < φ, δ > di-
agrams are two-tiered 2D tools, which have been devised to
support the assessment of classi�ers or features in terms of ac-
curacy and bias.

3 Results
We calculated the AUCs for the DNNs with di�erent number
of neurons from the cross-validation. For the best performing
DNNs, we also evaluated di�erent number of training epochs.
Final evaluation of the models was carried out using the val-
idation set. �e best DNN con�guration (number of neurons
and epochs) in comparison to SVMs and RFs for the NRTIs and
NNRTI, and the PIs are shown in �gure 5 and �gure 6, respec-
tively. For the NRTIs ABC, DDI, and 3TC the DNN outperforms
the other method in all encoding con�guration, i.e., indepen-
dently from resolution of the FCGR. However, for the NNRTIs
DLV, EFV, and NVP, as well as for the NRTIs AZT and D4T, lin-
ear SVMs give be�er prediction results for lower resolutions.
For very low resolutions, i.e., 10 and 20, the models are be�er
with a scaling factor of 0.5. In all cases, the accuracy of the
DNN models increases with the resolution. Figure 6 shows the
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Figure 5: AUCs for NNRTIs and NRTIs. Results from with di�erent
training splits and di�erent con�gurations evaluated with the valida-
tion data. Triangle: DNN; raute: RF; circle: SVM.

results for the PIs. For high resolutions, the DNNs outperform
the RFs and the SVMs, comparable to the results of the NNR-
TIs and NRTIs. While the performance of the DNNs increases
with resolution, SVMs and RFs exhibit the opposite behavior.
For low resolutions DNNs also outperform SVMs with one ex-
ception for SQV, where some SVM models perform be�er at a
resolution of 20 and a scaling factor for n = 20 than DNNs.

In Table 2 the AUCs of the best RF, SVM, and DNN models are
summarized. �e DNNs outperform all other methods, except
for EFV, where the SVM performs equally well at a resolution of
200. For the PIs, best results are also observed with the DNNs,
in the most cases with sf20, except for IDV and LPV, where
the best result is observed at a scaling factor of 0.5. For high
resolution the DNNs work best. �e optimal scaling factor de-
pends on the dataset, e.g., for APV there are higher AUC values
with sf20, however, for DDI the best results are obtained with
sf = 0.5. Some datasets perform quite well at low resolution,
especially ABC and RTV, whereas increasing the scaling factor
has a barely remarkable in�uence on the AUC values. While
the DNNs have the highest AUC values, the other models still
perform quite well, and thus supports the idea of CGR for pro-
tein encoding. Figure 7 and Figure 8 show the precision-recall
curves for the best DNNs for the di�erent drugs, supporting the
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very good prediction results from the DNNs.

3.1 Comparison with other encodings
So far, we only compared the results from the di�erent models,
namely DNNs, SVMs, and RFs, on the same protein encoding,
namely the FCGR. In the following, we will compare our results
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Figure 8: Precision-recall curves.

Table 2: Best AUCs for NNRTIs and NRTIs on validation
data

DNN RF SVM

NNRTI

DLV 0.95 (r=200, sf=0.86) 0.90 (r=200, sf=0.86) 0.93 (r=200, sf = 0.5)
EFV 0.98 (r=200, sf = 0.5) 0.95 (r=200, sf=0.86) 0.98 (r=200, sd=0.5)
NVP 0.99 (r=100, sf = 0.5) 0.96 (r=200, sf=0.86) 0.96 (r=200, sf=0.86)

NRTI

3TC 0.99 (r=100, sf = 0.5) 0.96 (r=200, sf=0.86) 0.97 (r=200, sf = 0.5)
ABC 0.99 (r=100, sf = 0.5) 0.94 (r=10, sf=0.86) 0.96 (r=10, sf = 0.5)
AZT 0.99 (r=200, sf=0.86) 0.94 (r=100, sf=0.86) 0.96 (r=100, sf = 0.5)
D4T 0.94 (r=200, sf=0.86) 0.90 (r=20, sf=0.86) 0.93 (r=20, sf=0.86)
DDI 0.90 (r=100, sf = 0.5) 0.87 (r=200, sf=0.86) 0.84 (r=10, sf = 0.5)

PI

APV 0.96 (200 sf=0.86) 0.91 (200 sf=86) 0.93 (20 sf=0.86)
IDV 0.995 (200 sf = 0.5) 0.95 (200 sf=0.86) 0.98 (10 sf = 0.5)
LPV 0.99 (100 sf = 0.5) 0.95 (200 sf=0.86) 0.98 (200 sf = 0.5)
NFV 0.99 (100 sf=0.86) 0.95 (200 sf=0.86) 0.98 (20 sf=0.86)
RTV 0.995 (200 sf=0.86) 0.96 (200 sf=0.86) 0.99 (200 sf = 0.5)
SQV 0.97 (200 sf=0.86) 0.94 (200 sf=0.86) 0.96 (20 sf=0.86)

r: resolution; sf: scaling factor.

with the state-of-the-art methods.
Table 3 shows the AUC values of the best models trained on

FCGR from our approach in comparison to the models of Heider
et al. [2011] and Kierczak et al. [2009] for NRTIs and NNRTIs.
Compared to the approach of Heider et al. [2011] and Kierczak
et al. [2009], we get AUC values between 4 % up to 8 % and 19
% higher, respectively. Even the lower performing SVMs and
RFs outperform or at least perform equally well compared the
state-of-the-art approaches.

Table 4 shows the calculated accuracy values for the best
models, in comparison with Heider et al. [2011], Rhee et al.
[2006], and Hou et al. [2009] for the PIs. For all drugs, the FCGR
approach outperforms the state-of-the-art models.
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A B

Figure 9: Comparison of amino acid and FCGR based feature representations. Exemplarily shown for the 3TC sequence dataset. A and B:
< φ, δ > diagrams displaying the quality of features for the same sequence dataset (3TC) calculated using the R package Interpol Heider and
Ho�mann [2011] as used in Heider et al. [2011] (A) and by FCGR with a resolution of 100 and sf = 0.5 (B). Dots represent features; dots closer
to the upper or lower corner of the quadrilateral represent features with a high predictiveness for the classi�cation task.

Table 3: Comparison of the FCGR approach with state-
of-the-art methods for NNRTIs and NRTIs

�is Study Heider et al. Kierczak et al

NNRTI

DLV 0.95 0.90 0.76
EFV 0.98 0.93 *
NVP 0.99 0.92 0.85

NRTI

3TC 0.99 0.94 0.95
ABC 0.99 0.92 0.83
AZT 0.99 0.91 0.89
D4T 0.94 0.90 0.85
DDI 0.90 0.85 0.82
: Kierczak et al. analyzed the NRTI and NNRTI datasets
except EFV.

�e fact that FCGR-based classi�ers were consistently out-
performing other classi�cation models in this study suggests
that FCGR itself is a feature encoding for protein sequences
preferable to some others. In order to test this hypothesis with
regards to the data analyzed here, we compared the predic-
tiveness of the feature encodings used in this study with the
amino acid encoding and interpolation based feature encoding

Table 4: Comparison of the FCGR approach with state-
of-the-art methods

�is Study Heider et al. Rhee et. al Hou et.al

NNRTI

DLV 92 % 87 % 84 % *
EFV 94 % 88 % 87 % *
NVP 96 % 87 % 91 % *

NRTI

3TC 97 % 87 % 90 % *
ABC 95 % 88 % 84 % *
AZT 94 % 87 % 84 % *
D4T 87 % 84 % 78 % *
DDI 85 % 79 % 75 % *

PI

APV 91 % 88 % 84 % 89 %
IDV 97 % 93 % 79 % 86 %
LPV 98 % 92 % 81 % 91 %
NFV 96 % 91 % 82 % 87 %
RTV 97 % 95 % 89 % 93 %
SQV 90 % 89 % 84 % 89 %
: Hou et al. used only the PI datasets.

used in Heider et al., 2011 using < φ, δ > diagrams [Armano
et al., 2018], which allow for the visual inspection of model-
independent feature quality with regards to a given binary clas-
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si�cation task (Figure 9 A and B). For all sequence datasets
analyzed here, FCGR-based features show superior predictive-
ness (see supporting information). To explain this behaviour of
FCGR encodings, we compared FCGR matrices for the positive
and negative sequences from the di�erent datasets. �ese show
clear and signi�cant di�erences in a small number of pixels (see
supporting information). �is is in accordance with the �nd-
ing that very di�erent machine learning models trained with
FCGR-encoded sequences show consistently high performance.

4 Discussion
�e performance in terms of AUC of the RFs and SVMs has a
higher variance compared to the AUCs of the DNNs, i.e., the
split of test and training data might have a larger impact on the
training of these models than on the DNNs. It can be observed
that the DNNs perform be�er than the other models for higher
resolution images. We can also observe that for some drugs
low scaling factors work quite well and that the increase barely
in�uences the results, whereas for other drugs the scaling fac-
tor leads to be�er performance until a saturation is reached.
�is suggests that the scaling factor somehow reveals pa�erns
on some resolution, characteristic for the classi�cation on this
dataset. Comparing the course of the di�erent models (Figure
5), we can see that the SVMs and DNNs perform equally good
on a high level. Especially for the RFs we can observe that
the application of the scaling factor increases the performance.
�ere might be a saturation for the performance of the DNNs at
a given resolution where the application of sf20 or using 0.5 has
a low impact on the performance. We can observe this for most
of the drugs. Except for D4T and DDI where there is a drop in
prediction performance. �e models trained on FCGR outper-
form all other evaluated models, independent of the employed
machine learning technique. �is suggests that FCGR as an en-
coding for protein sequences might be more appropriate than
other encodings. By using the < φ, δ > diagrams we could
show that the FCGR features show superior predictiveness. In
comparison with the method of Heider et al. [2011], the FCGR
encoding has no information loss on high resolution. Due to the
interpolation the sequence-length is changed and this can lead
to a loss of information. �e advantage of the FCGR encoding
is that the amino acid as itself is not transformed in any kind
of representation, e.g., physicochemical properties. It can be
considered as a kind of black box, where each le�er represent
di�erent unknown feature lying behind each le�er. �e order
of the le�ers is more or less kept, depending on the resolution,
which explains the increase of performance in a higher resolu-
tion. One disadvantage is the increase of memory requirements
for one FCGR matrix compared to a string or vector. In partic-

ular the use of sf20, where most of the space in an FCGR image
is never used. �us, a solution might be to �nally erase those
elements of the matrix. We used comparatively long protein
sequences in this study, thus, one open question is, if the FCGR
encoding still works well for shorter sequences, e.g., peptides,
since the formation of pa�erns might be less pronounced for
short sequences.

5 Conclusion
FCGR as a feature encoding for proteins reveals a new approach
for classi�cation problems, which is particularly well-suited
for DNNs. �e encoding shows superior behavior compared
to other encodings, independent from the employed machine
learning technique in our study dealing with HIV-1 drug re-
sistance. In fact, it outperforms the state-of-the-art methods
and therefore it might be preferable to other protein classi�-
cation problems. In combination with DNNs, FCGR can give
very accurate predictions. �e application of the scaling fac-
tor, in order to make use of n-�akes for training, can increase
the accuracy, especially for RFs. Besides, the resolution of the
FCGR plays an important role and can increase the accuracy de-
pending on the classi�cation problem. Since the FCGR method
o�ers the opportunity to encode all kind of sequences, e.g., text
and numbers, the use of FCGR in many other kind of applica-
tions besides DNA and protein classi�cation problems, might
be reasonable.
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