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Abstract 

Regions of the genome that produce different classes of functional elements also exhibit 

different patterns in their sequence, secondary structure, and evolutionary conservation. Deep 

Learning is a family of Machine Learning algorithms recently applied to a variety of pattern 

recognition problems. Here we present MuStARD (gitlab.com/RBP_Bioinformatics/mustard) 

a Deep Learning framework that can learn and combine sequence, structure, and conservation 

patterns in sets of functional regions, and accurately identify additional members of the given 

set over wide genomic areas. MuStARD is designed with general use in mind, and has 

sophisticated iterative fully-automated background selection capability. We demonstrate that 

MuStARD can be trained without changes on different classes of human small RNA loci 

(pre-microRNAs and snoRNAs) and accurately build prediction models for both, 

outperforming state of the art methods specifically designed for each specific class. 

Furthermore, we demonstrate the ability of MuStARD for inter-species identification of 

functional elements by predicting mouse small RNAs using human trained models. 

MuStARD is easy to deploy and extend to a variety of genomic classification questions. 
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Introduction 

The sequencing of the complete human genome first brought to light the realization that the 

majority of the genetic material in human cells does not code for protein coding genes1. 

Genome-wide in silico analyses of conserved mammalian regulatory sequences initially 

concentrated on the untranslated regions of mRNAs, promoter and enhancer elements2. In 

following years, both the variety of coded molecules, and the number of sequenced genomes 

have been increasing with fast pace—newly discovered molecule families such as microRNA 

(miRNA), Piwi-interacting RNA (piRNA), Short hairpin RNA (shRNA), Small interfering 

RNA (siRNA), Small nuclear RNA (snRNA), Small nucleolar RNA (snoRNA), Long non-

coding RNAs (lncRNA) and others now populate the functional expression map of known 

genomes. The number of organisms with sequenced genomes has been increasing 

exponentially for the past decade, with NCBI currently listing just over 7000 eukaryotic 

sequenced genomes, of which almost 50 have fully assembled genomes, and approximately 

1000 have assembled chromosomes. The majority of these newly sequenced genomes cannot 

be experimentally annotated to the depth of well used genomes such as human, mouse, or 

drosophila. Several computational methods attempt to accurately predict the location of non-

coding RNA genomic positions. For example, tens of programs aiming at pre-microRNA 

identification have been developed, but none achieving accurate genome-wide prediction3. In 

silico methods utilizing sequence homology are often employed for the annotation of novel 

genomes, projecting functional regions of well annotated species to homologous genomic 

regions of less annotated genomes. Alternatively, whole genomes can be ‘scanned’ for 

regions of known characteristics, such as a specific motif, or sequence, and their putative 

function annotated.  

Here, we present a machine learning method that improves the accuracy of non-coding RNA 

prediction in known species, and demonstrate that the models trained on a well annotated 

species can be used to scan large genomic regions and identify cross-species functional 

elements of the same class. We have chosen to apply our method on two different classes of 

small RNAs: precursor miRNAs (pre-miRNAs) and Small nucleolar RNAs (snoRNAs). 

Precursor miRNAs are intermediate RNA molecules of miRNA biogenesis that form stable 

hairpin structures of approximately 60-100 nucleotides. The first novel miRNAs were 

identified by sequencing total RNA of their approximate length4–6. Based on the 

characteristics of the first sequenced miRNAs, computational methods were introduced to 

accelerate the identification process. Current computational methods utilize some 

combination of manually produced features based on genomic sequence and conservation, as 

well as predictions of RNA folding. These features could include the free energy of folding, 

folding stem length, nucleotide content in the stem, occurrence of matching pairs and so on. 

In a recent thorough comparison of several highly cited programs, it was observed that no 

tool significantly outperforms all other tools on all tested data sets3. Additionally, none of the 

current tools can employ a ‘scanning’ mode for large genomic regions leading to accurate 

novel pre-miRNA loci identification. Currently, the latest miRBase release7, the main 

repository of known miRNA sequences gives access to 38,589 pre-miRNAs from 271 

organisms with 1,917 being of human origin. 

The highly competitive field of pre-miRNA prediction can be juxtaposed with the relative 
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scarcity of snoRNA prediction algorithms. Discovered shortly after the sequencing of the 

human genome8 snoRNAs play an important role in the processing and modification of other 

classes of RNAs. Over ten years ago, the human genome was scanned for snoRNAs9, 

identifying approximately 300 snoRNA loci. Hundreds more snoRNAs were identified by 

small RNA sequencing of diverse species and filtering through a computational algorithm10. 

The field of in silico snoRNA prediction appears too small to warrant the attention of large 

initiatives to implement complex machine learning architectures and manually curated 

features. Here, we will demonstrate that our method can accurately predict snoRNA 

locations, proving that it will be a useful tool for the generalized identification and annotation 

of less studied classes of functional elements. 

Machine Learning (ML) describes the field of computer science that involves development of 

mathematical models and their implementations with the purpose of enabling computers to 

learn concepts and patterns embedded in data. Artificial neural networks are a collection of 

ML algorithms with a rich and at the same time interesting history. Neural Networks (NNs) 

were first proposed decades ago11 as a simplified model describing the process of biological 

neurons in the brain. NNs approximate the process of learning in the brain by stacking 

interconnecting layers of artificial neurons or ‘nodes’. Nodes in early layers converge into 

recognizing simplified and more primitive patterns in the input data while propagating their 

computations deeper into the network. Neurons in subsequent layers receive and build on top 

of these patterns evolving into detectors of more abstract and complex concepts. 

Deep Learning (DL) is a term that refers to recent breakthroughs in the field of NNs 

including a collection of new methodologies that outperform well-established ML algorithms 

in multiple fields. Deep Neural Networks offer significant flexibility and remarkable 

accuracy provided enough data, especially for complex learning tasks. The majority of 

supervised ML algorithms require pre-processing of the input data set in the form of feature 

extraction especially in the case of biological problems that involve raw DNA or RNA 

sequences. This process involves an arbitrary number of features that have been 

conceptualized on ad hoc bases, usually derived on empirical data that are interpreted based 

on personal experiences and assumptions. This ad hoc process of feature extraction 

frequently introduces biases that might severely affect building robust models—while at the 

same time does not offer the possibility to utilize and also unveil all underlying patterns. DL 

models have a remarkable ability of not relying on arbitrary feature extraction procedures by 

incorporating a process known as convolution in the basis of the network architecture. 

Convolutional Neural Networks (CNNs) are able to operate directly on raw data such as 

images, time-series, DNA/RNA sequences and many more without the need of pre-

processing and feature extraction. CNNs use convolutional layers to process the input prior to 

propagating the signal to the dense part of the network and in the process they act as 

extractors of hidden patterns themselves. 

These properties have revolutionized speech recognition and image classification12 in the past 

6 years. The success of DL was almost immediately picked up from researchers in other 

fields such as physics13 and chemistry14. Medical informatics and computational biology 

could not be an exception to the rule of DL slowly winning its place as a popular algorithmic 

framework in almost every scientific field. During the last 4 years there has been an 

explosion of DL applications providing novel or improving existing methodologies in 
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Medicine and Biology15. There are already dozens of published studies that applied a plethora 

of DL architectures in Biology. For example, epigenomic data were used to infer gene 

expression16, and ovarian cancer subtypes were defined from gene and microRNA expression 

as well as DNA methylation17. DeepBind18 was the first application of CNNs in transcription 

factor binding recognition tasks. DeepSEA19 and DanQ20 are also CNN-based frameworks 

that were trained on a large multi-cell-type compendium of chromatin-profiling data, 

including DNase I sensitivity, TF and histone-mark ChIP-seq data. Basset21 and 

DeepEnhancer22 both used CNN-based architectures on chromatin accessibility data to 

predict enhancers. 

Results 

Overview of our method 

Here we introduce MuStARD (Machine-learning System for Automated RNA Discovery), a 

highly flexible Deep Learning framework that can be applied to any biological problem that 

involves deconvolution of patterns embedded in DNA/RNA sequences. The framework’s 

flexibility stems from its modular design and minimum input requirements (Figure 1a). The 

majority of existing algorithms that perform classification tasks in various fields of biological 

research, pre-miRNA detection for example, rely on extraction of arbitrary features from raw 

input data. This process often requires significant expertise on the relevant field, it can cause 

increased computational overhead and most importantly it frequently introduces biases that 

can severely affect the training of robust models. MuStARD is a feature-agnostic DL 

framework that utilizes convolutional layers to scan the input data avoiding manual feature 

extraction. MuStARD input can currently be structured as any of the following three types or 

any combination of those: raw DNA sequence, RNAfold23 derived secondary structure and 

PhyloP24 basewise evolutionary conservation score. Another novel aspect of our framework 

is the automated iterative identification of background sequences that present similar 

characteristics with the positive sequences of the given set regions that would be otherwise 

impossible to detect by randomly selecting regions from all over the genome. This process is 

able to provide an enhanced version of background sequences specifically tuned for the 

classification task at hand. We showcase MuStARD’s flexibility and robustness in providing 

accurate and high-resolution predictions on the tasks of scanning the genome and detecting 

pre-miRNAs and snoRNAs, two distinct classes of small RNAs that exhibit diverse patterns 

in terms of size, evolutionary conservation and secondary structure.  
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Figure 1. Overview of MuStARD modular architecture and iterative training pipeline. a) 

MuStARD is able to handle any combination of either raw DNA sequences, RNAfold derived 

secondary structure and basewise evolutionary conservation from PhyloP. DNA sequences 

and RNAfold output are one-hot encoded while PhyloP score is not pre-processed. Each 

feature category is forwarded to a separate ‘branch’ that consists of three convolutional 

layers. The computations from all branches are concatenated prior to being forwarded to the 

fully connected part of the network. b) The training pipeline of MuStARD consists of two 

steps. Initially, pre-miRNA sequences are randomly shuffled to exonic and intronic (protein-

coding and lincRNA genes) regions of the genome to extract equal sized negative sequences 

with 1:4 positive to negative ratio. This process is repeated 50 times to facilitate the training 
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of equal number of models. The performance of each model is assessed based on the test set 

and all false positives that are supported by at least 25 models are extracted. This set of false 

positives is added to the negative pool of the best performing model to create an enhanced 

training set. The enhanced set is finally used to train the final MuStARD model. 

Evaluation of Input Data Combinations on pre-miRNA prediction 

We evaluated the performance of MuStARD on all combinations of input data for the pre-

miRNA prediction dataset. Six combinations of input were tested, namely: all three inputs 

combined (MuStARD-mirSFC), sequence and conservation (MuStARD-mirSC), sequence 

and secondary structure (MuStARD-mirSF), secondary structure and conservation 

(MuStARD-mirFC), just sequence (MuStARD-mirS) and just secondary structure 

(MuStARD-mirF). An additional model was trained for the combination of all three inputs 

but with the Keras class weights option disabled (MuStARD-mirSFC-U). Each of these 

models underwent independent hyperparameter optimization for optimal batch size 

(Supplementary Table 1). 

Scanning test sequences with these 7 different models reinforced our expectation that models 

including a higher number of meaningful input data branches would perform better in 

retrieval of pre-miRNAs (Figure 2). The model trained on secondary structure and 

conservation, was the best performing two input model. This result aligns with the 

identification of pre-miRNA hairpins by the Microprocessor complex during the biogenesis 

of miRNAs primarily by characteristics of their secondary structure rather than sequence25. 

Surprisingly, the three input model trained without class weights (MuStARD-mirSFC-U) 

slightly outperforms the weighted model (MuStARD-mirSFC) in this evaluation. Since 

MuStARD-mirSFC and -mirSFC-U perform better than two or one input models in all 

evaluations, we will only report results for these two models. 
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Figure 2. Performance of MuStARD models trained on multiple combination of input data. a) 

Visualization of each model’s performance on the scanning windows surrounding pre-

miRNAs of MIR381HG locus in chromosome 14. The orange colored tracks represent 

prediction scores on the forward strand while light blue corresponds to the reverse strand. 

The dark blue boxes underneath each score track represent hotspots of overlapping positively 

predicted windows for each model. A track with randomly assigned scores for every window 

has also been added serving as the baseline. MuStARD output score range is [0,1]. However, 

for visualization purposes, the score of windows in the reverse strand were multiplied by -1. 

As described in the methods, the hotspots of positive predictions were assembled after 

filtering out windows with score less than 0.5. b,c) Performance, based on precision and 

sensitivity, of MuStARD models trained on different input combinations such as sequence 

with secondary structure and conservation (MuStARD-mirSFC), sequence with conservation 

(MuStARD-mirSC), sequence with secondary structure (MuStARD-mirSF), secondary 

structure and conservation (MuStARD-mirFC), secondary structure (MuStARD-mirF) and 
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sequence (MuStARD-mirS) only. b) Performance is assessed by taking into account all 

scanning windows as individual predictions. The ‘random’ model has been created by 

randomly assigning a score in the range of [0,1] to each window and serves as the baseline. 

c) Performance is measured by creating hotspots of positive predictions by merging 

overlapping windows that exhibit a score greater than 0.5. 

Evaluation of pre-miRNA prediction algorithms on chromosome 14 scanning 

While training MuStARD models, we kept the entirety of chromosome 14 aside as a final 

benchmarking set that could be fairly used to evaluate MuStARD’s performance against the 

current state of the art in pre-miRNA prediction algorithms. There are currently over 30 

published pre-miRNA prediction algorithms indexed in OMICtools26 repository. The 

majority of these studies could not be coerced to run on our benchmarking dataset (See 

Methods for details). We managed to run and evaluate five state-of-the-art programs: 

HuntMi27, microPred28, miPred29, miRBoost30 and triplet-SVM31. Of these five, only triplet-

SVM, miPred and miRBoost provide output scores in the form of probabilities allowing 

assessment of their performance on multiple score thresholds. HuntMi and microPred provide 

fixed output labels (yes/no) limiting their performance comparison on a fixed threshold 

(Supplementary Table 2). When compared to state-of-the-art algorithms (Figure 3a), the two 

MuStARD models show increase in precision and sensitivity along all thresholds (Figures 3b 

and 3c) while at the same time providing sharp predictions of shorter length than other 

algorithms (Figure 3d) centered closest to the real pre-miRNAs (Figure 3e). 
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Figure 3. Comparison between MuStARD and existing pre-miRNA detection algorithms on 

scanning chromosome 14. a) Genome browser visualization of each algorithm’s performance 

on the scanning windows in a 20kb locus hosting several pre-miRNAs. b,c) Performance of 
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different algorithms based on assessing scanning windows individually (b) and on hotspots of 

positive predictions (c). HuntMi and microPred algorithms were excluded from these 

comparisons since they provide class labels as output rather than continuous values that can 

be subjected to different thresholds. d) Distributions of distance between true positive 

hotspots of positive predictions and the overlapping annotated pre-miRNA. e) Size 

distributions of hotspots of positive predictions. 

 

Evaluation of pre-miRNA prediction algorithms on labelled data 

The process of genome-wide scanning for pre-miRNAs requires windows of fixed size, a 

property that perfectly fits the input requirements of DL algorithms. In fact, the enhanced 

dataset consists of positive and negative sequences of variable length. These sequences are 

extended to 100bp prior to MuStARD processing (see Methods for details). However, the 

majority of existing algorithms instead perform feature extraction and normalization to 

account for differences on sequence sizes. 

Using a benchmark dataset of fixed sized sequences should not introduce any biases to 

comparing the performance of MuStARD and existing algorithms. Nevertheless, we 

performed an additional comparison based on benchmark sequences (chromosome 14) of the 

enhanced set without reinforcement. Only for MuStARD, but not for existing algorithms, we 

applied the extension procedure of these sequences to 100bp (Supplementary Table 3). 

Both MuStARD models significantly outperform every algorithm in terms of precision. 

MuStARD-mirSFC-U in particular exhibits unprecedented levels of precision even for score 

thresholds as low as 0.1 (Figure 4). MiPred rises above MuStARD for a score threshold of 

0.84, however, at that threshold it only manages to provide 5 True Positives (TP) for 0 False 

Positives (FP) while MuStARD-mirSFC-U provides 15 TPs and 1 FP and MuStARD-mirSFC 

22 TPs and 2 FPs. 
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Figure 4. Comparison between MuStARD and existing pre-miRNA detection algorithms on 

the enhanced test set of chromosome 14. a) Precision assessment on multiple score 

thresholds of different algorithms. b) Performance of algorithms in terms of sensitivity on 

different score threshold. c) Combination of precision and sensitivity metrics on multiple 

score thresholds in a single plot. d) ROC curves of different algorithms on different score 

thresholds. 

Cross-species prediction 

We attempted the cross-species application of MuStARD-mirSFC and -mirSFC-U models 

trained on human pre-miRNAs to areas of the mouse genome. We scanned a 10kb wide 

window centered around a mouse miRNA precursor (N=1,227) resulting in approximately 

3.9M sliding windows that were individually assessed and scored. Figure 5a depicts the 

visualization of the scanning results over 20kb of the Mirg locus in chromosome 12. Both 

models maintain the same properties observed in human results (Figures 2a and 3a) by 
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providing precise and high-resolution predictions in mouse even though there are differences 

in the evolutionary conservation profile annotation provided for the two species. The 

performance of both MuStARD models was also assessed in terms of precision and 

sensitivity both by using scanning windows individually and using hotspots of positive 

predictions in the comparison between human and mouse (Figures 5b and 5c). As expected, 

both models exhibit lower performance in mouse but they maintain exceptional levels of 

generalisation capacity (Supplementary Table 4). This is also depicted in Figure 5d. From the 

total number of 1,227 mouse pre-miRNAs, MuStARD-mirSFC-U manages to correctly 

predict 306 (hotspot score threshold of 0.5) including 94 of the 129 known human 

orthologues. 

 

 
Figure 5. Performance of human MuStARD-mirSFC and -mirSFC-U models on the mouse 

genome. a) Genome browser visualization of both models on the scanning windows in Mirg 

pre-miRNA cluster. b) Performance in terms of precision and sensitivity based on assessing 

scanning windows individually c) Performance in terms of precision and sensitivity on 

hotspots of positive predictions. The performance on human chromosome 14 (also shown in 

Figure 3) is depicted with orange color (random with black color) while the performance on 

all mouse chromosomes is shown in light blue. d) Proportion of mouse pre-miRNAs predicted 

by MuStARD-mirSFC-U that also have human orthologues. 

 

Training MuStARD to detect snoRNAs 
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In the previous sections, we have demonstrated several properties of MuStARD that enable 

breakthrough performances in the field of pre-miRNA detection intra- as well as inter-

species. Despite its performance, MuStARD was not specifically developed for pre-miRNA 

hairpin detection. Our intention is to provide a highly flexible computational framework that 

can be applied on the identification of a variety of biological patterns. To highlight the 

flexibility of MuStARD, we applied the same training pipeline used on pre-miRNA 

identification to snoRNA sequences in human (Figure 6a). We trained two distinct models on 

the same dataset, MuStARD-snoSFC (Keras class weights enabled) and MuStARD-snoSFC-

U (Keras class weights disabled), using raw DNA sequence, secondary structure and 

conservation as input (Supplementary Table 5). We also applied these models to the mouse 

genome to verify their generalisation capacity (Figure 6b). For every mouse snoRNA 

(N=1,507), we used both models to scan a 10kb window centered on the snoRNA. This 

resulted in 4.8M sliding windows that were individually assessed and scored. Performance 

metrics were calculated based on taking into account each sliding window as an individual 

prediction as well as based on hotspots of positive predictions (Figures 6c and 6d). We did 

not compare our findings to state of the art algorithms for snoRNA detection as we are not 

aware of the existence of such algorithms. MuStARD achieved comparable levels of 

precision and resolution of predicted snoRNAs and miRNAs, and at the same time captured 

the characteristics of the problem and transferred that knowledge on another organism 

(Supplementary Tables 6 and 7). 
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Figure 6. Performance of human MuStARD-snoSFC and -snoSFC-U models on human 

(chromosome 14) and mouse genomes. a) Visualization of both models on the scanning 

windows on MEG8 locus in human chromosome 14. b) Genome browser visualization of 

MuStARD snoRNA models on Rabggtb locus. c) Performance in terms of precision and 

sensitivity based on assessing scanning windows individually d) Precision and sensitivity 

performance on hotspots of positive predictions. 

 

Discussion 

We have presented a novel method able to learn from example and identify similar functional 

loci over large regions. We demonstrated an improvement in accuracy of prediction over 

several methods specifically developed for a single task with expert knowledge, and have 

furthermore, for the first time, successfully attempted a genomic scan in the scale of several 

million nucleotides. Finally, we point out the potential of MuStARD to annotate classes 
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cross-species along moderate evolutionary distances. 

An innovative aspect of our method involves the iterative selection of negative examples 

based on high scoring false positives. Machine Learning methods are only as good as their 

features and training set. While Deep Learning eliminates the need for expert curated 

features—some of the pre-miRNA prediction methods utilized up to 700 features3—the need 

for negative training sets that effectively capture most of the background variation is still 

crucial. We initially prototyped our method with a small set of negatives, four for each real 

training example. We quickly realized that while our method could separate between these 

categories easily, it still produced a large amount of false positives in the more realistic 

scanning test. Training fifty models on fifty sets of negatives improved the performance, but 

we noticed that specific regions were identified as false positives by a large number of 

models, i.e. the false positives were not randomly distributed in the background. By enriching 

our background set with these false positives and retraining the best models in this iterative 

fashion, we achieved a great leap in performance. An important point for the iterative 

background enrichment step is that it is fully automated within our method. This allows the 

method to generalize more easily, since the best background mixture for each class of 

functional elements cannot be known in advance. 

The visualization tracks in Figure 3a highlight an important issue about the performance of 

algorithms on the task of scanning the genome for the identification or pre-miRNAs. The 

hotspots of positive predictions for all existing algorithms and especially for miPred, 

miRBoost and microPred exhibit a size that is typically several hundred base pairs. As a 

consequence, hotspots frequently overlap more than one annotated pre-miRNA creating 

positive bias for these algorithms in the precision and sensitivity mediated assessment of their 

performance. Figures 3d and 3e depict the distribution of the distance between the center of 

TP prediction hotspots and the center of overlapping annotated pre-miRNAs as well as the 

distribution of hotspot sizes. These results highlight that MuStARD provides high resolution 

predictions with unprecedented precision. Allowing a long merged prediction length does not 

give an advantage on the evaluation of our method. To the contrary, methods that predict a 

large number of positives tend to merge their predictions into long stretches, thus improving 

their evaluation metrics. For that reason, when evaluating algorithms for practical use we 

need to also take into account the tightness of the prediction fit to the positive region. 

MuStARD’s predictions were the tightest fit on real loci of all evaluated algorithms while our 

method also achieved higher precision and sensitivity balance than other algorithms. A side 

product of our merging positive regions output is the possibility to use MuStARD to ‘stitch 

together’ longer functional loci. There is an open question of whether MuStARD or a similar 

method based on iterative enrichment of backgrounds could be used to identify exons, 

untranslated regions, promoters, enhancers, long non coding RNAs etc. 

The evaluation of different input modes by itself gave us interesting insight in line with the 

scientific knowledge of pre-miRNAs. We managed a qualitative ranking of the contribution 

for each input branch to the final predictive model. Deeper interpretation of the model is 

beyond the scope of this paper, but is an exciting further field of research. One interesting 

observation coming from our training, is that class weight balanced training seems to be 

inferior in accurately predicting pre-miRNAs compared to unbalanced training. Class weight 

balancing is used in training Deep Learning models so that the model does not attempt to 
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learn the characteristics of a disproportionately populous class while ignoring sparser classes. 

However, in our more realistic scanning test, one positive example corresponds to at least one 

hundred negative examples. Our training data with a maximum ratio of approximately one 

positive example to fifty negatives—although heavily unbalanced—is less unbalanced than 

the realistic testing data. Exploring the class balancing issue will be necessary for the further 

improvement of the field towards the ultimate goal of genome wide scan prediction. 

Using a number of pre-miRNA prediction algorithms for region scanning was time 

consuming and arduous labor. To calculate hundreds of features on regions spanning less 

than one percent of the human genome, all other algorithms (with miRBoost being the sole 

exception) required to group the scanning region into smaller batches of 2000 sequences in 

order to parallelize the analysis into a computer cluster (MetaCentrum-CERIT). Even so, the 

average computing time for a single batch was 4 days. In contrast, our algorithms was able to 

scan the mouse benchmark dataset that includes several million base pairs in a few hours on 

one CPU. With GPU access enabled this process can be even faster. MuStARD has made the 

possibility of a full mammalian genome scan feasible on a high-end personal computer. 

However, even with our improved prediction accuracy, the number of false positives 

identified on a full genome scan would still be disproportionate to the true positives. We will 

continue exploring improvements and iterative training modification with the goal to achieve 

genome wide scan capabilities.  

Given the increasing number of sequenced genomes becoming available, annotation is 

lagging. We have demonstrated that MuStARD can be efficiently trained on one species and 

then used to predict members of the same functional class in another. As a proof of concept 

we trained models on human pre-miRNAs and snoRNAs and then identified their 

counterparts in mouse. These species are both well annotated, but have a considerable 

evolutionary distance. The pre-miRNAs we correctly identified on the mouse genome were 

enriched in evolutionary conserved pre-miRNAs in human (approximately 30% of our true 

positive predictions vs 10% of all mouse miRNAs). That said, the majority (70%) of our 

predicted pre-miRNAs are not homologous to human pre-miRNAs and would not be easily 

identified by a simple homology search. 

We chose pre-miRNAs as a first example because they have well established annotation, 

consistent secondary structure, conservation and other sequence characteristics. Our second 

use example was snoRNAs where most of these assumptions fail. The snoRNA class consists 

of several families that do not share common secondary structure, motif sequences, or 

conservation profiles. Conservation at large is much less pronounced in snoRNAs compared 

to pre-miRNAs. Additionally, the size distribution of snoRNAs (118.8bp mean, 59.1bp 

standard deviation) is much wider than miRNAs (81.9bp mean, 16.9bp standard deviation) 

making it harder for our method to accurately identify them. Despite these drawbacks, we 

manage to identify snoRNAs accurately within the human genome and in cross-species scan. 

When it comes to development of MuStARD we focused on making our method versatile and 

extensible, but also easy to deploy and run with minimal user input. To make it modular and 

versatile we used a Keras architecture that can be easily extended from more experienced 

users. Keras is widely accepted by the Deep Learning community and offers ease of use and 

several layers of abstraction in terms of code sharing when compared to tensorflow or other 

lower end frameworks. Extending the architecture with more diverse branches is 
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straightforward. We have already developed templates for reading sequence and secondary 

structure (one hot encoding) as well as conservation (scores). Adding different types of signal 

is as easy as downloading a relevant track from UCSC Genome Tracks and asking MuStARD 

to include it in the training. For basic users, the input has been kept minimal, requiring just a 

bed file of regions in the functional class of interest, a sequence file of the genome, and a 

conservation track of the same size. Given these inputs, MuStARD preprocesses the regions 

of interest, extracts sequences, simulates folding, picks random genomic sequences for 

background, optimizes hyperparameters, and so on until the final model is trained. With a 

trained model, region scans can be quickly with minimal effort. 

Methods 

Dataset collection and preprocessing 

Human (GRCh38) and mouse (GRCm38) genomes and corresponding gene annotations were 

downloaded from Ensembl v93 repository32. Human gene annotation was filtered to only 

include genes exhibiting a protein-coding or lincRNA biotype. The exons of protein-coding 

and lincRNA genes were combined to produce two disjoint data sets; parts of the genome that 

correspond to exons and loci that are represented by introns. A separate collection was 

created by selecting regions marked with the snoRNA biotype. Human and mouse pre-

miRNAs were downloaded from miRBase v227. Human pre-miRNAs were subsequently 

filtered based on the experimentally validated information provided in miRBase to keep only 

high-quality sequences for training. Basewise conservation scores, based on phyloP 

algorithm, of 99 and 59 vertebrate genomes with human and mouse respectively were 

downloaded from UCSC genome repository33. 

MuStARD training module architecture 

The aim of MuStARD is to provide a highly flexible, feature-agnostic computational 

framework that can be applied in a plethora of Biological problems providing state-of-the-art 

performance while at the same time having minimal input requirements. To this end, 

MuStARD has been specifically designed to follow a modular architecture where each 

module carries out different functionalities that can be run and assessed independently and/or 

in parallel (Figure 1). The framework is implemented using python for the deep learning 

aspect, R for the majority of meta-analyses and plotting, and perl for general purpose file 

filtering, formatting and module connectivity. Users only need to provide bed formatted files 

as input and the appropriate genome assembly files as well as the wiggle formatted PhyloP 

evolutionary conservation score files derived from UCSC repository. 

The training module of MuStARD is composed of a convolutional architecture based on 

tensorflow and the Keras functional API. More advanced users can directly add or remove 

parts of the architecture according to the problem at hand. For the purposes of this study, the 

chosen architecture consists of 3 convolutional branches that can be dynamically added, 

removed and combined in multiple ways according to the properties of the corresponding 

use-case. These branches depict distinct ‘agents’ that are able to independently model 

different input modes such as raw DNA sequence, RNA secondary structure and evolutionary 
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conservation. Subsequently, the outputs of the convolutional branches are flattened, 

concatenated and forwarded to the dense part of the architecture that produces the final 

prediction scores. In every layer output, dropout and batch normalization regularization 

techniques are applied to improve the generalisation capacity of the network. 

Regardless of the chosen network architecture, hyperparameters are known to be notoriously 

hard to optimize and depending on the complexity of the input, small changes in the 

hyperparameter selection can greatly affect the results. The training module has been 

designed to incorporate a grid-search type of approach for finding the optimal combination of 

hyperparameters. We have chosen to apply grid-search over 4 hyperparameters, the ones that 

based on our experience are able to greatly affect the results; batch size, learning rate, 

dropout rate and number of filters in the convolutional layers. Users can freely remove or add 

hyperparameters into the grid-search process and most importantly adjust the network 

architecture according to their needs. Each model trained over a different combination of 

hyperparameters is saved in a separate directory alongside train/validation accuracy/loss plots 

and a detailed log of the performance in each epoch. This allows users to find the exact 

combination of hyperparameters that produces the optimal training. 

Unless stated otherwise, in all use-cases presented in this study, each convolutional branch 

consists of 3 convolutional layers. The first convolutional layer in the raw DNA sequence 

processing branch uses a filter size of 16 nucleotides with stride 1 and no padding, the second 

layer uses a filter size of 12 and the third layer a filter size of 8. The first convolutional layer 

in the RNAfold processing branch uses a filter size of 30 nucleotides with stride 1 and no 

padding, the second layer uses a filter size of 20 and the third layer a filter size of 10. The 

first convolutional layer in the evolutionary conservation processing branch uses a filter size 

of 20 nucleotides with stride 1 and no padding, the second layer uses a filter size of 15 and 

the third layer a filter size of 10. The outputs of the convolutional branches are flattened and 

concatenated before being forwarded to the dense part of the network that includes 3 layers of 

100, 75 and 50 nodes respectively. All layers use leaky ReLu activation except the final 

prediction layer that uses the softmax function. The chosen optimizer is SGD with Nesterov 

momentum set at 0.9. All models were trained over 600 epochs after enabling early stopping 

with patience set at 40 and delta at 0 with a learning rate of 10-4. The code is accompanied 

with a configuration file and examples of how to edit parts of the architecture and train or test 

new or existing models.  

MuStARD prediction module 

The prediction module of MuStARD framework has been explicitly designed to facilitate 

both long region scanning and static assessment of specific loci. In the case of long region 

scanning, users are able to select the appropriate parameters such as the window size (it 

should match with the training window size), sliding step and the model that will be used for 

scoring each window. The framework includes standalone code for generating bedGraph 

tracks that can facilitate the visualization of results in any genome browser as well as code for 

creating ‘hotspots’ of positive predictions and for evaluating the results based on custom 

tracks and/or annotations. In the case of static assessment of specific loci, the prediction 

module provides a bed formatted file that included the score of each region in the 5th column. 
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Learning process of pre-miRNA detection MuStARD models 

As described in previous sections, the training (Figure 1) of the pre-miRNA recognition 

model was based on experimentally verified human precursor sequences from miRBase. Only 

pre-miRNAs with size less than 100bp were used to form the positive set resulting in 579 

sequences. The negative set was formulated with bedtools 2.27.0v34  ‘shuffle’ mode using the 

positive set on the exon/intron genomic segments described in previous section. For each 

positive instance 4 equally sized negatives were randomly selected from protein- and non-

coding exonic as well as intronic regions, 1 for every category. This process was repeated 50 

times in total creating 50 different training sets that were used to train an equal amount of 

distinct preliminary models. Hyperparameters were fixed at 256 batch size, 0.2 dropout rate, 

0.0001 learning rate and 80/40/20 number of filters in the 3 convolutional layers of each 

branch and the class weight option in Keras was enabled. Based on this repetitive negative 

shuffling configuration we ensured that a reasonable balance between training time as well 

approximating sequence and evolutionary conservation variation in background or non-

precursor genomic loci was maintained. Instances of the training set that were located in 

chromosomes 2 and 3 were used for validation, instances in chromosome 14 were left out of 

the training process and all remaining instances were used for training. One of our objectives 

was to optimize the genome scanning process. The majority of existing algorithms utilize 

positive sequences that are fixated around the center of pre-miRNAs. However, in genome 

scanning scenarios there will always be instances in which part or the whole hairpin sequence 

will not be located in the center of the scanning window. This phenomenon might heavily 

affect the secondary structure of the RNA sequence corresponding to each window and 

therefore the generalisation capacity of the model. To overcome this problem, the MuStARD 

training module has been equipped with an optional ‘reinforcement’ feature that generates 

copies of the input instances with randomly placed positive or negative sequences within the 

100nt sequence. For the purposes of this study, the number of reinforced instances for every 

input sequence was 5. 

Ideally, if the combination of using intronic/exonic regions as a background sequence pool 

and the 1:4 positive to negative ratio was enough to fully capture the non-precursor sequence 

variation in the 3 input feature space (raw DNA sequence, secondary structure and basewise 

evolutionary conservation) then a near perfect performance in terms of both precision and 

sensitivity would be achieved in a scenario where all 50 preliminary models are used to scan 

the genome for predicting pre-miRNA sequences. To test this hypothesis all human pre-

miRNAs were extended by +/- 5,000bp and the resulting regions were merged in the case of 

strand specific overlaps. Both strands of the merged loci were scanned with all 50 

preliminary models using a window of 100bp and a stride of 10bp. This resulted in a 

benchmark dataset of 33.2 million bp divided into 3.2 million overlapping 100bp windows. 

For each model, out of the 3.2 million windows only those exhibiting a score above 0.5 were 

retained to form ‘hotspots’ of positively predicted regions after merging cases of strand 

specific overlaps. These regions were subsequently cross checked with the annotated pre-

miRNAs to extract performance metrics in the 0.5-0.9 score range for every preliminary 

model (Supplementary Table 8). 

False positive predictions based on a 0.5 score threshold were kept only if they were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 13, 2019. ; https://doi.org/10.1101/547679doi: bioRxiv preprint 

https://paperpile.com/c/zFJqp6/L4TR
https://doi.org/10.1101/547679
http://creativecommons.org/licenses/by-nc-nd/4.0/


supported by 25 out of 50 preliminary models and did not overlap with any negative instance 

used to train these models. The resulting 23,750 false positive loci were added to the negative 

dataset of the best performing preliminary model. These false positives represent regions of 

the genome that were not captured by the process of ‘shuffling’ positive instances to 

exonic/intronic loci and exhibit feature characteristics that are more similar to positive than 

negative instances. This process assisted in establishing an enhanced set of sequences that 

was used to train the final pre-miRNA detection model that was selected through performing 

a hyperparameter space grid-search over the batch size and the Keras option of training 

with/without class weights (Supplementary Table 1). The class weights option in Keras 

enables the equal contribution of all classes during the training of unbalanced datasets. The 

remaining hyperparameters were not changed. 

This process was repeated 6 times to train (Supplementary Table 8), with the Keras class 

weights option enabled, an equal number of distinct MuStARD pre-miRNA detection models 

composed of different input combinations; raw sequence with secondary structure and 

conservation (MuStARD-mirSFC model), raw sequence and conservation (MuStARD-

mirSC), raw sequence and secondary structure (MuStARD-mirSF), secondary structure and 

conservation (MuStARD-mirFC), secondary structure only (MuStARD-mirF) and sequence 

only (MuStARD-mirS). For the combination of raw sequence, secondary structure and 

conservation, we have trained an additional model after disabling the class weights option in 

Keras (MuStARD-mirSFC-U model). For MuStARD-mirSFC model, the optimal (balance 

between precision and sensitivity) batch size was 1024, 256 for MuStARD-mirSFC-U, 1024 

for MuStARD-mirSC, 256 for MuStARD-mirSF and MuStARD-mirFC, 512 for MuStARD-

mirF and MuStARD-mirS. The procedure for evaluating the performance of each model is 

described in the following section. 

For the purposes of the second use-case presented in this study, the same pipeline was used to 

create two MuStARD snoRNA detection models (Supplementary Table 8) using raw 

sequence, secondary structure and conservation with the class weights Keras option enabled 

(MuStARD-snoSFC) and disabled (MuStARD-snoSFC-U). However, for this use-case only 

snoRNAs with size less than 100bp were used to form the positive set resulting in 386 

positive sequences. 

Testing on genomic region scanning data 

The process of testing algorithms on a static labelled dataset can often provide misleading 

results about performance especially in cases of models that have been designed for genome-

wide scanning. Such ‘stress’ tests are often also able to unveil interesting aspects about the 

computational complexity and the time required by algorithms to complete a task. To this 

end, all human pre-miRNAs located on chromosome 14 were extended by +/- 5,000bp and 

the resulting regions were merged in the case of strand specific overlaps. Both strands of the 

merged loci were scanned with all MuStARD’s final pre-miRNA detection models (Figure 2, 

Supplementary Table 1) as well as with existing algorithms (Figure 4, Supplementary Table 

3) using a window of 100bp and a stride of 5bp. This resulted in a scanning benchmark 

dataset of 1 million bp divided into 208,708 overlapping 100bp windows.  

Two distinct strategies were employed to assess the performance of each algorithm. In the 
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first approach, each window was assessed independently (method A) while in the second only 

windows exhibiting a score above 0.5 were retained to form ‘hotspots’ of positively predicted 

regions after merging cases of strand specific overlaps (method B). These regions were 

subsequently cross checked with the annotated chromosome 14 pre-miRNAs (99 in total) to 

extract performance metrics in the 0.5-0.9 score range, when possible. In both scenarios, 

positive predictions were considered true positives (TPs) if they covered at least 50% of the 

overlapping annotated pre-miRNA’s length. HuntMi27 and microPred28 algorithms only 

provide hard labelled results instead of a probabilistic score, therefore they were not included 

in the graph. However, to facilitate a fair comparison between all algorithms, performance 

metrics based on both methods A and B were extracted at a fixed score threshold of 0.5 

(Supplementary Tables 2 and 3). 

Method B was also applied to annotated mouse precursors as well as human/mouse snoRNAs 

but only using MuStARD’s SFC and SFC-U use-case relevant models (Figure 6, 

Supplementary Tables 6 and 7). 

Testing on labelled data 

For the purposes of testing the final pre-miRNA detection model on labelled data and 

comparing with existing algorithms, all positive and negative instances located on 

chromosome 14 were used from the enhanced data set described in the previous section after 

removing sequences with size less than 100bp. The total number of positive instances in the 

test set was 44 and the total number of negatives 893 (Figure 4, Supplementary Table 3). 

Application of existing algorithms 

There are over 30 pre-miRNA prediction algorithms listed in OMICtools repository. The 

majority of these studies provide access to the trained models only through web-server 

interfaces which allow a small number of sequences to be processed at once. Only a handful 

of studies provide stand-alone implementations that can be downloaded and applied on 

benchmark datasets locally. However, a small fraction of these implementations are able to 

properly function and provide results. 

We only managed to assess the prediction efficiency of HuntMi, microPred, MiPred, triplet-

SVM, and MirBoost on our benchmark datasets. HuntMi and microPred tools do not support 

parallelization, and the average processing time for a sequence of 100nt is 3 minutes. The 

scanning benchmark sequences were grouped into 100 bins to faster the analysis for HuntMi 

and microPred. Also, microPred random sequence generation parameter setting was 500. 

Each bin was analyzed independently by HuntMi and microPred on virtual machines 

provided by the MetaCentrum-CESNET supercomputer cluster. MiRBoost’s SVM model 

was re-trained to support probabilistic output using the dataset included in the code repository 

and parameters ‘svm-train -h 0 -c 8.0 -g 0.125 -w1 1 -w-1 1 -b 1’. Then miRBoost was 

applied on our benchmark dataset with parameters ‘miRBoost -d 0.25’. For triplet-SVM, we 

initially applied RNAfold on our benchmark dataset with parameters ‘RNAfold --noPS --

noconv --jobs=10’ and the output was forwarded to the triplet-SVM perl script with 

parameters ‘triplet_svm_classifier.pl 22’ that pre-processes the data and reformats it for the 

final prediction modules that requires libsvm. The final triplet-SVM results were obtained 
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using svm-predict with parameters ‘svm-predict -b 1’. MiPred was applied on the benchmark 

dataset with default parameters. 

Assessing MuStARD’s ability to detect non-human-homologous pre-miRNAs in mouse 

Mouse hairpins regions of miRNA transcripts (N=1227) were derived from the miRBase 

database; orthologous miRNA (N=129) between mouse and human were retrieved from the 

Ensembl BioMart hub35. Initially, accurate MuStARD predictions (true positives) were 

recognized as overlapping with mouse hairpins regions through bedtools intersect v2.27.1.  

Subsequently, non-human-homologous pre-miRNAs were distinguished as the negative 

intersection between accurate MuStARD predictions and the human orthologous miRNA 

dataset. Bedtools options 'same strandedness' and 'overlaps=0.5' were used in both cases (-s 

and -f, respectively). 

Software and hardware requirements 

MuStARD is developed in Python 2.7 for the Deep Learning aspect (tensorflow 1.10 and 

Keras 2.2.2), R for visualizing the performance and Perl for file processing, reformatting and 

module connectivity. Full list of dependencies can be found on MuStARD’s gitlab page. 

MuStARD is able to execute either on CPU or GPU depending on the underlying hardware 

configuration by taking into advantage tensorflow’s flexibility. The framework has been 

designed to maintain a minimal memory footprint thus allowing the execution even on 

personal computers. Running time heavily depends on input dimensionality, number of 

instances in the training set, learning rate and GPU availability. 
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