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Abstract

Recent advances in electron microscopy have, for the first time, enabled imaging of single cells in 3D
at a nanometer length scale resolution. An uncharted frontier for in silico biology is the ability to
simulate cellular processes using these observed geometries. Enabling such simulations will require
a system for going from electron micrographs to 3D volume meshes, which can then form the basis
of computer simulations of such processes using numerical techniques such as the [Finite Element]
[Method (FEM)| In this paper, we develop an end-to-end pipeline for this task by adapting and
extending computer graphics mesh processing and smoothing algorithms. Our workflow makes
use of our recently rewritten mesh processing software, GAMer 2, which implements several mesh
conditioning algorithms and serves as a platform to connect different pipeline steps. We apply
this pipeline to a series of electron micrographs of neuronal dendrite morphology explored at three
different length scales and demonstrate that the resultant meshes are suitable for finite element
simulations. Our pipeline, which consists of free and open-source community driven tools, is a step
towards routine physical simulations of biological processes in realistic geometries. We posit that a
new frontier at the intersection of computational technologies and single cell biology is now open.
Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on
emerging structural data will enable realistic physical models and advance discovery.

Author summary

3D imaging of cellular components and associated reconstruction methods have made great strides
in the past decade, opening windows into the complex intraceullar organization. These advances
also mean that computational tools need to be developed to work with these images not just for
purposes of visualization but also for biophysical simulations. Here, we describe a pipeline that
takes images from electron microscopy as input and produces smooth surface and volume meshes as
output. These meshes are suitable for building high-quality finite element simulations of cellular
processes modeled by ordinary and partial differential equations, bringing us closer to realizing
the goal of generating high-resolution simulations of such phenomena in realistic geometries. We
demonstrate the utility of this pipeline by meshing 3D reconstructions of dendritic spines, calculating
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the curvatures of the different component membranes, and conducting finite-element simulations
of reaction-diffusion equations using the generated meshes. The software tools employed in our
pipeline are community driven, open source, and free. We believe that technologies such as those
presented will enable a new frontier in biophysical simulations in realistic geometries.

List of Acronyms

BPAP Back Propagating Action Potential

EM Electron Microscopy

EPSP Excitatory Postsynaptic Potential

ER Endoplasmic Reticulum

FEA Finite Element Analysis

FEM Finite Element Method

FIB-SEM  Focused-ion Beam Milling Scanning Electron
Microscopy

LST Local Structure Tensor

NMDAR  N-methyl-D-aspartate Receptor

PDE Partial Differential Equation

PM Plasma Membrane

PSD Postsynaptic Density

SBF-SEM  Serial Block-Face Scanning FElectron Mi-
Croscopy

Introduction

Understanding structure-function relationships at the cellular length scales (nm to pm) is one of
the central goals of modern cell biology. While structural determination techniques are routine
for very small and large scales such as molecular and tissue, high-resolution images of mesoscale
subcellular scenes were historically elusive. This was primarily due to the diffraction limits of
visible light and the limitations of X-ray and [Electron Microscopy (EM)| hardware. Over the past
decade, technological improvements such as improved electron direct detectors have enabled the
practical applications of techniques such as volume electron microscopy. Advances in microscopy
techniques in recent years have opened windows into cells, giving us insight into cellular organization
with unprecedented detail. Volumetric enables the capture of 3D ultrastructural datasets (i.e.,
images where fine structures such as membranes of cells and their internal organelles are resolved,
as shown in Fig. ) Using these geometries as the basis of simulations provides an opportunity
for in silico animation of various cellular processes and the generation of experimentally testable
hypotheses. However, to the best of our knowledge, there is no current free and open-source system
for going from EM images to high-quality 3D meshes, which are essential for developing reliable
high-resolution finite element simulations of cellular processes.

Here, we introduce our recently redesigned software, GAMer 2 (Geometry-preserving Adaptive
MeshER), as a tool connecting and implementing methods for 3D meshing and reconstruction of
cellular electron micrographs (Fig. . The input to this pipeline are stacks of high-resolution images
(Fig. ) from which contours of different organelles and cellular components that are separated by
membranes are segmented and identified (Fig. [B). These steps are often done in experimental and
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imaging labs. Superposition of these 2D contours based on the known z-separation gives us the first
3D contour data set (Fig. ) Traced contours are then constructed into a primitive 3D surface
mesh using IMOD (Fig. ) [1]. The surface meshes of the external and internal membranes are
then conditioned to improve element quality via GAMer; faces are also marked using BlendGAMer, a
GAMer addon for Blender, which enables the definition of boundary conditions for the simulation
(Fig. ) [2]. TetGen takes these high-quality surface meshes as inputs and generates an unstructured
tetrahedral mesh (Fig. [I£) [3]. This mesh is now ready for finite element based physical simulation
of different cellular processes (Fig. ) In this work, we describe and explore the use of GAMer 2 to
bridge the gap between image acquisition/segmentation (Fig. , B) and modeling with
Differential Equations (PDEs)| (Fig. [IE, F).

Image acquisition and segmentation

We briefly summarize sample preparation in this section for completeness. Sample preparation begins
with either cell culture or harvesting of biological tissues of interest. Subsequent preparation steps can
vary depending upon the particular volume [EM] imaging modality used but primarily include sample
dehydration, fixation/staining, embedding, and imaging through the different cross-sections [4-7].
Once the images are captured, in order to construct an initial mesh model from the data, the
boundaries of features must first be identified. Much of this relies on the expertise of biologists
for recognition of organelles and membrane domains in cells. During the segmentation process,
the algorithm or researcher must carefully separate boundary signal from noise. Various schemes
ranging from manual tracing, thresholding and edge-detection, to deep-learning based approaches
have been employed to perform image segmentation [7]. The resulting segmentations from volume
[EM] can be visualized as stacks of contours. This provides an initial glimpse into the 3D shapes
of objects of interest. In order to enable modeling using the shapes represented by the contours,
geometric meshes compatible with numerical methods can be constructed. However, a myriad of
complexities often confound this process and necessitate flexible approaches of mesh generation.

Meshing challenges

A variety of challenges for meshing and subsequent physical simulations can arise at each step. Even
with perfect experimental execution, and despite the enhanced surface contrast from heavy metal
stains, the membranes of cells and their internal organelles are often poorly behaved and contain
sharp and otherwise irregular geometries that are difficult to segment. In more serious cases, thinly
sliced samples can tear or become contaminated during handling. Methodological errors are also
possible. For example, [Serial Block-Face Scanning Electron Microscopy (SBF-SEM)| datasets in
optimum conditions may have 3 nm lateral (x,y) resolution but 25 nm axial (z) resolution, limited
by the slicing capability of the ultramicrotome [4]. Anisotropic resolution in tandem with variable
slice thickness can cause loss of axial detail.

There are many [EM] softwares that post-process image stacks to correct for these and other
artifacts not mentioned. Most of our datasets have been manually segmented and corrected in
software such as IMOD |1], ilastik [§], or TrackEM2 [9]. IMOD and other tools such as ContourTiler
in VolRoverN [10] have the capacity to perform contour-tiling operations to generate a preliminary
surface mesh suitable for basic 3D visualization. These meshes, however, are often not directly
suitable for physical simulations due to various mesh artifacts. Some of these include intersecting
faces, non-manifold features, and high aspect ratio faces, as shown in Fig. [2 We note that although
there exist advanced tetrahedral mesh generation tools, such as TetWild [11], which can generate
[Finite Element Analysis (FEA)| compatible volume meshes automatically from these poor quality



https://doi.org/10.1101/534479

bioRxiv preprint doi: https://doi.org/10.1101/534479; this version posted July 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

initial surfaces, many mesh defects are the result of the limited resolving powers of (e.g.,
Fig. 1, A2) and require more careful curation. To resolve these problems, we perform the surface
mesh conditioning steps described below.

Methods

Mesh Processing

Our main contribution in this work is a surface mesh processing library GAMer 2, which features
algorithms as described by Yu et al. [12[13], by Gao et al. [14,15], and [16]. We have recently rewritten
GAMer in C++ using the CASC data structure [17] as the underlying mesh representation. This rewrite
also introduces run-time stability with improved error handing, additional mesh analysis such as
curvature estimation, and pybind11 18] wrapper based Python API PyGAMer. The code is licensed
under LGPL v2.1 and can be obtained from GitHub (https://github.com/ctlee/gamer) |19].
GAMer can be used as a stand-alone library, or alternatively the algorithms can be accessed through
a GAMer Blender add-on called BlendGAMer. Blender not only provides a customizable mesh
visualization environment, but also tools such as sculpt mode, which allows users to flexibly
manipulate the geometry [2]. We briefly review the concepts behind the mesh processing algorithms
from Yu et al. [12}[13].

Local Structure Tensor

The mesh processing operations in GAMer are designed to preserve the local geometry; algorithms
seek to respect the geometric ground truth observed in the micrographs. We use a[Local Structure]

Tensor (LST)|to account for the local geometry [20-22]. The is defined as follows,
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where v is the vertex of interest, N, is the number of neighbors in the r-ring neighborhood, and n;"**

form the normal of the ith neighbor vertex. Vertex normals are defined as the weighted average of
incident face normals. Performing the eigendecomposition of the we obtain information on the
principal orientations of normals in the local neighborhood [23]. The magnitude of the eigenvalue
corresponds to the amount of curvature along the direction of the corresponding eigenvector.
Inspecting the magnitude of the eigenvalues gives several geometric cases:

e Planes: A\ > Ay~ A3~0
e Ridges and valleys: A\ = Ao > A3 =~ 0

e Spheres and saddles: A\ & Ay = A3 >0

Feature preserving mesh smoothing

Finite elements simulations are extremely sensitive to the quality of the mesh. Poor quality meshes
can lead to unbounded error, numerical instability, long times to solution, and non-convergence.
Generally, triangulations with high aspect ratios produce larger errors compared with equilateral
elements [24].
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To improve the conditioning of the surface meshes derived from microscopy images, we use an
angle-weighted Laplacian smoothing approach, as shown in Fig. [BJA. This scheme is an extension to
meshes embedded in 3D of the angle weighted smoothing scheme described by Zhou and Shimada
for meshes embedded in 2D [25]. In essence, this algorithm applies local torsion springs to the 1-ring
neighborhood of a vertex of interest to balance the angles.

Given a vertex x with the set of 1-ring neighbors {vi,...,vy}, where N is the number of
neighbors, ordered such that v; is connected to v;_; and v;;1 by edges. The 1-ring is connected
such that vy41 := vy and v_; := vy. Traversing the 1-ring neighbors, we define edge vectors
ej_1:= m and e;41 1= vzv—lﬂ> . This algorithm seeks to move x to lie on the perpendicularly
bisecting plane II; of Z(v;_1,v;,viy1). For each vertex in the 1-ring neighbors, we compute the
perpendicular projection, x;j, of x onto II;. Since small surface mesh angles are more sensitive to
change in x position than large angles, we prioritize their maximization. We define a weighting
factor, o = =L which inversely corresponds with Z(v;_1,v;, vi11). The average of the

lei—1]lest1]”
projections weighted by «; gives a new position of x as follows,

N

1
SHETPILES ®

There are many smoothing algorithms in the literature; the angle-weighted Laplacian smoothing
algorithm described here can outperform other popular smoothing strategies such as those described
in [26-29] which are primarily focused on optimizing the smoothness of surface normals for computer
graphics applications and not mesh angles. Our goal is not to provide an elaborate comparison
against existing algorithms in this manuscript but to demonstrate the utility of our pipeline for
biological images, with a specific goal of using EM-generated images for computational biology
simulations. These images can produce meshes that often contain hundreds of thousands to millions
of faces and can cause global optimization based algorithms to fail. Therefore, our approach is a
local operation, making it particularly suitable for cellular images.

Conceptually the fidelity of the local geometry can be maintained by restricting vertex movement
along directions of low curvature. This constraint is achieved by anisotropically dampening vertex
diffusion using information contained in the [LST} Although the weighted vertex smoothing scheme,
as described, will reasonably preserve geometric structure, the structure preservation can be further
improved by using the [LST] Computing the eigendecomposition of the [LST] we obtain eigenvalues
A1, A2, A3 and eigenvectors E1, Eo, E3, which correspond to principal orientations of local normals.
We project X — x onto the eigenvector basis and scale each component by the inverse of the
corresponding eigenvalue,

3
f=x+Y —[(x - %) EyEy 3)

This has the effect of dampening movement along directions of high curvature i.e., where A is large.
In this fashion, our algorithm not only improves triangle aspect ratios, but does so while preserving
local geometric features. We note that our actual implementation iterates between rounds of vertex
smoothing and conventional angle based edge flipping to achieve the desired smoothing effect. Edge
flips are common in mesh processing, and provide a mechanism for both improving angles and
reducing the valency of vertices [30]. A comparison of the angle-weighted smoothing algorithm with
and without LST correction is shown in Fig.
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Feature preserving mesh decimation

The number of degrees of freedom in the mesh influences the computational burden of subsequent
physical simulations. One strategy to reduce the number of degrees of freedom is to perform mesh
decimation or simplification.

There are many strategies for decimation, some reviewed here [31,32], including topology
preserving Euler operators, other algorithms such as vertex clustering which may not guarantee
topological invariance [33], and remeshing [34]. It is typically desirable to preserve the mesh topology
for physical simulation based applications. Conventional FEuler operations for mesh decimation
include vertex removal, edge collapse, and half-edge collapse. As noted earlier, finite elements
simulations are sensitive to angles of the mesh. Edge and half-edge collapses can sometimes lead to
vertices with high or low valency and therefore poor angles. Although algorithms to detect topology
changing edge collapses have been developed [35], we avoid this problem by employing a vertex
removal algorithm. First, vertices to be decimated are selected based upon some criteria, discussed
below. We then remove the vertex and re-triangulate the resulting hole. This is achieved using a
recursive triangulation approach, which heuristically balances the edge valency. Given the boundary
loop, we first connect vertices with the fewest incident edges. This produces two resulting holes
that we then fill recursively using the same approach. When a hole contains only three boundary
vertices, they are connected to make a face. We note that while this triangulation scheme balances
vertex valency, it may degrade mesh quality. We solve this by running the geometry preserving
smoothing algorithm on the local region.

We employ two criteria for selecting vertices to remove. First, to selectively decimate vertices
in low or high curvature regions, again information from the can be used. By comparing the
magnitudes of the eigenvalues of the we can select for regions with different geometries. For
example, to decimate vertices in flat regions of the mesh, given eigenvalues A1 > Ao > A3, vertices
can be selected by checking if the local region satisfies,

— < Rl, (4)

where R; is a user specified flatness threshold (smaller is flatter). In a similar fashion, vertices in
curved regions can also be selected. However, decimation of curved regions is typically avoided due
to the potential for losing geometric information.

Instead, to simplify dense areas of the mesh, we employ an edge length based selection criterion,

maXZN:lld(x, Vi)

< R, 5
5 2 (5)

where Nj is the number of vertices in the 1-ring neighborhood of vertex x, d(-,-) is the distance
between vertices x and v;, D is the mean edge length of the mesh, and Ry is a user specified threshold.
This criterion allows us to control the sparseness of the mesh. We note that the aforementioned
criteria are what is currently implemented in GAMer, however the vertex removal decimation scheme
can be employed with any other selection criteria.

Feature preserving anisotropic normal-based smoothing

To remove additional bumpiness from the mesh, we use a normal-based smoothing approach [36}37],
as shown in Fig. BB. The goal is to produce smoothly varying normals across the mesh without
compromising mesh angle quality. Given a vertex x of interest, for each incident face ¢, with normal
n; we rotate x around a rotation axis defined by opposing edge e; such that n; aligns with the
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mean normal of neighboring faces n; = Z?:l n;;/3. We denote the new position which aligns n;
and n; as R(x;e;,6;). Summing up the rotations and weighting by incident face area, a;, we get an

updated position,

1 &
X=—— > a;R(x;e;,0;). (6)
N Z (2 » =1y Ve
i1 Gi i
This is an isotropic scheme that is independent of the local geometric features; meaning that many
iterations of this algorithm may weaken sharp features.
Instead, we use an anisotropic scheme [37,38] to compute the mean neighbor normals,

3

~ 1 K n; n;;
0= Sy 2 )
j= j=

where K is a user defined positive parameter which scales the extent of anisotropy. Under this
scheme, the weighting function decreases as a function of the angle between n; and n;; resulting in
the preservation of sharp features.

Boundary marking and tetrahedralization

To support the definition of boundary conditions on the mesh, it is conventional to assign boundary
marks or identifiers which correspond to different boundary definitions in the physical simulation.
In simplified and idealized geometries it is possible to define functions to assign boundary values.
However, in subcellular scenes where the geometry may be tortuous and local receptor clusters
can be arbitrarily distributed on the manifold, boundary definition is a non-trivial challenge. The
BlendGAMer add-on supports the facile user-based definition of boundary markers on the surface [2].
Users can utilize any of the face selection methods which Blender provides to select boundaries to
mark. Boolean operations and other geometric strategies provided natively in Blender can also
be used for selection. Boundary markers are associated with a unique material property which
helps visually delineate marked assignments. After boundaries are marked, stacks of surface meshes
corresponding to different domains can be grouped and passed through GAMer into TetGen for
tetrahedralization [3].

Mesh Generation Pipeline

Electron micrographs and segmentations from Wu et al. [39] were graciously shared by De Camilli
and coworkers (Fig. , B). We generated preliminary meshes of the geometry using the imod2obj
utility included with IMOD [1] (Fig. ) The quality of the mesh was improved using algorithms
described in §Mesh Processing and implemented in GAMer 2 [19] (Fig. [ID). Some features, such
as disconnections of the [Endoplasmic Reticulum (ER)| were manually reconnected using Blender
mesh sculpting features. Additional discussion of the mesh artifacts and the curation process is
described in the example applications. Boundaries were marked and the conditioned surface mesh
was tetrahedralized using TetGen [3] (Fig. [LE).

Estimation of Membrane Curvatures

In addition to the generation of [FEA] compatible meshes of realistic cell geometries, this workflow can
produce meshes amenable to other geometric analysis. The conditioned meshes can yield improved
results for many geometric quantities of interest such as surface area and volume along with other
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more complex observables such as surface curvature. Membrane curvatures and minimal surfaces
have long been of interest to biophysicists and mathematicians alike.

Using the conditioned surface meshes, the curvature can be estimated using methods from
discrete differential geometry. In GAMer, we have implemented the algorithms to compute curvatures
as described by Meyer et al. [40], summarized as follows. The mean curvature normal is given by

1

K(Xi):AM' .

Z (cot ajj + cot Bi5) (% + %), (8)
JEN1(3)
where Apfixed is the mixed discrete area around vertex x;, X; is a vertex in the first ring of neighbors

Ni(i), a5, and f;; are the angles opposite to the edge 4, j. From the mean curvature normal we
compute the signed mean curvature

k(%) = %K(Xi) -1, 9)

where n; is the unit surface normal at x;. To compute the discrete Gaussian curvature, we use the
angle deficit formula

Iig(Xi) = 2 — 9]' s (10)
AbMixed =

where 0; is the angle of the jth face at vertex x;. The principal curvatures x; and k2 are then
computed from the mean (kz) and Gaussian (k) curvatures

k1(x;) = k(%) + VA(x) (11)
ko(x;) = k(%) — VA(x), (12)
2

where A(x;) = k% (xi) — ke(x;). In addition to estimating the curvatures, we can use the mesh
models to interrogate the impacts of curvature on signaling.

Building High-Resolution Finite Element Simulations from High-Quality Tetra-
hedral Meshes

Coupled volume and surface diffusion model

To showcase how simulations performed on meshes of realistic biological geometries can elucidate
structure-function relationships, we reproduce the results of [41] on a dendritic spine. The spine was
first geometrically modeled using the meshing pipeline described here, and the mesh was then used

as the spatial domain for a detailed numerical simulation using the finite element method. Consider

. kOl’l . . . .
the reaction A + X k: B, where A is a cytosolic component which binds to X, a membrane bound
off

component, to produce B, another membrane bound component. The governing equations consist
of a volumetric [PDE]

A
887 = DpAA in Q, (13)
two surface
oX
E = DxAgX — k‘onA’aQX + koggB on 00 (14)
0B
E = DgAgB + konA|aQX — kofB on 09, (15)
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and a boundary condition for A which couples all three species at the interface:

Da(n-VA) = —konAX + koggB on 95 (16)

Dy, Dx, and Dg are the diffusion coefficients for A, X, and B respectively. n is the outwardly-oriented
unit normal vector, A is the standard Laplacian operator, Ag is the Laplace-Beltrami operator, 2
is the volumetric (cytosolic) domain, and 0f is the surface (plasma membrane) domain (illustrated
in Fig. @A) The parameters used in this system are as follows: koy = 1 111\/[_1 7 kogr = 0.1s71,
Da =0.1...300pm?s™ !, Dx = 0.1um?s™!, and Dg = 0.01 pm?s~!. The initial conditions were
set to A(t = 0) = 1.0 M, X(t = 0) = 1000 molecules pm 2, and B(¢ = 0) = 0 molecules pm~—2. The
initial concentration of X was set to a large value such that it would not be a rate-limiting factor.
Multiplying each [PDE| by a test function, integrating over their respective domains, and applying
the divergence theorem results in the variational or weak form of the problem. After discretizing
the time derivatives using the backward Euler method with time-step size ¢, and decoupling the
volumetric and surface using a first-order operator splitting scheme the system becomes:

A1) _ A(n)
L

va + DAVATTD Ty, dQ + / kon AT Xpp — kogBua dI = 0, (17)
o0

x(n+1) _ x(n) -
/ s x+ Dx VXD . Vgux + konAX " Doy — ko B Doy dT = 0, (18)
o0

B+l _ g . ~ ) )
/ — v+ DpVsB" ) . Vavg — kon AX" Do + kogBMHog dl = 0. (19)
0N

Here, A, X, and B represent the most recent estimates of A1) X+ and BM+1), At each
time-step Eq. is solved to estimate A("‘H), this estimate is then used in Egs. and to
obtain an estimate for X("*1) and B(™*1 which are used again in Eq. to further improve the
estimate of A™*Y_ This cycle continues until a satisfactory convergence criterion is met.

Note that Eqs. (14]) and are that govern phenomena occurring entirely on the surface
0f), with the Laplace-Beltrami operator Ag appearing as the principle spatial differential operator
acting on functions that live on the surface 9€2. The metric v;; of the surface 92 encodes the
geometry of the surface, and appears as a spatially varying function in the Laplace-Beltrami operator,
as well as in the area element of integrals over 9€2. This class of with spatial domains being
represented by two-dimensional surfaces, or more generally Riemannian n-manifolds, are known as
geometric PDEs, and arise in a number of areas of pure mathematics and mathematical physics,
as well as in applications in science and engineering. Unfortunately, two distinct challenges arise
in developing numerical methods for geometric PDE with the necessary convergence properties to
allow for drawing scientific conclusions from simulations. The first is the necessity of treating the
continuous curved spatial manifold only approximately, using some type of computable discrete
proxy (such as an interpolatory triangulation of a smooth two-surface), and then accounting for the
impact of this domain approximation on the overall error in a numerical simulation. The second
difficulty is the need to approximate the metric of the smooth surface that appears in the definition
of the Laplace-Beltrami operator itself, using some type of computable approximation (such as a
polynomial), and again accounting for the impact of this second distinct approximation on the
overall error in the numerical simulation of phenomena on the surface.

Surface finite element methods (SFEM) have emerged [42-45] over the last few years as an
approach to developing finite element methods for this class of problems that have well-understood
convergence properties, and are both efficient and reliable. The method is formulated on a


https://doi.org/10.1101/534479

bioRxiv preprint doi: https://doi.org/10.1101/534479; this version posted July 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

“flat” triangulated approximation of the curved domain surface, and the error produced by this
approximation is then controlled using a “variational crimes” framework known as the Strang
Lemmas. Our recent work in this area leverages the Finite Element Exterior Calculus framework
(FEEC) [46] to provide a more general error analysis framework for surface finite element methods
on n-surfaces, for static linear and nonlinear problems [47,/48|, as well as for evolution problems on
surfaces [49,50]. Surface finite element methods for geometric PDE have the advantage of allowing
for the use of standard finite element software originally developed for standard (non-geometric)
PDE problems in two-dimensional “flat” domains or three-dimensional volumes, after a fairly
simple modification to the reference element maps commonly used by such software packages. Our
approach here is to make use of the standard finite element software package FEniCS [51], and to
use surface finite element modifications to FEniCS (described e.g. in [52]) for solving our geometric

PDE Egs. and above.

Simulating reaction-diffusion in the volume

Using the mesh of the dendritic segment we simulated [N-methyl-D-aspartate Receptor (NMDAR )|
activation due to a [Back Propagating Action Potential (BPAP)| and [Excitatory Postsynaptic|
[Potential (EPSP)| along the entire dendrite in Fig. see also Movie S1 available online. Because
the goal of this simulation was not to show biological accuracy, but rather to demonstrate that our
pipeline is capable of producing biophysically relevant simulations, we use a simplified version
of the model found in Bell et al. [53].
We model a[BPAP|and [EPSP] which stimulates NMDAR opening and calcium ion influx into the
cell. The reaction-diffusion of u, corresponding to calcium ion concentration, is described as follows,
?;t‘ — DAu— % in Q, (20)
where D is the diffusion coefficient of u, A is the Laplacian operator, 7 is a characteristic decay
time, and 2 is the volumetric domain. We define boundary conditions corresponding to the ionic
flux through NMDA receptors, JympAR, lining the post synaptic density, 0§,

D(n . Vu) = JNMDAR(t) on ansd; (21)
where n is the outwardly-oriented unit normal vector, and Jxupar is of the form,
JNMDAR = GNMDAR (1) B(V)(V (t) — Viest)v. (22)

GNMDAR(t) is a variable conductance which accounts for deactivation of the receptor, B(V) is a
term which accounts for Mg?* inhibition, the voltage difference V (t) — Viest is prescribed to emulate
a[BPAP] and [EPSP], and « is a scaling term which groups factors such as probability of opening,
receptor area density at the [Postsynaptic Density (PSD)| etc.

On the remainder of the plasma membrane which we denote as 0, we enforce no-flux
boundary conditions,

D(n-Vu)=0 on 0Qpm. (23)

At time ¢ = 0, we set the initial concentration of calcium ions to naught throughout the volume of
the dendrite,
u(x,t=0)=0 in Q. (24)

Where Q is the union of the volumetric and boundary domains,

Q=Quon. (25)
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The surface of the geometry is composed of only post synaptic density and plasma membrane,
00 = 0pq U 0. (26)

The model was solved using FEniCS [51] to run finite elements simulations.

Results

Table 1. Vertex and Element Counts for Meshed Geometries.

Surface Mesh Volume Mesh*
# Vertices # Triangles # Vertices # Tetrahedra
Initial PM 4,695 9,330 - -
) . Conditioned PM 6,924 13,844 13,734 62,557
Single Spine
Initial ER 6,546 19,654 - -
Conditioned ER 36,294 72,620 53,134 211,018
] Initial PM 160,733 320,976 - -
Two Spines
Conditioned PM 18,027 36,050 28,989 122,082
. Initial PM 207,448 410,896 - -
Dendritic Segment
Conditioned PM 126,336 252,668 194,848 798,626

*Non-manifold and other mesh artifacts prevent the tetrahedralization of initial meshes

We demonstrate the application of our pipeline to dendritic spine reconstructions of different
sizes. All images of dendritic spines are from neurons taken from mouse cerebral cortex or nucleus
accumbens from a recent publication using [Focused-ion Beam Milling Scanning Electron Microscopy]
[39]. In addition to their important role in synaptic and structural plasticity, these
cellular structures demonstrate highly tortuous morphologies, high surface-to-volume ratios, and a
geometric intricacy that serves as a good test-bed for our pipeline.

We have generated [FEA] compatible meshes of several geometries of increasing length scale:
the of the single spine geometry which requires nanometer precision (Fig. fE, F), the
[Membrane (PM)| of the single spine which has a length scale of a couple of microns (Fig. ), the
two spine geometry, a few microns (Fig. , and the dendrite with about 40 spines, with a length
scale in the tens of microns (Fig. |5) [39]. We describe some of the challenges associated with the
mesh conditioning process for each system and explore the estimation of membrane curvature on
the mesh geometries (Figs. |§| and @ Next, we evaluate the degree of improvement in finite element
solution accuracy with respect to GAMer mesh conditioning algorithms. (Fig. . Using the resulting
meshes, we perform two example simulations: 1) coupling surface and volume reaction-diffusion
(Fig. [9), and 2) a simulated time-series of calcium influx due to NMDAR] by a [BPAP] and [EPSP]in
the full dendritic segment geometry (Figs. [L0| and .

Meshing segments of increasing length scales

We have constructed a mesh of a single spine geometry based on images taken of the mouse
cerebral cortex, shown in Fig. [l This geometry contains two membranes: the [PM] and the [ER]
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Fig.[5JA. Due to differences in the morphology of the [PM] versus the [ER] each component presents
with it different meshing challenges. The [PM] contains several large holes on the surface which
correspond to the top and bottom of the image stack. As the dendrite meanders throughout the
tissue block, the experimental choice of sample cutting planes may result in truncation of the image
of the structure. We have remedied this truncation by triangulating the holes and smoothing out
the local curvature.

The ER mesh contained many more initial artifacts. This is because the detailed and variable
nature of the ER membrane can be poorly resolved by the imaging method. Nixon-Abel and
coworkers found using superresolution fluorescence microscopy that [ER] tubules have a diameter of
50 to 100 nm and sheet-like structures at the cellular periphery can be much finer [54]. Some
morphology cannot even be resolved by the powers of [39].

For example, if the [ER] undergoes large geometric variation between z-slices then tubules may
appear disconnected. Alternatively, the boundaries of the [ER] membrane may have poor contrast
and can sometimes be missed during segmentation. In these cases, we manually curate the mesh in
Blender to reconnect the broken [ER] segments. Fig.[2A1 and A2 illustrate this process in more
detail. This spine also contains a specialized form of termed the spine apparatus, Fig. [HA,
inset, which consists of seven folded cisternae. This highly organized structure bears geometrical
similarities to a parking garage structure and helicoidal geometries [55-58]. The geometric detail of
the spine apparatus is preserved by the conditioning process in our pipeline.

In Fig. Bl we also show the distribution of the angles of the surface mesh before and after
conditioning. One metric of a well-conditioned mesh is that all the surface triangles are nearly
equilateral [24]. Prior to conditioning, the angle distribution is spread out and contains many large
and small angles. After processing using GAMer, the angles of the mesh are improved, as indicated
by the peaked distribution around 60 degrees. Fig. shows a closeup of high aspect ratio triangles
before and after processing with GAMer.

It is worth noting that even though this mesh of [PM] of the single spine is the simplest geometry
we examine, there are many intersecting faces in the initial mesh. This is a common artifact which
appears in most initial meshes but is easily and automatically resolved by GAMer’s vertex smoothing
algorithm as shown in Fig. 2B.

Although the ER structure is significantly more complex, the angles of the mesh are also
improved, albeit to a lesser extent than the PM. In scenarios such as this where the length scales
of interest are closer to the acquisition resolution, it may be necessary to increase the number of
triangles to accurately capture the fine details. Table [I] summarizes the number of vertices and
triangles in the initial vs conditioned meshes as well as vertices and tetrahedra in the resultant
volumetric meshes. To accurately capture the curvature of the PM mesh in Fig. about 48%
more triangles were needed compared to the ER mesh in Fig. , inset, which required 270% more
triangles, both relative to the initial mesh.

The pipeline described here is also applicable for larger systems as we demonstrate with two
spines and a full dendrite. The two spine geometry shown in Fig. is a few microns in length.
Based on the length scales we would expect a well conditioned mesh for this geometry to contain
approximately double the number of triangles in the single spine mesh; however, the orientation of
z-stacks in this mesh is different from that in the single spine geometry which led to an abnormally
large number of triangles: 320,976 versus just 9,330 in the mesh of PM in the single spine. After
GAMer conditioning algorithms were applied, the number of triangles was reduced to 36,050, a much
more reasonable count. As demonstrated, our pipeline is robust and can handle cases where the
initial mesh either generates too few or too many triangles as required for capturing geometric
details.

At the tens of microns length scale, we constructed a mesh of a full dendritic segment. We show
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a zoomed in section of the mesh before and after conditioning in Fig. [5IC. As in the one and two
spine cases, our system robustly handles artifacts such as poor quality triangles and intersecting
faces; Fig. shows that the distribution of the angles post conditioning are comparable to the
one and two spine examples, showing that size does not alter the pipeline’s capability to produce
well-conditioned meshes. Fig. shows an intricate spine head with many different regions of [PSD]
shown in purple; this geometry is preserved post-conditioning and the [PSD]is marked with GAMer
for use denoting a boundary condition.

Estimating Membrane Curvatures in Realistic Geometries

One of the advantages of using [EM}generated images of membrane structures in cells is that we can
now bridge the gap between membrane mechanics and curvature studies and the realistic geometries.
Current studies of membrane mechanics often assume that the initial membrane configuration is
flat or spherical. However membranes are rarely so well behaved and to the best of our knowledge,
currently no estimates of the curvatures of the plasma membrane or internal membranes exist.

Here, we use the meshes generated using our pipeline and calculate the curvature of the geometries
using methods from discrete differential geometry. Shown in Figs. [6|and [7] are the principal curvatures
k1 and kg respectively. Looking at the first principal curvature, Fig.[6] corresponding to the maximum
curvature of the local region, we first observe that for all geometries, this value is primarily positive.
This signifies that the principal curvature turns in the same direction as the surface’s outward
facing normal. We also observe that tubular regions such as the neck of the spine have near uniform
curvature (Fig. ) Finally, the regions of high bending such as the folds of the spine apparatus in
the spine head (Fig. @A, B, left panels) are highly curved and are connected by sheets with low
curvature. The [ER] tubules along the spine neck have a near constant curvature. The curvature
along the entire dendrite highlights that the structure is mostly characterized by low curvature
throughout with regions of concentrated high curvature (Fig. @p)

The second principal curvature, which corresponds to the minimum curvature of the local region,
shows a different behavior Fig. [7] First, we found that the distribution of k2 spans both positive
and negative values, centered around zero for both the plasma membrane and the endoplasmic
reticulum. The positive regions of k9 are in regions where the membrane is convex and the negative
regions are in regions where the membranes are concave. Thus using the meshes generated from
GAMer, we are able to quantify the curvatures along the plasma membrane and the internal organelle
membranes using tools from discrete differential geometry.

Simulations of Surface Diffusion

To demonstrate the role of membrane shape in coupled reaction-diffusion simulations of membrane
and volume components, we simulated the reaction of a volume component A reacting with membrane
bound species X to form membrane bound species B. The volumetric domain, €2, and the boundary
domain, 99, are labeled in Fig. [9A. Shown in Fig. and C, are the concentrations of species A
and B in the volume and on the surface respectively. We found that the shape of the dendrite has a
significant effect on the formation of B on the surface and on the depletion of A in the volume. In
regions of high curvature, such as the small protrusions in the head, we found that the density of B
is lower because of local depletion of A. This effect can be seen very clearly along the spine neck,
where the surface area to volume ratio is high and the resulting density of B is lower than in the
dendrite. To investigate if the diffusion coefficient of A affects these results, we varied the diffusion
of A and analyzed its effects on the surface distribution of B. As expected, we found that as the
diffusion coefficient of A is increased, the effects of local depletion are weakened (Fig. [9D). Fig. OE
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shows the maximum and minimum concentrations of B plotted with respect to time. We find that
there is a large initial difference in rates of B formation, as indicated by the large gap between the
maximum and minimum concentrations, subsequently this gap narrows as A is slowly depleted from
the volume. Thus, we show that the meshes generated from GAMer can be used for systems biology
in realistic geometries.

Mesh convergence analysis

To illustrate the effects of GAMer 2 mesh conditioning on[FEA]results, we investigate the performance
improvement as a function of rounds of conditioning. A common error metric used in [FEA]is the Lo
norm of the difference between a solution computed on a coarser mesh (u’) and a solution computed
on a very fine mesh, which is taken to be the ground-truth (u), i.e.,

1

€L, = (/Q(u' - u)2d9>2. (27)

This is a standard procedure that is used to measure h-refinement convergence rates; however
between iterations of GAMer algorithms the boundaries of the mesh are perturbed slightly. Attempting
to use e, as an error metric is problematic as its integrand is undefined in regions where €', the
domain of ¢/, and © do not intersect.

Therefore, to illustrate the convergence of solutions as the mesh quality is improved using GAMer,
we used an error metric based on the relative difference in total molecules,

fQ, u dQY — fQudQ
JoudQ

Erel = (28)

Fig. [8| (A-D) shows intermediary steps of the GAMer refinement process. For each mesh, a given
number of smoothing iterations was performed; any remaining artifacts that would prevent tetrahe-
dralization such as intersecting faces were removed and the resultant holes were re-triangulated.
The surface meshes were all tetrahedralized using TetGen with the same parameters. The first
time step of a reaction-diffusion partial differential equation with a constant Neumann boundary
condition was solved and the resulting solutions were compared using Eq. , where Fig. was
assumed to be the ground-truth. Fig. shows that the relative error consistently decreased as a
result of further mesh conditioning in GAMer. The mesh with no smoothing operations applied had
almost five times more molecules than the ground-truth mesh after just one time step. This analysis
highlights not only the importance of using a high quality mesh in [FEA] but also that GAMer can
generate such high quality meshes.

Simulation of reaction-diffusion equations in dendrites

Next, we simulated a simplified model of calcium influx to demonstrate that the meshes generated
using GAMer can be used for analysis of complex biological models. In this simplified model,
we assume that the back propagating potential stimulates the entirety of the dendritic branch
simultaneously, leading to the opening of localized to the [PSD] As a result of this stimulus,
calcium ions enter into the dendritic spine heads through the open NMDA receptors localized at the
post synaptic density. Several representative snapshots of Ca?T concentration over time, across the
geometry, are shown in Fig. The Ca’T transient can be probed by monitoring the concentration
at specific locations, shown in Fig. As expected, we first observe that the calcium dynamics in
spines are spine size, spine shape and PSD-dependent. Probes 1 and 2 in Fig. [11| are in different
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spine heads and report differing Ca?* transients. Furthermore, we observe that the narrow spine
necks act as a diffusion barrier to calcium, preventing diffusing calcium ions from entering the
dendritic shaft as illustrated by probe 3 in Fig. [11] This behavior of the spine neck as a diffusion
barrier is consistent with other observations in the literature [59-62].

This example demonstrates that the meshes produced by GAMer through the workflow are
directly compatible with finite element simulations and will allow for the generation of biophysically
relevant hypotheses.

Discussion

The relationship between cellular shape and function is being uncovered as systems, structural biology,
and physical simulations converge. Beyond traditional compartmentalization, plasma membrane
curvature and cellular ultrastructure have been shown to affect the diffusion and localization of
molecular species in cells [41,/63]. For example, fluorescence experiments have shown that the
dendritic spine necks act as a diffusion barrier to calcium ions, preventing ions from entering the
dendritic shaft [59]. Complementary to this and other experiments, various physical models solving
reaction-diffusion equations in idealized geometries have been developed to further interrogate the
structure-function relationships [41},53,(64H67].

An important next step will be to expand the spatial realism of these models to incorporate
realistic geometries as informed by volume imaging modalities. Our tool GAMer serves as an important
step towards filling the need for community driven tools to generate meshes from realistic biological
scenes. We have demonstrated the utility of the mesh conditioning algorithms implemented in
GAMer for a variety of systems across several length scales and upwards of hundreds of thousands of
triangles. The volume meshes that result from our tools are high quality (Fig. ) and we show
that they can be used directly for computation of membrane curvatures (Figs. @] and [7)) and in finite
elements simulations of reaction-diffusion systems (Figs. [10| and .

Bundled with GAMer we include the BlendGAMer add-on which exposes our mesh conditioning
algorithms to the Blender environment. Blender acts as a user interface that provides visual
feedback on the effects of GAMer mesh conditioning operations. Blender also enables the painting
of boundaries using its many mesh selection tools. Beyond the algorithms in GAMer, Blender also
provides an environment for manual curation of mesh artifacts.

Current meshing methods are limited by the need for human biological insight. Experimental
setups for volume electron microscopy are arduous and often messy. Microscopists take great care
to optimize the experimental conditions, however small variations can lead to sample contamination,
tears, precipitation of stain, or other problems. Many of these issues will manifest as artifacts on
the micrographs, which makes it challenging to evaluate the ground truth. Automated segmentation
algorithms using computer vision and machine learning approaches can fail as a result of these
artifacts, and biologists will default to the time-tested, reliable but error-prone mode of manually
tracing boundaries.

This is a unique opportunity for biological mesh generation to differentiate from other meshing
tools employed in other engineering disciplines. To account for the problems induced by biology
and wet experiments along with physical simulations, we anticipate that, to realize an automated
mesh generation pipeline will require the development of specialized algorithms which tightly couple
information across the workflow. As additional annotated datasets become available, machine
learning models can be trained to perform tasks which are currently manually executed such as
reconnecting disconnected tubules.

We believe that our approach, coupled with advances in localization of various membrane
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proteins [68], can bring us closer to the goal of in silico biology with realistic geometries. To
accelerate this goal of routine cell modeling, experimentalists can contribute by sharing segmented
datasets from their work along with biological questions of interest. In exchange, modelers can
generate testable predictions and measurements inaccessible to current experimental methods.
Specifically, we anticipate that our pipeline will be of significant interest to two broad communities in
computational biology — membrane biophysicists focused on the analysis and simulation of membrane
shapes, curvature generation, and membrane-protein interactions and by systems biologists focused
on understanding how cell shape and internal organization can impact signal transduction and the
dynamics of second messenger microdomains. Through this interdisciplinary exchange, any gaps in
our current meshing workflows can be identified and patched.

Conclusion

In this study, we have described a computational pipeline that uses contours from electron microscopy
images as input to generate surface and volume meshes that are compatible with finite element
simulations for reaction-diffusion processes. Using this pipeline, we have demonstrated the spatio-
temporal dynamics of calcium influx in multiple spines along a dendrite. Future efforts will focus on
the development of biologically relevant models and generation of experimentally testable hypotheses.
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Fig 1. Pipeline from electron microscopy data to a reaction-diffusion finite element
simulation on a well-conditioned unstructured tetrahedral mesh. A) Contours of
segmented data overlaid on raw slices of electron microscopy data, B) Stacked contours from all
slices of segmented data, C) Primitive initial 3D mesh reconstructed by existing IMOD software, D)
Surface mesh after processing with our system; note the significantly higher quality of the mesh. E)
Unstructured tetrahedral mesh suitable for finite element simulation obtained with TetGen
software, F') Reaction-diffusion model simulated using FEniCS software. Scale bar: 500 nm.
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Fig 2. Initial surface mesh model of a dendritic segment with subcellular organelles
imaged by FIB-SEM, courtesy of Wu et al. [39], contains many mesh artifacts and is
not compatible with physical modeling. The blue surface represents the plasma membrane
(PM), while yellow represents the membrane of the endoplasmic reticulum (ER). (A1/A2) Left, due
to the fine ultrastructure of the process, portions of the ER are not resolved by the microscope and
become erroneously disconnected as separate meshes. Right, biological realism is manually restored
by bridging the two ER segments. Scale bars: A1) 100nm, A2) 20nm. (B) Left, intersecting faces
prevent generation of a tetrahedral mesh. Right, GAMer smoothing algorithms automatically
untangle knots of intersecting faces. Scale bar: 20nm. (C) Top, high aspect ratio triangles.
Bottom, well conditioned surface mesh. Scale bar: 100 nm. Scale bar for full geometry: 4 pm.
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Fig 3. Schematic illustrating GAMer mesh conditioning algorithms. A) angle-based
surface mesh conditioning, and B) anisotropic normal smoothing algorithms which are previously
described by Yu et al. and implemented in GAMer.
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Fig 4. Comparison of 50 iterations of angle weighted smoothing algorithm. A) without
and B) with [Local Structure Tensor (LST)| based correction. The helps to preserve the
geometric structure albeit with slight degradation to the mesh angles. [LST]is a simple metric to
capture local geometric information which can be used to constrain conditioning operations. C)
Mesh angles are improved in both the [LST| weighted and unweighted meshes. Scale bar top row:
500 nm, bottom row: 250 nm.
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Fig 5. Quantification of mesh quality pre- and post-GAMer processing for several
geometries. Data at varying spatial scales can be processed via the GAMer framework. Surface
meshes of dendritic spine geometries before (left) are compared with their mesh after GAMer
processing (middle). The shift in distribution of angles highlights the improvement in mesh quality
(right). A) Surface meshes of a single dendritic spine; the PM is colored cyan and the ER yellow.
Inlay: close-up of the spine apparatus. B) Surface mesh of PM of two dendritic spines. Faces
marked as purple are PSD. Inlay: close-up of a region with a large variance in angle distribution
before GAMer processing. C) Surface mesh of PM of a dendrite segment with many spines. Inlay:
GAMer preserves the intricate details of a highly curved spine head with multiple regions of PSD.
Scale bars: full geometries 1 ym, inlays: 100 nm.

27


https://doi.org/10.1101/534479

bioRxiv preprint doi: https://doi.org/10.1101/534479; this version posted July 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig 6. Estimated first principal curvatures of the spine geometries. The signed first
principal curvature, corresponding to the maximum curvature at each mesh point, is estimated
using GAMer. Color bars correspond to curvature values with units of um~!. Geometries are A)
single spine model, left: plasma membrane, right: endoplasmic reticulum; B) two spine moddel, left:
plasma membrane, right: endoplasmic reticulum; and C) plasma membrane of the dendritic branch
model. Scale bars: full geometries 2 pm, inlays: 200 nm. Curvature schematic modified from
Wikipedia, credited to Eric Gaba (CC BY-SA 3.0).
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Fig 7. Estimated second principal curvatures of the spine geometries. The signed
second principal curvature, corresponding to the minimum curvature at each mesh point, is
estimated using GAMer. Color bars correspond to curvature values with units of ym~'. Geometries
are A) single spine model, left: plasma membrane, right: endoplasmic reticulum; B) two spine
model, left: plasma membrane, right: endoplasmic reticulum; and C) plasma membrane of the
dendritic branch model. Scale bars: full geometries 2 ym, inlays: 200 nm. Curvature schematic
modified from Wikipedia, credited to Eric Gaba (CC BY-SA 3.0).
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Fig 8. GAMer mesh conditioning reduces error in the result. (A-D) Mesh after 0, 10, 30,
100 smoothing operations (artifacts which prevented tetrahedralization, e.g. intersecting faces, were
removed and the holes were re-meshed). E) shows the finalized mesh. F) Relative error was
calculated using Eq. using the final form of the mesh, (E), as the ground truth. Scale bar =
1 pym.
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Fig 9. Simulations of coupled surface volume diffusion A) illustrates the domains for the
volume and surface PDEs. B) and C) show the concentrations of species A and B, respectively, at
t = 1.0s when Dy is set to 10 pm?/s. D) Difference between maximum and minimum values of B
at t = 1.0s; the point D4 = 10 pm? /s corresponding to panels B) and C) is highlighted. E) the
minimum, mean, and maximum of B over time when D4 = 10 pm?/s; a vertical bar is drawn at

t =1.0s.
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Fig 10. Time series of calcium dynamics from NMDA receptor opening in response
to a prescribed membrane voltage trace in a full dendritic segment. Boundaries
demarcating the plasma membrane (PM) and post synaptic density (PSD) are shown in blue and
orange respectively (top). Snapshots of calcium ion concentration throughout the domain are also
shown for several time points. We apply a voltage corresponding to a back propagating action
potential and excitatory postsynaptic potential. NMDA receptors localized at the PSD membrane,
open in response to the voltage and calcium flows into the cell. Over time, the NMDA receptors
close, and calcium is scavenged by calcium buffers. Scale bar: 4 pym.
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Fig 11. Representative traces of Ca?* concentration over time at three positions.
Spine and @ morphology affect the calcium ion dynamics.
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