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1 Abstract

Motivation: We focus on the new problem of determining which methylation patterns in gene pro-
moters strongly associate with gene expression in cancer cells of different types. Although a number
of results regarding the influence of methylation on expression data have been reported in the litera-
ture, our approach is unique in so far that it retrospectively predicts the combinations of methylated
sites in promoter regions of genes that are reflected in the expression data. Reversing the traditional
prediction order in many cases makes estimation of the model parameters easier, as real-valued data
are used to predict categorical data, rather than vice-versa; in addition, our approach allows one to
better assess the overall influence of methylation in modulating expression via state-of-the-art learning
methods. For this purpose, we developed a novel neural network learning framework termed E2M
(Expression-to-Methylation) to predict the status of different methylation sites in promoter regions of
several bio-marker genes based on a sufficient statistics of the whole gene expression captured through
Landmark genes. We ran our experiments on unquantized and quantized expression sets and neural
network weights to illustrate the robustness of the method and reduce the storage footprint of the
processing pipeline.
Results: We implemented a number of machine learning algorithms to address the new problem of
methylation pattern inference, including multiclass regression, canonical correlation analysis (CCA),
naive fully connected neural network and inception neural networks. Inception neural networks such
as E2M learners outperform all other techniques and offer an average prediction accuracy of 82%
when tested on 3, 671 pan-cancer samples including low grade glioma, glioblastoma, lung adenocar-
cinoma, lung squamus cell carcinoma, and stomach adenocarcinoma. As an illustrative example, one
can increase the prediction accuracy for the methylation pattern in the promoter of gene GATA6 in
glioblastoma samples by 20% when using inception rather than simple fully connected neural net-
works. These performance guarantees remain largely unchanged even when both expression values
and network weights are quantized. Our work also provides new insight about the importance of
specific methylation site patterns on expression variations for different genes. In this context, we
identified genes for which the overwhelming majority of patients exhibit one methylation pattern, and
other genes with three or more significant classes of methylation patterns. Inception networks identify
such patterns with high accuracy and suggest possible stratification of cancers based on methylation
pattern profiles.
Availability: The E2M code and datasets are freely available at https://github.com/jianhao2016/
E2M

Contact: idoia@illinois.edu, milenkov@illinois.edu
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2 Introduction

Recent studies in computational biology have focused on analyzing multiomics datasets in order to
gain a better understanding of the relationships between different dataset components and their unique
information content, and to elucidate the relationships between their underlying biological phenomena.
This is of particular importance for the case of gene expression data, as there are many genomic and
epigenomic factors that influence gene expression (e.g., transcriptional regulation, methylation and
histone modification, copy number variation, etc) and as gene expression itself affects almost all aspects
of cellular function [7, 30, 1, 22, 5]. One approach to determine to which extent gene expression is
determined by or determines other molecular and biochemical modularities is to predict expression
values based on associated datasets, such as methylation data [14, 6, 25]. For this task, many learning
methods are available, such as logistic regression and deep learning [9, 2]. If the prediction accuracy
of the expression values is high, it is reasonable to assume that corresponding data are statistically
correlated and that the processes under consideration are biologically interlinked.

Several lines of work in this areas have focused on applying machine learning methods on gene
expression data in order to predict clinical outcomes or the dynamics of diseases. In [4], the authors
identified a subset of genes whose expression values have strong diagnostic value in cancer staging
and survival rate evaluation. The work described in [29] focused on predicting gene expression values
based on histone modification data, while taking into account the inherent redundancy present in
combined gene expression profiles.

Of particular interest are analyses involving expression and methylation datasets, as methylation
is known to be one of the key regulators of expression [15] (see Figure 1). Methylation is a common
epigenetic modification [24] that plays an important role in tumorigenesis and cancer progression. The
methylation process alters the chemical structure of Cytosine or Guanine at CpG sites, which often
cluster within CpG islands in promoter regions of genes. Although a CpG island may contain tens
of CpG sites, it has been a standard practice to only report the thresholded cumulative methylation
effect of the sites and declare a binary methylation state of a gene (methylated or unmethylated).
In order to associate DNA methylation with gene expression changes, the authors of [25] proposed
a supervised learning method termed ME-Class (Methylation-based Expression Classification) for
predicting expression changes based on soft methylation features. The goal of the aforementioned
study was to assess the raw predictive power of methylation data, rather than to determine which
combinations of methylation sites truly contribute to the observed expression profiles. On the other
hand, authors of [18] proposed an attention model which utilized both the expression data and CpG
sites distance information to predict methylation states of one CpG site. Our work hence centers on
a higher-order and in-depth analysis of the mutual relationship between expression and methylation
site patterns in the context of pan cancer data analysis. The natural approach to pursue within this
framework is retrospective analysis, which amounts to inferring methylation patterns (i.e., discrete
states) from expression values (i.e., continuous observations).

Our technical contributions are three-fold. First, we introduce the problem of correlating binary
methylation patterns with the expressions of Landmark genes [8]. This significantly reduces the
complexity of the problem and simultaneously performs denoising of expression values, as the set of
Landmark genes is rather small (≈ 1000) and selected for its predictive power for whole-genome expres-
sions. Second, we propose a new inception network [31] architecture for deep learning, termed E2M,
which performs retrospective classification. The prediction accuracy of the E2M network is up to 20%
better than that offered by traditional multi-class logistics regression and three-layer fully connected
networks. Third, we demonstrate that our learning framework can operate with quantized parameter
sets and significantly compressed datasets. Large-depth neural networks are known to be more robust
to noise [3, 11] than shallow networks, but their practical application is limited by their large storage
footprint. To show that this problem may be easily mitigated via quantization, we demonstrate that
8-bit uniformly quantized expression values and 16-bit quantized network weights cause negligible
degradations in recovering underlying methylation patterns for almost all tested examples.

Our analysis also reveals that methylation patterns are gene-dependent and that they influence the
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3 Methods 3

expression dynamics differently for different types of cancers. In some cases, such as lung cancer, the
methylation patterns in genes such as MGMT, ATM, GATA6 and KRAS differ significantly, while the
methylation patterns in the MLH1 and CASP8 genes show little variation. For some other cases, such
as brain cancer, most genes show very similar methylation patterns, except for GATA6. Furthermore,
some genes, such as TP53, have a unique methylation pattern for a specific cancer type, and the
patterns vary little across cancer types.

Fig. 1: Associations between gene expression and DNA methylation and their corresponding datasets.

3 Methods

We start our exposition by describing the datasets used in our analysis, and then proceed with a
discussion of existing and new methods suitable for addressing the prediction problem at hand.

3.1 Data Description

The problem of associating different types of multiomics data has received significant attention in
the computational biology community [17, 10]. To assess the performance of the proposed framework
E2M, we restrict our attention to human cancer cell expression and methylation data. Our goal is to
predict methylation patterns from gene expression values.

There are over 20, 000 genes in the human genome, and using their gene expression values di-
rectly in any machine learning task would lead to undetermined problems and overfitting issues due
to redundancy and small sample set sizes. Hence, the first step in our approach is to perform di-
mensionality reduction. To this end, we focus on expression levels of so-called L1000 Landmark
genes, comprising 978 genes. This subset of genes has been carefully selected by the NIH LINCS
project (http://lincsportal.ccs.miami.edu/dcic-portal/) for its good predictive capabilities for
the whole genome expression profile. It has also been demonstrated in [8] that deep networks can
accurately recover the whole genome expression profile using only L1000 expression information. An
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additional advantage of using L1000 genes is that LINCS provides efficient and low-cost assays for
measuring the expression of these genes.

Gene expression data is available in multiple formats. High throughput (HT) sequence counts (i.e.,
raw counts of gene transcripts) are the most frequently used measurements for describing expression,
and all other data representations are derived from these counts. However, since DNA transcripts have
different lengths and concentrations, the raw counts may not accurately reflect the relative expression
level. To mitigate this problem, raw counts are transformed into Fragments Per Kilobase of Transcript
per Million (FPKM) mapped reads values, computed as:

FPKM(g) =
RC(g) ∗ 109

RCpc ∗ L(g)
.

Here, RC(g) and L(g) represent the raw counts of reads covered by gene g and the length of gene g,
respectively, while RCpc denotes the total raw count of reads mapped to all protein coding genes.

In all our experiments, we use FPKM readings of the 978 Landmark genes as inputs. The actual
FPKM data was retrieved from The Cancer Genome Atlas (TCGA) project (https://cancergenome.
nih.gov/). We selected five different cancer (sub)types: lower grade glioma (LGG), glioblastoma
(GBM), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and stomach adeno-
carcinoma (STAD), and extracted all available Landmark gene expression datasets (https://portal.
gdc.cancer.gov/, downloaded March 2018).

Since most CpG sites are naturally methylated inside a gene, we focus on methylation measure-
ments of individual CpG sites within promoter regions. Genes of interest include well-known cancer
biomarkers, MGMT, MLH1, ATM, GATA6, CASP8, KRAS and TP53 (see the Supplementary Ma-
terial, Section 1). Information available at TCGA includes methylation microarray values for 7, 6, 4,
2, 3, 6 and 3 CpG sites in the promoter region of these genes, respectively. Since genes in different
cancer types have nonuniform methylation levels as measured in terms of coverage of the methylated
sites, the recorded readings only capture the percentage of methylated CpG sites (bottom, right-hand
format in Figure 1). We convert these percentages into binary values by thresholding at 10%, as
suggested in multiple prior works [19]. The output of this preprocessing step is an m-dimensional
binary vector, where m is the number of CpG sites in the promoter region of the underlying gene.

As one needs to ensure that both methylation and expression data are available for the same
sample, the test data included 511 samples from LGG, 126 from GBM, 511 from LUAD, 500 from
LUSC, and 375 from STAD. This amounts to a total of 637 samples for brain cancer (LGG and GBM),
and 1011 samples for lung cancer (LUAD and LUSC). In all subsequent analyses, these datasets were
split into training and test sets in a 80%-20% proportion.

In summary, we used 978-length positive real-valued vectors containing the FPKM counts of Land-
mark genes as inputs of a learner tasked with predicting binary methylation patterns with m entries,
corresponding to our preselected biomarker genes.

3.2 Mathematical Approaches

There exists many methods that may be used for associating different types of multiomics data.
Among these, the most frequently used approaches include canonical correlation analysis (CCA) [13],
multiclass regression (MR) and fully connected neural networks (FCNN) [20]. However, these tech-
niques have limitations that make them unsuitable for the problem at hand, as described in what
follows. Note that to demonstrate the drawbacks of CCA, MR, and FCNN, we actually applied these
methods on the curated datasets and reported their performance.

3.2.1 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is widely used to infer linear relationships between two correlated
random measurements (e.g, random vectors) X ∈ Rn and Y ∈ Rm. In our setting, n = 978, and each
X corresponds to the gene expression profile of a cancer patient, while m ≤ 7 and each Y corresponds

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 22, 2019. ; https://doi.org/10.1101/527044doi: bioRxiv preprint 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://doi.org/10.1101/527044


3 Methods 5

to a binary DNA methylation pattern of the same cancer patient. The CCA objective formally reads
as:

(W ′x,W
′
y) = arg max

(Wx,Wy)

WT
x CXYWy√

WT
x CXXWT

x

√
WT

y CY YWy

,

where CXY is the empirical covariance matrix of X and Y computed using all s ≤ 1011 available
samples for each individual cancer type. Then, Wx ∈ Rs, Wy ∈ Rs. Intuitively, CCA aims to find
a subspace such that the projections Wx and Wy of the random vectors X and Y , respectively, have
the largest possible correlation. This optimization process can be repeated sequentially to obtain
a sequence of pairs of random vectors (Wx,Wy) that are mutually uncorrelated, akin to what is
standardly done in eigendecomposition problems.

CCA may be directly applied to our data, but it does not provide a constructive means for infer-
ring methylation patterns based on expression; furthermore, it can only identify linear dependencies
between two data sample matrices. In addition, given that we have more features (978 genes) than
samples (less than 600 for each cancer subtype), highly-correlated projections arise naturally and are
easy to identify through the described optimization process. Table 1 illustrates this point for the case
of CCA analysis on the MGMT gene, and all cancer subtypes. As expected, canonical correlation
values in this case exceed 0.94.

Tab. 1: The first three canonical correlation values for the MGMT gene according to cancer subtype.

LGG GBM BRAIN LUAD LUSC LUNG STAD
1st 0.99 1.00 0.99 0.99 0.99 0.96 0.99
2nd 0.99 1.00 0.98 0.99 0.99 0.96 0.99
3rd 0.99 1.00 0.98 0.99 0.99 0.94 0.99

3.2.2 Multiclass Logistic Regression

A methylation pattern is represented by a binary vector of length m, where we recall that m denotes
the number of CpG sites in the promoter region of a gene of interest. Hence, a methylation pattern
corresponds to one of 2m possible binary vectors (classes). Since in our case m ≤ 7, multiclass logistic
regression is a natural candidate for prediction.

Let ωy be the weight of the class label y ∈ [0 : 2m− 1]. The posterior probability of the class label
given a particular expression profile X = x may be written as

p(y = k|x) =
exp (ωT

y x)∑2m−1
j=0 exp (ωT

j x)
.

Under the assumption that all samples are drawn independently from each other, the goal is to
maximize the product of p(y|x) over all pairs (x, y).

Multiclass logistic regression is only guaranteed to perform well for linearly separable data [20].
Due to the large dimension of gene expression vectors, it is computationally difficult to determine if
the datasets of interest are linearly separable or not. To address this problem, we first performed
dimensionality reduction via principal component analysis (PCA) and then visually inspected the
data. Figures 2 and 3 depict the obtained results for two principle components of training and test
samples, for the LGG and LUNG (e.g., the combination of LUAD and LUSC) cancer subtype(s),
respectively. Only results for the GATA6 gene are shown; the results for other cancer types and
genes are available in section 2 of the Supplementary Material. It can be observed that the chosen
methylation patterns are not linearly separable. For LGG, we observed two classes of methylation
patterns (light and dark blue points) that exhibit a small degree of separability, whereas for LUNG, the
two patterns are superimposed onto each other. Hence, multiclass logistic regression is not expected
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to perform well on most of the data involving multiple labels (see Table 2, and in particular, the values
corresponding to cancer types LGG and LUNG).

Fig. 2: Visualization of the first two principal components of LGG cancer data for the GATA6 gene.

Fig. 3: Visualization of the first two principal components of LUNG cancer data for the GATA6 gene.

3.2.3 Fully Connected Neural Network

FCNNs are a method of choice for many classification tasks [23] as they do not require data to be
linearly separable for practically good performance. Figure 4 depicts the structure of a classic three-
layer FCNN. Each neuron in the network uses a nonlinear activation function on a linear combination
of the outputs from the previous layer. The activation function introduces nonlinearities into the
network model and increases its expressive power compared to linear models such as logistics regression
or support vector machines (SVM) [20]. There are many choices for the nonlinear function, but we
restrict our attention to Rectified Linear Units (ReLUs) as they have constant gradients during training
and are commonly used in practice.

When the activation function equals the identity function and the loss is chosen appropriately,
the resulting shallow network is equivalent to a linear model (e.g., a linear model such as logistic
regression). Hence, one expects fully connected neural networks to be more accurate in finding the
correct association between the gene expression profiles and the methylation patterns. Nevertheless,
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Fig. 4: Architecture of a 3-layer fully connected neural network.

fully connected neural networks may fail to take into account possible correlations between genes,
which considerably compromises their performance (see Table 2).

Tab. 2: Accuracy of Multiclass Regression (MR) and Fully Connected Neural Network (FCNN) meth-
ods according to cancer data type, for gene GATA6.

LGG GBM BRAIN LUAD LUSC LUNG STAD
MR 0.83 0.38 0.79 0.71 0.98 0.70 0.96
FCNN 0.84 0.35 0.82 0.71 0.99 0.85 0.96

3.3 Inception-Based Deep Network E2M

To address the issues present in the previously described methods, we propose a new method for
mining associations between methylation patterns and Landmark gene expressions, termed E2M. The
approach is based on a novel neural network learning framework centered around so-called inception
neural network learners [31].

Inception networks include modules that mitigate certain problems encountered in simple fully
connected networks (Figure 5). One such problem pertains to capturing long-distance interactions
between genes and correlations between their expressions, which can be addressed in part by adding
convolutions. However, since the interaction distance is not known a priori, it cannot be used to inform
the choice of the depth of convolution. Inception modules therefore include multiple convolutions of
different depths at the same layer. Another component is the filter stack, which aggregates the outputs
of the convolutions and pooling layers, and feeds them to the next network layer. These features make
inception networks more robust and allow them to converge faster than traditional convolutional
neural networks.

E2M includes two 1D convolution and maxpooling layers that increase the number of filters and
reduce the dimension of the feature space. These layers are followed by two inception modules of the
form shown in Figure 5. This structure is terminated by a fully connected layer that “flattens” the
output (i.e., converts a matrix into a vector via column concatenation) and a softmax layer that is used
to make the predictions. We point out that the largest contribution to the storage footprint of neural
network learners comes from the fully connected layer that is densely connected. As a result, even
though the E2M structure may appear to have higher description complexity than a fully connected
network, it actually uses fewer parameters than a 3-layer fully connected network, and is consequently
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Fig. 5: Architecture of an inception module.

faster, more compact and less prone to overfitting.

3.4 Quantized E2M and Gene Expression Values

As the depth of neural networks increases, their storage and running costs become prohibitively high
for many practical applications. While training a neural network model, it is important to maintain
high data precision in order to propagate accurate gradient information. Nevertheless, it has been
shown that quantizing the weights of an already trained neural network, if done properly, only slightly
degrades its performance and occasionally even improves it [12, 21]. In addition, since the FPKM
gene expression readings are normalized to convey relative expression differences among genes, it
is unnecessary to force them to be of high precision. Furthermore, original counts can always be
recomputed from their corresponding FASTQ files, which are standardly stored in a lossless manner.
Hence, in our experiments, we also consider quantizing the input gene expression data.

For network quantization, we identify the largest and smallest weights in each layer, and bin all
other weights according to uniform quantization rules, with 16−, 8−, or 4−bit level representations.
Note that full precision floating point data in our setting are represented with 64 bits. To perform
network weight quantization, we use a built-in function of TensorFlow that allows for performing
quantized weights multiplication and addition, without mapping them back to the floating point
format. To quantize gene expression values, we select a cut-off threshold for the top 5% highest-
reading genes; readings between 0 and the cut-off value are uniformly quantized at the 16−, 8−, or
4−bit level.

4 Results

In what follows, we present our findings regarding associations between methylation patterns and
Landmark expression profiles for different cancer types and genes. In the process, we first identify
through extensive data analysis the most suitable inception network parameters, module and layer
numbers. Then, we proceed to compare the performance of the proposed E2M framework to that
of multiclass logistic regression and a 3-layer fully connected neural network. We then describe the
effects of quantization of network weights and input expression data under the E2M approach. Our
discussion concludes with an interpretation of the uncovered biological phenomenon.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 22, 2019. ; https://doi.org/10.1101/527044doi: bioRxiv preprint 

https://doi.org/10.1101/527044


4 Results 9

Tab. 3: Detailed structure of the proposed E2M framework with 128 classes. The entries in column
numbers 3 − 6 correspond to the number of parallel convolutions (filters). The last column lists the
number of parameters in each layer of the learner.

output size
1x

conv
3x

conv
5x

conv
7x

conv
params

conv 1 489 × 32 64 0.5k
maxpool 1 244 × 32
conv 2 122 × 64 64 10k
maxpool 2 61 × 64
inception 1 20 ×144 32 32 16 13k
inception 2 6 × 248 64 32 8 28k
fc 1 100 × 1 148k
softmax 128 × 1 13k

4.1 E2M Parameter Selection

A detailed description of the structure of the newly proposed E2M learner can be found in Table 3.
The reported parameters were chosen using cross-validation methods on the entirety of the training
data described in the previous section, by splitting it into a 90 : 10 proportion. Subsequently, for 36
sets of parameters, we trained the network on the 90% training set and tested it on the remaining
10% dataset. The selected parameters were the best-performing ones under the validation setting.

4.2 Performance Analysis of E2M

We compared the performance of the chosen E2M framework with MRs and 3-layer FCNNs, and
summarized the results in Table 4. The results correspond to all chosen cancer types and gene GATA6;
the results pertaining to the remaining selected genes may be found in Section 5 of Supplementary
Material (Table 3 and 4).

Tab. 4: Comparison of accuracies of different prediction methods applied to gene GATA6 and all
considered cancer types. The best results are highlighted in bold font. Note that the accuracy of
random guessing is 0.25, as the promoter of GATA6 contains only two methylation sites.

MR
3-layer
FCNN

E2M

LGG 0.83 0.84 0.90
GBM 0.38 0.35 0.58
BRAIN 0.79 0.82 0.81
LUAD 0.71 0.71 0.69
LUSC 0.98 0.99 0.99
LUNG 0.70 0.85 0.84
STAD 0.96 0.96 0.96
Average 0.77 0.79 0.82

As it may be observed from the table, at least one of the two nonlinear network models always
outperforms logistics regression for all tested cases. The reason, as explained in the previous section,
is that the data used may not be linearly separable. Once again, we point out the results for LGG
and LUNG cancers. From Figures 2 and 3, it is apparent that LGG data is easier to separate in the
principal component space than LUNG data. In particular, for the LGG dataset, MR and FCNN
perform very similarly (0.83 and 0.84, respectively), while E2M offers the best performance (0.90).
On the other hand, for LUNG data, the non-linear models outperform the logistic regression model
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by 15%. From the table, we also observe that in most cases our proposed inception network E2M
has higher prediction accuracy than FCNN. For example, for LGG and GBM, E2M exhibits a 6%
and 23% improvement over FCNN, respectively. Whenever FCNN outperforms E2M, the difference
in performance is only about 1− 2%. Hence, E2M offers the best average performance among all the
methods under consideration (additional results along the same line may be found in section 5 of the
Supplementary Material).

Given that E2M offers the best average performance of all tested methods, we henceforth restrict
our attention to this method only. Table 5 provides the performance results of E2M for all cancer
types and all selected genes (the biological relevance of the bold font and italic values will be described
in the Discussion section).

Tab. 5: Prediction accuracy of E2M for all considered cancer types and genes. The row RG lists the
accuracy of random guessing.

Gene MGMT MLH1 ATM GATA6 CASP8 KRAS TP53
RG (0.008) (0.016) (0.0625) (0.25) (0.125) (0.016) (0.125)
LGG 0.56 0.75 0.99 0.90 0.99 0.84 0.96
GBM 0.31 0.61 0.92 0.58 0.88 0.80 1.00
BRAIN 0.53 0.69 0.98 0.81 0.98 0.84 0.98
LUAD 0.83 0.42 0.73 0.69 0.62 0.38 0.84
LUSC 0.64 0.65 0.94 0.99 0.63 0.92 0.99
LUNG 0.71 0.53 0.85 0.84 0.58 0.68 0.90
STAD 0.65 0.44 0.84 0.96 0.63 0.79 0.95

4.3 Performance of the Quantized E2M Method

Table 6 shows an example of how quantization of network parameters and input data influences the
prediction accuracy of E2M for all considered cancer types and genes. We only report on the results
obtained using 16-bit uniform quantization of all network weights and 8-bit uniform quantization on
the expression input data (see section 6 in Supplementary Material for results with other quantization
levels). For ease of data interpretation, the numbers in parenthesis correspond to the prediction
accuracy values without quantization. As it may be observed, there is almost no degradation in
the performance of the quantized E2M method, and in some cases, quantization even improves the
prediction results. The only degradations observed are for GBM – gene GATA6, LUAD – gene ATM,
and LUNG – gene CASP8. An explanation for this finding is described in the Discussion section.

We also remark that for the three cases with compromised performance under quantization, the
predicted patterns are at small Hamming distance from the correct one. In other cases, like GBM
and gene GATA6, the Hamming distance between predicted patterns is at least two, and hence E2M
may be quantized with even fewer bits while preserving prediction accuracy.

In conclusion, aggressive quantization in most cases leads to small prediction performance degra-
dation, while providing significant storage savings: in the example provided, input data is reduced to
1/8 of its size and the quantized E2M network can be stored using only 1/4 of the space needed for
its unquantized counterpart.

5 Discussion

We start with a discussion that highlights the reason behind the variations in the performance of
various prediction methods for different genes and cancer types. We then proceed to interpret the
sources of variation in a biological context.

The results previously presented in Table 5 reveal that the prediction accuracy of E2M varies widely
for fixed genes and different cancer types. For example, the prediction accuracy for the methylation
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Tab. 6: Prediction accuracy of E2M with network weights quantized to 16 bits, and expression inputs
quantized to 8 bits.

MGMT MLH1 ATM GATA6 CASP8 KRAS TP53

LGG
0.55

(0.56)
0.71

(0.75)
0.99

(0.99)
0.90

(0.90)
0.99

(0.99)
0.80

(0.84)
0.97

(0.96)

GBM
0.24

(0.31)
0.52

(0.61)
0.96

(0.92)
0.36

(0.58)
0.92

(0.88)
0.86

(0.80)
1.00

(1.00)

BRAIN
0.47

(0.53)
0.69

(0.69)
0.98

(0.98)
0.76

(0.81)
0.98

(0.98)
0.85

(0.84)
0.97

(0.98)

LUAD
0.82

(0.83)
0.43

(0.42)
0.64

(0.73)
0.69

(0.69)
0.55

(0.62)
0.41

(0.38)
0.81

(0.81)

LUSC
0.61

(0.64)
0.61

(0.65)
0.96

(0.94)
0.99

(0.99)
0.61

(0.63)
0.92

(0.92)
0.99

(0.99)

LUNG
0.73

(0.71)
0.54

(0.53)
0.84

(0.85)
0.81

(0.84)
0.44

(0.58)
0.67

(0.68)
0.91

(0.90)

STAD
0.61

(0.65)
0.37

(0.44)
0.85

(0.84)
0.95

(0.96)
0.59

(0.63)
0.76

(0.79)
0.96

(0.95)

pattern of gene GATA6 in LUSC and STAD cancers is 0.99 and 0.96, respectively. On the other hand,
for the same gene, the prediction accuracy for cancer types such as GBM and LUAD is significantly
lower, around 0.6. To gain more insight as of why these variations in accuracy prediction arise, we
plot the histograms for different methylation patterns of gene GATA6 in Figure 5. For the GATA6
we observe only one dominant methylation pattern in LUSC and STAD. As a consequence, it is
unsurprising that the prediction accuracy of the methylation pattern for cancer types LUSC and
STAD is close to one for all methods tested and presented in Table 4.

Interestingly, for the same gene GATA6 we observe 3 and 2 different methylation patterns in GBM
and LUAD, respectively. The most likely methylation pattern for GBM has a frequency of about 40%,
and this matches the performance of the logistic regression and the fully connected network methods.
Indeed, a quick check of the results reveals that the two aforementioned methods almost always predict
the dominant methylation pattern. On the other hand, E2M is able to capture and predict some of
the additional, non-dominant patterns, which is one of the reasons behind its significant performance
improvement.

Similar results may be observed in Table 5 for other genes and methylation patterns. The blue
and italic entries correspond to cases for which there is a unique dominant methylation pattern in the
data, and hence the prediction accuracy of E2M is high. The significantly more interesting results are
listed in red and bold font as they correspond to settings in which there is more than one dominant
methylation pattern, and E2M is able to capture at least one more pattern than the other investigated
methods. The histograms for all other cancer types and genes considered in the study may be found
in Section 3 of the Supplementary Material.

The previous discussion reveals that for different combinations of genes and cancer types one ei-
ther observes a single dominant or multiple methylation patterns (as many as 12, for the case of gene
MGMT and all cancers considered). Let us turn our attention back to Table 5. For example, the pro-
moter regions of gene TP53 and ATM exhibit one dominant methylation pattern (0, unmethylated)
across all considered cancer types, while the observed Landmark gene expression profiles differ signifi-
cantly. This suggests that methylation in TP53 and ATM is most often not the cause of characteristic
changes in expression values, and that other regulatory phenomena and point and copy-number mu-
tations may be at work. On the other hand, the promoter regions of genes MLH1, MGMT, CASP8
and KRAS exhibits multiple methylation patterns across all cancer types, with no clear dominant
pattern; and, the methylation patterns in MLH1, GATA6 and MGMT associate strongly with the
corresponding Landmark gene expressions.
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(a) LUSC and gene GATA6 (b) STAD and gene GATA6

(c) GBM and gene GATA6 (d) LUAD and gene GATA6

Fig. 6: Histograms of methylation patterns present in the promoter of gene GATA6 for cancer types
a) LUSC, b) STAD, c) GBM, and d) LUAD.

For a more in-depth explanation of these events, we consider BRAIN cancer and gene GATA6 as
an illustrative example. Figure 7 shows the heatmap of the expression data of the Landmark genes
(left column), as well as the top 15 varying genes (right column), across four types of methylation
patterns found in the promoter region of gene GATA6. The horizontal lines in each plot separates
the different methylation patterns, sorted by their decimal representation, and the color of each grid
represents the magnitude of FPKM readings of the corresponding gene. The right column reveals
that the expression level of genes ALDOC, GAPDH, SPP1, APOE, and HLA-DRA change jointly in
response to different methylation patterns.

To test if the interactions amongst these genes are due to chance, we performed an enrich-
ment analysis for the selected genes using the pathway datasets KEGG, Biocarta, GeneSigDB, and
Reactome. For each pathway, we performed a Fisher exact test with a Null hypothesis assum-
ing mutual independence of the gene variables in the query set. We computed the p-values af-
ter multiple testing correction, and only selected those with a False Discovery Rate (FDR) less
than 0.05. The pathways related to BRAIN cancer (identified through rejection of Null) are the
KEGG ALZHEIMERS DISEASE (from KEGG), the REACTOME GLUCOSE METABOLISM, the
METABOLISM OF CARBOHYDRATES (from Reactome) and the Mouse Brain Johansson and genes
UpRegulatedbyHypoxia (from GeneSigDB). It is known from previously reported studies that these
pathways are indeed involved in the progression of brain cancer [28, 16, 26, 27].

In summary, our most important biological finding is that patterns of methylation sites, rather than
the global methylation status of a gene (methylated or unmethylated) alone, govern Landmark and
global gene expressions. This observation is strongly supported by the good predictive performance
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Fig. 7: Heatmap of cancer type BRAIN and gene GATA6.

of E2M on the CASP8 gene for LUAD and STAD, and the MLH1 gene for STAD. In both cases, at
least two patterns which are both deemed globally methylated can be accurately distinguished from
each other thought their expression profile.

6 Conclusion

We proposed an inception based deep learning framework, termed E2M, capable of associating specific
methylation patterns in gene promoter regions with Landmark and consequently global gene expres-
sion. We tested the proposed framework on TCGA data including five cancer types, and the promoter
regions of seven genes. Our findings were two-fold. First, we showed that the proposed E2M frame-
work outperforms multiclass logistics regression and 3-layer fully connected network in prediction
accuracy. Furthermore, the performance of E2M was shown not to be affected by quantization of both
the input data and the weights of the inception network. Second, we found that methylation of some
tumor suppressor genes does not bear a detectable influence on the expression profiles; at the same
time, different methylation patterns in the promoter regions of the same gene can lead to observable
changes in the gene expressions, even when the patterns result in the same binary methylation status.

As a final remark, we point out that E2M is a general learning framework that may be successfully
applied to other multiomics data association studies and single cell researches [2].
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