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Abstract 

Natural products represent a rich reservoir of small molecule drug candidates utilized as 

antimicrobial drugs, anticancer therapies, and immunomodulatory agents. These molecules are 

microbial secondary metabolites synthesized by co-localized genes termed Biosynthetic Gene 

Clusters (BGCs). The increase in full microbial genomes and similar resources has led to 

development of BGC prediction algorithms, although their precision and ability to identify novel 

BGC classes could be improved. Here we present a deep learning strategy (DeepBGC) that offers 

more accurate BGC identification and an improved ability to extrapolate and identify novel BGC 

classes compared to existing tools. We supplemented this with downstream random forest 

classifiers that accurately predicted BGC product classes and potential chemical activity. 

Application of DeepBGC to bacterial genomes uncovered previously undetectable BGCs that may 

code for natural products with novel biologic activities. The improved accuracy and classification 

ability of DeepBGC represents a significant step forward for in-silico BGC identification. 

 

Introduction 

Natural products are chemical compounds that are found in nature and produced by living 

organisms. They represent a rich reservoir of drug candidates that have proven utility across 

multiple therapeutic areas. Between 1981 and 2014, one third (32%) of FDA approved small 

molecule drugs were either unmodified natural products (6%) or natural product derivatives 

(26%)1. These include multiple classes of antibacterials, as well as oncology drugs, diabetes drugs, 

hypocholesterolemic drugs, and immunomodulatory agents1,2. The global rise in antibiotic 

resistance3,4, the increased promise of immunomodulatory agents in cancer treatment5, and the 

continued need for development of new drugs across novel and complex biology is contingent 

upon the identification of structurally diverse bioactive compounds6–8. 
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Early genetic work in the field of natural product discovery showed that bioactive molecules are 

microbial secondary metabolites whose synthesis is primarily orchestrated by genomically co-

localized genes termed Biosynthetic Gene Clusters (BGCs)9–11. While these early insights were 

born out of forward genetic approaches (progressing from phenotype to sequence), the advent of 

next generation sequencing technologies and genomic approaches provided opportunities for 

reverse genetic approaches (progression from sequence to phenotype) in BGC discovery, synthesis, 

and characterization2. The surge of microbial genomic resources, including completed genome 

sequences of cultured and uncultured organisms, has enabled a paradigm shift in how 

computational methods have been used in natural product drug candidate discovery. 

 

Numerous bioinformatics tools have leveraged the increasingly abundant genomic data to facilitate 

natural product genome mining12. Early approaches implemented simple BGC reference alignment 

techniques using programs like BLAST13, and were often paired with manual curation.  Rule-based 

algorithms14,15 improved on their predecessors by using human-coded (“hard coded”) rule sets to 

define BGCs based on their similarity to reference genes and protein domain composition. While 

some recent approaches have continued to employ these “reference-based” techniques, other 

algorithmic advances have embraced more generalizable machine learning approaches that 

provide a greater ability to discover new BGC genomic elements. One such widely used machine 

learning approach named ClusterFinder16 employs a Hidden Markov Model (HMM) instead of the 

multiple sequence alignment based profile-HMM17 methods seen in other approaches such as 

AntiSMASH (ANTIbiotics & Secondary Metabolite Analysis SHell)14 and PRISM18. 

 

While they have been effective, HMMs like ClusterFinder do not preserve (i.e. remember) position 

dependency effects between distant entities or order information19–21. This means HMM-based 
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tools are unable to capture higher order information among entities19–21, thus limiting their ability 

to detect BGCs. We addressed this algorithmic limitation by implementing a deep learning 

approach using Recurrent Neural Networks (RNNs) and vector representations of protein family 

(Pfam)22 domains which together, unlike HMMs, are capable of intrinsically sensing short- and 

long-term dependency effects between adjacent and distant genomic entities23. This 

implementation yielded performance higher than another leading algorithm (ClusterFinder), 

including improved BGC detection accuracy from genome sequences and improved ability to 

identify BGCs of novel classes. 

 

Here we introduce DeepBGC, a novel utilization of deep learning and natural language processing 

(NLP) strategy for improved identification of BGCs in bacterial genomes (Figure 1). DeepBGC 

employs a Bidirectional Long Short-Term Memory (BiLSTM) RNN24,25 and a word2vec-like word 

embedding skip-gram neural network we call pfam2vec. Compared to Clusterfinder16, DeepBGC 

improves detection of BGCs of known classes from bacterial genomes, and harnesses great 

potential to detect novel classes of BGCs. We supplement this with generic random forest 

classifiers that enables classifications of BGCs based on the product class and molecular activity 

of the compounds. We applied DeepBGC to bacterial reference genomes to identify BGC 

candidates coding for molecules with putative antibiotic activity that could not be identified using 

the other existing methods. In addition to bacterial reference genomes, we expect this approach to 

be important in microbiome metagenomic analyses, in which the improved BGC detection may 

empower new functional insights. To facilitate these and other analytical applications, DeepBGC 

is available at https://github.com/Merck/deepbgc. 
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Results 

Curation Yielded Diverse Training & Validation Datasets 

BGC prediction is a classification task requiring the use of labelled BGC and non-BGC sequences 

(a “positive” and “negative” set, respectively) to train and validate the classifier. To ensure 

adequate comparison between the existing HMM approach and our deep learning strategy, we 

trained and validated our model using a training set similar to that used in Cimermancic et al.16. 

We built our positive training set by retrieving 617 out of 667 published labeled BGCs from 

Cimermancic et al.16 (Supplementary Figure S1, Table S1).  We constructed a negative training 

set of 10128 random gene clusters based on similar principles to those described in Cimermancic 

et al.16. We additionally retrieved a second, supplementary dataset consisting of 1406 BGCs found 

in the Minimum Information about a Biosynthetic Gene cluster (MIBiG) database26, which were 

used for 10-fold cross-validation, leave-class-out validation and training random forest classifiers 

(Supplementary Figure S1, Table S2). 

 

In addition to the BGC sequence datasets, we utilized whole bacterial genomes that had been 

manually annotated with BGC and non-BGC regions. We used the set of 9 bacterial genomes that 

contained 291 manually annotated BGCs from Cimermancic et al.16 and used them for validation, 

hyperparameter tuning, and testing (Supplementary Figure S1, Table S3). We also used a second 

set of 65 experimentally validated BGCs in 6 bacterial genomes (termed the validated 

Cimermancic et al.16 set, Supplementary Figure S1, Table S4), which allowed for a supplemental 

model testing. Additionally, we retrieved a corpus of 3376 unannotated bacterial genomes that we 

used for generating negative samples, for pfam2vec corpus curation and for explorative application 

of DeepBGC to detect novel BGCs (Supplementary Figure S1, Table S5). 
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Pfam2Vec Captures Biological Signal for DeepBGC Input 

One major challenge in BGC identification was defining informative genomic input for the 

algorithm. Input sequences of biological entities can be represented at different genomic levels 

including nucleotides, amino acids, and genes. Of these options, sequential protein family (Pfam) 

domain representations have been highly informative for BGC identification16,27 because they 

represent functional elements within genes. We extended this approach by converting sequences 

of Pfam domain identifiers to numeric vector representations using the word2vec algorithm28. The 

resultant vectors of real numbers encapsulated domain properties based on their genomic context, 

allowing us to leverage contextual (and below we show functional) similarities between Pfam 

domains and BGCs. 

 

We validated the ability of pfam2vec to produce functionally meaningful numeric representations 

of Pfam domains within genomes by calculating the average vector cosine similarity between 

members of superfamilies. The cosine similarities within the same Pfam superfamilies (clans) were 

significantly higher than the similarities between random domain vector pairs (p < 2.2 x 10-16, 

Supplementary Figure S2a). The average cosine similarity between superfamily pairs and random 

pairs was centered around 0 when random representation vectors were used (p = 0.09, 

Supplementary Figure S2b). The known domain functional annotations of the nearest domain 

vector pairs were more similar compared to random pairs (p < 2.2 x 10-16, Supplementary Figure 

S2c) and N- and C- terminal domain pairs appeared to be more similar in vector space compared 

to other domains (Supplementary Table S6). These findings suggested that pfam2vec produced 

functionally meaningful numeric representations of Pfam domain sequences by reflecting known 

superfamily similarities. 
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We further confirmed the functional relevance of pfam2vec vectors by evaluating their ability to 

discriminate BGCs by their Pfam repertoires. We accomplished this by condensing the many Pfam 

domains within each given BGC into a single representative BGC vector using two alternative 

approaches. In the first approach we created representative BGC vectors by averaging the domain 

vector values, and in the second approach we created a binary vector indicating the presence of 

each specific domain (one-hot-vector representation). We assessed the biological relevance of 

these two approaches by means of a t-Distributed Stochastic Neighbor Embedding (t-SNE) of all 

BGCs from the MIBiG database26, and showed that both approaches preserved similarity between 

BGC subclasses (Supplementary Figure S3a-b). Distinct separation of BGCs was lost when 

assessing their taxonomic discriminative abilities, further suggesting that BGCs were primarily 

defined by their functional domain architecture and not by their bacterial species (Supplementary 

Figure S3c-d). While one-hot-vectors meaningfully represented BGCs, they could not be used for 

individual domain representations, since large vectors may inflate the number of model parameters 

and consequently lead to model overfitting. On the contrary pfam2vec vectors provided condensed 

and meaningful representation of individual domains and therefore represented a functionally 

relevant input for RNN that could enhance BGC identification. 

  

Unique Model Architecture & Bootstrapping Improves BGC Prediction 

The DeepBGC BiLSTM neural network was comprised of three layers: the input layer, the 

BiLSTM unit, and the output layer (Figure 2). The input layer encoded a sequence of numerical 

vectors representing Pfam domains in their genomic order. The BiLSTM layer consisted of forward 

and backward LSTM network layers, each consisting of a basic LSTM unit (a memory cell) with 

a 128-dimensional hidden state vector. The memory cell was fed with a single input vector as well 

as the cell’s state from the previous time step in the genome. The output from all LSTM memory 
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cells was processed through a single fully connected output layer with a sigmoid activation 

function. This yielded a single value for each genomic Pfam entity, which represented BGC 

classification confidence for that Pfam domain. This model was trained using our positive 

(Cimermancic et al.16  labeled BGCs) and negative (random gene clusters) training sets, which 

were converted into their respective pfam2vec vectors. Positive and negative BGC matrices were 

repeatedly shuffled and concatenated to simulate real genomic context in which BGCs were 

scattered randomly throughout the genome and surrounded by non-BGC sequences. 

 

To compensate for the lack of a large independent validation set that could be used for optimizing 

model architecture, input features, and hyperparameters, we employed a bootstrap sampling 

technique. Because our model was trained on artificially created genomes, we bootstrapped a real-

world dataset to enable hyperparameter tuning and to simultaneously prevent data leakage that 

would bias our estimation of accuracy in our algorithm. We performed bootstrapping using our 

nine manually BGC-annotated whole-genome dataset, wherein each of the 5 iterations we 

randomly selected 2 genomes randomly with replacement for validation and used the remaining 

genomes for testing (Supplementary Figure S1). We obtained an averaged Receiver Operating 

Characteristic (ROC) curve was obtained by combining the 5 iteration test set predictions, which 

revealed an improvement in precision and recall compared to the original ClusterFinder HMM 

model as well as a retrained version with up-to-date data (precision: 0.75, 0.28, 0.63, respectively, 

Figure 3a-b).  

 

DeepBGC Accuracy Outperforms Existing Models 

We formally evaluated the performance of the DeepBGC model and compared it to the 

ClusterFinder model by testing its ability to (1) accurately identify BGC positions within whole 
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bacterial genomes, (2) discriminate between BGCs and artificially created non-BGC sequences, 

and (3) identify “novel” BGC classes to which it has not been exposed. First, to address whether 

DeepBGC could accurately identify BGC positions within whole genomes, we evaluated the 

model positional accuracy using our 65 experimentally validated BGC set from six bacterial 

genomes16. This revealed an improved performance of DeepBGC (AUC = 0.923) over 

ClusterFinder (AUC = 0.847, Figure 3c). Second, we used 10-fold cross validation to evaluate 

whether our final DeepBGC model could better discriminate between BGC and artificially created 

non-BGC sequences compared to the existing ClusterFinder algorithm. We used BGCs in the 

MIBiG database26 as a positive set and the random gene cluster negative set of BGCs. Both sets 

were randomly distributed across 10 bins, with 90% of bins used for training the model (with the 

optimal settings) and 10% used for testing. DeepBGC (AUC = 0.984) outperformed ClusterFinder 

(AUC = 0.936) in differentiating between positive and negative samples (Supplementary Figure 

S4). Third, to evaluate DeepBGC’s ability to identify “novel” BGCs, we carried out a “Leave-

class-out” validation in which we assessed the models’ abilities to identify a single BGC class in 

the test set that was intentionally omitted from the training set. DeepBGC yielded more accurate 

identification of classes it had not encountered (AUC = 0.946) compared to ClusterFinder (AUC 

= 0.865; Figure 3d, Supplementary Figure S5). Overall DeepBGC yielded improved BGC 

identification accuracy, and was better able to accurately extrapolate to identify BGCs of classes 

it had not encountered previously. 

  

DeepBGC Yields Improved Precision & BGC Coverage 

The most common use case for BGC identification models such as DeepBGC is locating BGCs 

within bacterial genomes. It was therefore important for us to validate DeepBGC as having 

improved positional predictive accuracy of BGCs, in addition to an improved precision and recall. 
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We achieved this by comparing the accuracy of DeepBGC and ClusterFinder BGC detection in a 

subset of our manually annotated bacterial genomes. To account for potential differential impacts 

of false positive and true positive rate thresholds, we applied two distinct cutoffs based on the 

respective domain level ROCs. We accomplished this by applying a stringent domain level False 

Positive Rate (FPR) of 10% as well as a lenient cutoff of 80% True Positive Rate (TPR, 

Supplementary Table S7, Supplementary Figure S6a-b). 

        

With the stringent cutoff of 10% FPR, the number of BGCs predicted by DeepBGC was 

consistently higher than those predicted by ClusterFinder, regardless of the BGC coverage 

threshold (Figure 4a-b). ClusterFinder displayed a sharp decline in the number of predicted BGCs 

as the coverage threshold increased (Figure 4b), indicating that BGCs predicted by this approach 

were typically short (Supplementary Figure S7). The overall precision at the BGC level remained 

comparable between the two models (precision = 0.34, 0.26, Figure 4c).  Under a more lenient 

TPR threshold of 80%, ClusterFinder predicted more BGCs than DeepBGC when coverage 

threshold remained less than 68% (Figure 4d-e). But we found that ClusterFinder predictions were 

of low precision and were composed of many false positives (Figure 4f, BGC level precision < 

0.09, Supplementary Figure S8). On the contrary, DeepBGC displayed > 4-fold increase in 

precision compared to ClusterFinder (precision > 0.4, Figure 4f). 

 

To correct for short BGCs predicted by ClusterFinder, Cimermancic et al.16 applied a post-

processing step whereby neighboring clusters were merged if they were separated only by a single 

gene. Putative clusters that were below 2Kb in length, as well as those not containing a known 

biosynthetic domain, were filtered out. We implemented this approach and found that while this 

step dramatically improved precision for both models (Figure 4c,f), it also inevitably removed a 
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subset of true positive predictions, most notably for ClusterFinder at 10% FPR (Figure 4b). We 

thus concluded that DeepBGC not only reduced the number of false predictions compared to 

ClusterFinder, but it also located BGCs within genomes more accurately. 

 

Random Forests Provide Product & Activity Classification 

To identify the biosynthetic products derived from predicted BGCs, we classified BGC sequences 

by training and testing a random forest classifier using the MIBiG database, which contains 

classification of BGCs to one or more compound classes (Table 1). Nested five-fold cross-

validation revealed that our random forest classifier exhibited an average AUC of 0.80, broadly 

comparable with the BGC classifier implemented in antiSMASH (AUC = 0.78, Table 1, 

Supplementary Figure S9). Our approach can also reveal the most influential Pfam domains that 

drive the classifier decisions (Supplementary Figure S10). Our DeepBGC random forest classifier 

therefore provided a data-driven alternative to the rule-based antiSMASH classification approach. 

 

In addition to identifying BGC classes, we also evaluated our ability to predict BGC molecular 

activity information using the 370 molecular activity labeled MIBiG BGC subset. Due to the small 

sample size, the classifier accounted only for the four most common compound activity classes: 

antibacterial, cytotoxic, inhibitor, and antifungal. Using 5-fold cross-validation, BGCs were 

classified according to their compound activity with modest precision (average AUC 0.61, Table 

1). Larger training sets will be needed for improved performance in future work.  

 

DeepBGC Predicts Novel Antibacterial BGCs 

Above we showed that DeepBGC, together with random forest classifiers, could effectively 

identify BGCs and classify their compound class and molecular activity. We therefore applied this 
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model to unearth novel BGCs that could not be predicted by other approaches. We accomplished 

this by using a bacterial reference set of 3376 RefSeq bacterial genomes29 and subjected these to 

DeepBGC, antiSMASH and ClusterFinder analyses, followed by a systematic comparison of their 

predictions. To avoid an artificially inflated number of putative novel predictions, we maximized 

the ability of ClusterFinder and antiSMASH to detect BGCs by accepting their default (lenient) 

settings, while conversely applying a strict cutoff only for DeepBGC (2% FPR at the domain level). 

Under these criteria, ClusterFinder predicted > 4.5 times more BGCs (62491) than antiSMASH 

(13865) and > 5.5 times more than DeepBGC (10926). As expected, the majority of BGCs that 

were identified by ClusterFinder (~75%) could not be identified by DeepBGC or antiSMASH 

(Figure 5a). ClusterFinder predictions showed comparable overlap with DeepBGC and 

antiSMASH (18% and 15% respectively). On the contrary, DeepBGC comparison revealed that 

the majority of DeepBGC predictions overlapped with ClusterFinder (~55%), and ~39% with 

antiSMASH of which 35% overlapped with both (Figure 5a). Only ~5% (566) of DeepBGC 

predictions could not be uncovered by any other method. Interrogating the respective class and 

species distributions of these putative novel BGCs alongside all DeepBGC predictions revealed 

that DeepBGC clusters were enriched for BGCs with no confident class (~70%) and for those that 

originated from the Mycobacterium genus (~49%, Supplementary Figure S11).        

 

We further explored these novel signatures by interrogating the ~5% novel BGCs that DeepBGC 

detected. We accomplished this by evaluating 227 BGCs that consisted of at least 5 Pfam domains 

and classified them based on their compound class and molecular activity. The novel BGCs that 

could not be confidently assigned to a single compound class straddled the borders between 

distinct classes (grey plus signs, Figure 5b), while the remaining were tightly clustered with known 

BGCs according to their respective class (Figure 5b). 
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To begin evaluating the individual BGCs, we ranked our novel predictions based on their total 

number of Pfam domain counts, their predicted antibacterial activity score and their similarity to 

known BGC in the MIBiG database (Supplementary Table S8). We used this list to manually 

identify a candidate BGC that could not be assigned to a specific compound class, displayed a low 

similarity score to known BGCs and had a high antibacterial prediction score. This novel BGC 

resided in the genome of the pathogenic bacterium Mycobacterium tuberculosis, in which BGCs 

are known to be abundant30–34. The cluster was distant from any other neighboring predictions 

(~9kb Figure 5c) and rich in a diverse set of regulatory, transport and modifying enzymes (Figure 

5d, Supplementary Table S9) including acetyltransferase and glyoxalase/bleomycin resistance 

protein, which have been known to catalyze diverse biochemical reactions35. The cluster also 

encoded for a type II toxin-antitoxin system, further supporting its potential cytotoxic activity36. 

Such wealth of modifying enzymes could potentially grant the final natural product a novel 

chemistry. A search for BGCs with similar domain architecture revealed a similar cluster (80% 

similarity) in a different Mycobacterium tuberculosis strain. More divergent clusters with >60% 

similarity scores were discovered in other Mycobacterium species, and were also supported by 

predictions from antiSMASH and ClusterFinder (Supplementary Figure S12). Together these 

discoveries highlight the value of DeepBGC and its ability to mine bacterial genomes to provide 

previously unrealized insights into bacterial natural product chemistry.   

 

Discussion 

Here we present DeepBGC, a comprehensive deep learning strategy for identifying BGCs from 

bacterial genomes and classifying them by their product class and chemical activity. Our deep 

learning approach is based on concepts from the NLP field and builds on existing algorithms that 

either suffer from a restricted ability to identify novel BGC classes or from a limited ability to 
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accurately identify BGCs within a genome. We demonstrated that our DeepBGC approach 

outperformed one commonly used machine learning algorithm, ClusterFinder, in its ability to 

identify BGCs accurately within a genome (Supplementary Table S10). Our leave-class-out 

analysis suggested that the DeepBGC model also possessed a greater potential to extrapolate and 

identify BGC classes that it has not encountered before. The supplemental random forest 

classification approach allowed us to accurately identify BGC classes by their protein family (Pfam) 

domain composition, and enabled some prediction of the chemical activity of the resulting 

secondary metabolites despite the limited sample size available for training. Finally, like other 

machine learning algorithms, DeepBGC is poised to continue improving over time with the 

continuous discovery, validation, and labelling of BGCs in microbial genomes. 

 

Machine learning has had a dramatic impact on NLP methodologies, giving rise to powerful word 

embedding techniques such as word2vec, which allow representation of words as low-

dimensionality vectors of real numbers through which they enhance learning by context37. Asgari 

et al.38 recently adopted word embedding and neural networks to improve classification of protein 

families using amino acid sequence vectors and Kim et al.39 has also introduced Mut2Vec for 

representation of cancerous mutations. In our current study, we fortified our DeepBGC BiLSTM 

network’s ability to learn complex patterns in genomic sequences with a novel pfam2vec 

representation vectors that were generated from a large unlabeled corpus of genomic sequences. 

By doing so we enabled an improved machine understanding of the enigmatic genomic context. 

We believe that our pfam2vec approach could further assist in annotating domains of unknown 

functions based on their genomic context. To this end, we also provided a set of nearest domain 

pairs of known and unknown functions (Supplementary Table S11), yet this pursuit was ultimately 

beyond the scope of this study and we will continue pursuing this in future work. 
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We applied our model to a real-world dataset (collection of reference bacterial genomes) to 

highlight its ability to provide unique insights into bacterial BGCs. The inflated number of BGCs 

predicted by ClusterFinder could be readily explained by its low precision. Our results suggested 

that many ClusterFinder predictions were false positives, and those that were not false positives 

only represented small fractions of true BGCs. Throughout the study, parameter settings were 

conservatively chosen because we preferred underprediction over annotation of bacterial genomes 

with incorrectly predicted BGCs. 

  

We found that our model identified BGCs of diverse product classes that ClusterFinder could not 

identify, although the majority of BGC classes could not be confidently assigned. This suggests a 

potential for identifying novel BGCs, warranting significant future validation to explore those 

BGC candidates. These unknown BGCs were largely found within Mycobacteria, a genus known 

to harbor many diverse BGCs 30–34. Therefore, our model not only identifies potential new BGC 

signatures, but it does so in bacteria with a known prominence for BGCs, and thus the bacteria we 

might expect a priori to have a significant reservoir of novel BGCs. 

 

While we illustrated the application of this tool to reference genomes, we also anticipate DeepBGC 

applications to the microbiome through shotgun metagenomic datasets. An understanding of 

differential BGC presence or expression (using meta-transcriptomics approaches) could provide 

new insights into microbiome functionality, underlying mechanisms of disease, and therapeutic 

approaches. Although beyond the scope of this work, the incorporation of DeepBGC into 

microbiome sequence analyses is an exciting avenue for future studies. 
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While our deep learning based, DeepBGC approach outperformed other commonly used models, 

it is important to note its limitations. Like other existing models, this model was trained on existing 

BGC databases that are heavily biased towards BGCs from natural product “workhorses” such as 

Streptomyces. This bias in the training data is likely to limit the ability of the model to identify 

novel BGCs in bacterial sources that are poorly characterized in the databases, including bacteria 

found in complex microbial communities (the microbiome). We addressed this extrapolation 

concern by performing leave-class-out validation to highlight the generalizability of our approach 

over other existing approaches. Despite our improved performance, further work is needed to 

curate more diverse BGC databases which can be used to improve the training and validation, and 

overall performance as a result, of our model. 

 

Despite this limitation, our model represents a significant step forward for natural product 

discovery. Due to our model’s improved ability to identify novel BGCs, we showed that we could 

identify BGC that were missed by other existing models, and thereby identify previously unknown 

sources for natural products in existing bacterial genome sequences. By reducing the number of 

fragmented BGCs being identified in bacterial genomes, our improved prediction accuracy will 

reduce BGC count inflation. Additionally, by providing more accurate BGC border predictions, 

we will reduce the human triage effort of cleaning up predicted BGCs whose genomic positions 

were not entirely accurate. Together DeepBGC represents an advancement over the current “state-

of-the-art" by improving BGC identification accuracy, BGC genomic location prediction, and 

identification of potentially novel BGC signatures that were not present in the current training 

knowledgebase. This will be used to empower follow up genome mining for novel BGCs and their 

resulting natural products, and the improved extrapolation capabilities will empower BGC mining 

of microbiome datasets, which still represent an under-explored genomic BGC resource. These 
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microbiome analyses, including associations with disease phenotypes and identification of novel 

chemical matter in classes such as antibiotics or immunomodulatory agents, could have important 

clinical impacts for translating microbiome data to therapeutic interventions. 

 

Online Methods  

Data & Code Availability 

All data used in this work was obtained from the public domain and is specified in the respective 

methods sections. All code for this publication is available at the following GitHub repository: 

https://github.com/Merck/bgc-pipeline. DeepBGC is available for installation and use as a 

Python package at the following GitHub repository: https://github.com/Merck/deepbgc. 

 

Open Reading Frame Identification 

Open reading frames were predicted in 3376 reference bacterial genomes29 using Prodigal40 

version 2.6.3 with default parameters. All other sequences were downloaded with annotations and 

gene locations. 

 

Protein Family Identification 

Protein family domains were identified using HMMER17, HMMScan version 3.1b2, and the Pfam 

database version 3122. This Pfam database was used for all applications except for the original 

ClusterFinder algorithm, where it was preserved at legacy version 27. Hmmscan tabular output 

was filtered using BioPython SearchIO module (version 1.70) to preserve only highest scoring 

Pfam regions with e-value < 0.01. The resulting list of Pfam domains was sorted by the gene and 

the domain start location. 
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Pfam2vec Implementation  

Pfam2vec embedding was generated using the original word2vec implementation28 wrapped in the 

word2vec python module (version 0.9.2). After bootstrap evaluation, the following hyper-

parameters were chosen: 100 dimensions, 8 training iterations and skipgram architecture.  The 

training corpus consisted of 3376 documents and 23425967 words (15686 unique Pfam identifiers). 

Each document contained a space-separated list of Pfam identifiers representing all Pfam domains 

of a specific bacterial genome maintained in their genomic order. To evaluate the pfam2vec 

embedding, cosine similarity of domain vectors were used in comparison with domain membership 

to one of 604 Pfam superfamilies (clans) from the Pfam database version 3122. First, cosine 

similarity of all (non-identity) pairs of domains from all Pfam superfamilies was compared to 

cosine similarity of all pairs from Pfam superfamilies that were randomly shuffled (Wilcoxon rank-

sum test). Second, the same calculation was performed with pfam2vec vectors replaced by random 

numeric vectors (Wilcoxon rank-sum test). Third, Levenshtein distance of Pfam domain 

descriptions was calculated for each pfam2vec vector and its nearest neighbor by cosine similarity 

and compared to the description similarity of each pfam2vec vector and a randomly selected 

pfam2vec vector (Wilcoxon rank-sum test). Finally, average pfam2vec vector representation of 

each BGC from the MIBiG set was calculated as an average of its list of pfam2vec vectors, with 

averages computed separately for each dimension. The vector representation was reduced to two 

dimensions for visualization using the scikit-learn manifold.tSNE package with cosine metric,  

random initialization and default perplexity of 30. 

 

DeepBGC Training Set  

DeepBGC was trained on a subset of the original ClusterFinder positive training set and on a 

negative set generated based on similar principles as the ClusterFinder negative training set. To 
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collect the original positive training set, 681 accession IDs were obtained from the ClusterFinder 

supplementary table and searched on NCBI, which returned 617 sequences. To generate the 

negative set, we collected and preprocessed a public reference set of 3376 bacteria. For each 

reference bacterium, regions similar to known MIBiG BGC (version 1.3) were removed (Blastn13 

with 95% threshold). To generate a single negative sample, a random reference bacterium and a 

random sample from the positive ClusterFinder set were selected. Each gene in the positive sample 

was replaced with a random gene from the reference bacteria, while considering only 1% of genes 

that were most similar in number of Pfam domains. In total, 3 samples were generated from each 

reference bacteria, producing 10128 negative samples. 

 

DeepBGC Implementation 

The BiLSTM model was implemented using Keras (version 2.1.6) with TensorFlow backend 

(version 1.6.0). The architecture consisted of a single Keras Sequential model with two layers. 

First, the model contained a stateful BiLSTM layer with 128 units and dropout of 0.2. Second, the 

model contained a time-distributed Dense layer with sigmoid activation and 1 output unit. The 

input was a sequence of Pfam domains represented by 102-dimensional vectors consisting of the 

100-dimensional pfam2vec embedding and two binary flags marking domains found at the 

beginning or end of proteins. The output was a sequence of values between 0 and 1 representing 

the prediction score of given domain to be part of a BGC. In each training epoch, all positive and 

negative samples were shuffled randomly and concatenated to create an artificial genome. Training 

was configured with 256 timesteps and a batch size of 64. Thus, the training sequence of each 

epoch was separated into 64 subsequences, each trained in parallel in batches of 256 timesteps, 

processing a single training vector at each timestep. The final model was trained for 328 epochs 

using the Adam optimizer with learning rate of 1e-4 and weighted binary cross-entropy loss 
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function (weights are inversely proportional to size of positive and negative samples in our training 

dataset). 

 

To obtain BGC regions used for BGC-level analysis, first, predictions were averaged in each gene, 

BGC genes were selected using any given threshold and consecutive BGC genes were merged. 

Optionally, postprocessed BGC regions were created by applying filters defined in Cimermancic 

et al.16 : merging BGC regions at most one gene apart and filtering out regions with less than 2000 

nucleotides and regions with no known biosynthetic domains from the current list of 133 domains 

published in the ClusterFinder16 submodule of antiSMASH14.  

 

DeepBGC Validation 

The primary evaluation metric published in Cimermancic et al.,16 was a ROC curve based on 10 

reference genomes that are fully annotated with BGC and non-BGC regions. The associated 

genomes were retrieved based on the list of gene loci provided in the  supplementary table16. By 

querying the gene loci on NCBI, 9 out of 10 of the original genomes were obtained. The original 

Streptomyces roseosporus genome could not be retrieved. In three of the genomes the genes were 

not found in a single contig, but in multiple contigs (2 for Streptomyces ghanaensis, 2 for 

Streptomyces sp. AA4 and 3 for Streptomyces sp. C). The sequences were updated since the release 

of the paper, which resulted in a location shift of 7% of genes and removal of 10 BGC genes from 

the Streptomyces pristinaespiralis genome. 

 

For DeepBGC training we use positive and negative samples described above. Since this dataset 

is artificially created it lacks some features of real-world data (potential nonrandom distribution of 

BGC across the genome, real distribution and order of the genes etc.). Therefore, there was no 
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guarantee that model trained on our artificial training set will perform with the same accuracy on 

real genomes. To address that we chose to tune hyperparameters using a subset of real world data. 

To avoid the reduction of our validation set and prevent a leakage from training set to validation 

set we chose a ‘bootstrap approach’. It consists of creating multiple models, where each model 

will utilize a small part of validation set for hyperparameter tuning and the rest for testing. 

Averaging the results of those multiple models’ results is proven to converge to the unbiased 

estimation of the accuracy. 

 

During hyperparameter tuning we considered following parameters and values: learning rate 

(0.001, 0.0001), number of pfam2vec training iterations (4, 8, 16, 32), number of pfam2vec 

dimensions (50, 100, 200) and positive training sample weight (1, 16.415).  Keras EarlyStopping 

method was used with minimum delta of 0.0005 on validation ROC AUC within 100 epochs. We 

realized that majority of the learned models, regardless of the validation genome selection, 

preferred following parameters: 0.0001 for learning rate, 8 pfam2vec training iterations, 100 

pfam2vec dimensions and positive sample weight based on the negative/positive ratio of 16.415. 

 

BGC-level coverage evaluation was performed on the test set of the first bootstrap split. 

Predictions of each model were converted into BGC regions (with and without postprocessing) 

using the method defined above. True BGC coverage of each model was calculated for each 

annotated BGC region as the fraction of the true BGC region covered by all its overlapping 

predicted BGC regions of given model. A BGC was considered detected when its coverage was 

above any given threshold. Coverage distribution was calculated by evaluating all coverage 

thresholds from 0% up to 100% in steps of 0.1%. Next, each predicted BGC region is marked as 

true positive if it overlaps with a true BGC region and as a false positive if it does not. Finally, 
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BGC-level precision was calculated as the number of true positive regions divided by the total 

number of predicted regions. 

 

The secondary evaluation metric published in Cimermancic et al.16 was a True Positive Rate (TPR) 

evaluation based on 65 BGCs in their genomic context of 6 genomes. All BGC locations were 

provided along with names of source bacteria in the supplementary table in Cimermancic et al.,16. 

First, genomes were found on NCBI by manually querying the organism names. Second, BGC 

start and end locations were validated to match with start and end locations of annotated genes 

present in the retrieved genomes. Finally, we obtained BGC predictions using DeepBGC, original 

ClusterFinder and retrained ClusterFinder.  The original evaluation metric was based on 

calculating TPR in terms of fraction of BGCs detected with median ClusterFinder HMM prediction 

above 0.4 threshold. After the inspection of ClusterFinder predictions it was found that more than 

42% of the domains outside the defined BGC regions were detected above the given threshold, 

relying on heavy further postprocessing and manual annotation to filter out false positives. 

Therefore, the sequences were evaluated using a ROC curve, which considers all unannotated 

regions to be negative, producing a lower bound of the AUC value which is unbiased to either of 

the two models.  

 

To perform cross validation and leave-class-out validation we obtained all 1406 BGC samples 

from MIBiG (version 1.3) and our negative set of 10128 samples. Each sample was represented as 

a sequence of Pfam domain identifiers. For cross validation, samples were randomly distributed 

into 10 splits. In each of the 10 cross-validation folds, models were trained on 9 splits and evaluated 

on 1 split. Training and testing samples were shuffled and concatenated to create artificial genomes. 

An average ROC was computed by concatenating all test split predictions. In leave-class-out 
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validation, 1003 samples from 6 non-hybrid classes (Polyketide, NRP, RiPP, Saccharide, Terpene, 

Alkaloid) were selected. For each class, the models were trained on all other classes and random 

two thirds of negative samples. Thereafter, models were tested on a given class (upsampled to 500 

samples by sampling with replacement) and the remaining third of negative samples. Again, 

training and testing samples were shuffled and concatenated to create artificial genomes. This was 

performed three times for each class with different random splits and random shuffles to minimize 

the influence of any random initialization.  An average ROC was computed by concatenating all 

test predictions. 

 

ClusterFinder Implementation  

ClusterFinder predictions were produced using antiSMASH (version 4.1.0) with ClusterFinder 

enabled and with default parameters. Raw prediction scores for each Pfam domain were parsed 

from the final Genbank output files. These scores were used to produce domain-level ROC curves. 

Raw and postprocessed BGC regions used for BGC-level analysis were obtained as described 

earlier. 

To retrain the model for cross validation and leave-class-out validation, the ClusterFinder HMM 

was reimplemented using the hmmlearn python module (version 0.2.0). The transition and starting 

probability matrices of the original model were used. The emission probability matrix was re-

computed using the new positive and negative training set preprocessed with Pfam database 

version 31.  
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Random Forest Multi-Label Product Classification 

Biosynthetic product class and activity training data were obtained from the MIBiG database 

(version 1.3) in JSON format. Product classes were extracted from the “biosyn_class” field, 

producing 1355 labelled training samples. Product activities were extracted from the “chem_act” 

field of each compound in the “compounds” field, excluding BGCs with no known product 

activities, producing 370 training samples. A separate random forest classifier was trained for both 

domains using the scikit-learn python module (version 0.19.1). The classes were predicted using 

multi-label classification, where each sample is labelled with a binary vector representing presence 

of zero or more classes. Global feature importance was obtained using native scikit-learn method, 

class-specific feature importance was calculated by training a separate temporary random forest 

classifier for each class. To evaluate model performance, 5-fold cross validation was used, 

producing 5 sets of real-valued prediction scores which were merged and compared with expected 

output at different thresholds to produce a ROC curve. A confusion matrix was generated by 

treating each occurring combination of biosynthetic classes as a single separate hybrid class. To 

produce the antiSMASH ROC curve, all MIBiG BGC genbank files were processed through 

antiSMASH with default parameters. The resulting BGC classes were parsed from the text output 

files and converted to the output binary vector, which was used to generate a ROC curve with a 

single threshold.  
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Figure Legends 

Figure 1. Overview of the deep learning strategy for detection of Biosynthetic Gene Clusters in 

bacterial genomes. (From top to bottom) raw genomic sequences (solid line) are used for gene 

(arrowhead structures) prediction by Prodigal 40. Pfam domains (circles, penta- and hexagons) are 

assigned to each ORF using hmmscan17. The BiLSTM outputs classification score (blue bars) for 

each domain. Domain scores are summarized across genes, which are selected accordingly (blue 

arrowhead structures). Consecutive candidate BGC genes are assembled to putative BGCs (dashed 

rectangles). An optional post-processing step allowed merging of neighboring BGC based on the 

presence of known biosynthetic pathway, minimum cluster length, and gaps between adjacent 

BGCs (gray rectangles). BGCs were classified using random forest classifiers based on compound 

class and molecular activity (yellow rectangles). 

 

Figure 2. Bidirectional Long-Short Term Memory (BiLSTM) neural network architecture 

(left to right blocks). The network consists of three layers: input, BiLSTM network, and output 

layer. (top to bottom) Each row represents a time step where the BiLSTM model processes a single 

Pfam domain from the input sequence that is maintained in genomic order. Each Pfam domain is 

represented as a vector of precomputed 100-dimensional pfam2vec skip-gram embedding and two 

binary flags indicating whether the domain is found at the beginning or at the end of a given protein. 

Each LSTM memory cell receives the vector from input layer (full arrows) as well as the cell’s 

internal state that represents all previously seen Pfam domains (dashed arrows). The backward 

LSTM layer processes the vectors in reverse order, hence bi-directional. In each timestep, output 

from both LSTM memory cells (boxes) is processed through a single fully-connected node with 

sigmoid activation function (circle) that outputs a single BGC classification score for the given 

Pfam domain. 
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Figure 3. Model validation and testing on Pfam domain level using the (a) Receiver Operating 

Characteristic (ROC) curves and (b) Precision (Y-axis) Recall (X-axis) Curve reflecting 

performance of: (blue) original ClusterFinder HMM model, (green) ClusterFinder HMM model 

retrained with latest training data and latest Pfam database, and (red) DeepBGC. A total of 291 

BGCs in 9 bacterial genomes were used for testing, none of them were included in the training set. 

The DeepBGC ROC represents combination of 5 test set predictions following bootstrap. AUC 

(Area Under the Curve) values are as indicated: FPR- False Positive Rate (X-axis); TPR – True 

positive rate (Y-axis). (c) ROC curves reflecting performance using a total of 65 experimentally 

validated BGCs that were used for testing, none of them were included in the training set. (d) ROC 

curves reflecting average performance in “Leave-Class-Out” analysis. The mean AUC for all 

classes is given. For individual classes performance see Supplementary Figure S5.  

 

Figure 4. Precision and coverage of DeepBGC and ClusterFinder algorithms. (a) Number of true 

BGCs detected by DeepBGC (red), ClusterFinder (blue) and both models (grey), based on three 

BGC coverage thresholds: any (> 0%), majority (> 50%), and full (100%). Coverage of each 

annotated true BGC is defined as the fraction of its nucleotide sequence overlapping with co-

located predicted BGCs. The first bootstrap test split of 7 out of 9 genomes was used for 

comparison. Domains were retrieved based on a fixed False Positive Rate (FPR) of 10%. Genes 

containing candidate Pfam domains were summarized to produce putative BGCs that were 

compared to the actual BGCs in the split data. (b) Cumulative coverage plot of actual BGCs by 

predicted BGCs for DeepBGC (red) and ClusterFinder (blue) also following post-processing 

(dashed). (c) BGC level precision for DeepBGC (red) and ClusterFinder (blue) also following 

post-processing (light colors) at FPR 10%. Precision was calculated as follows: the number of true 
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positives (any overlap between actual and predicted BGCs) divided by total number of predicted 

BGCs. (d-f) Same as ‘a-c’ but at 80% TPR cutoff (g) A snapshot of contig view (X-axis genomic 

coordinates of Micromonospora sp.), true predictions (grey shade and bar), ClusterFinder raw and 

post-processed predictions (dark and light blue), DeepBGC raw and post-processed (dark and light 

red). For simplicity only part of the contig is shown and only at 80% TPR threshold. For all contigs, 

thresholds and models, see Supplementary Figure S7-8. 

  

Figure 5. DeepBGC uncovers novel BGCs with antibacterial activity in bacterial genomes. (a) 

Comparison of BGC predictions between (left) ClusterFinder and (right) DeepBGC. Default 

ClusterFinder settings from antiSMASH suite were used. In DeepBGC, a 2% FPR at the domain 

level was applied with no further post-processing. Overlap of predictions of each model with 

antiSMASH rule-based predictions (default settings) is also given. (b) t-Distributed Stochastic 

Neighbor Embedding (t-SNE) of all 1355 class labelled BGCs from the MIBiG database (circles) 

overlaid with the putative novel 227 BGCs that could be predicted solely by DeepBGC (plus signs). 

BGCs were represented by the mean value of their pfam2vec domain vectors and are colored by 

the respective known or predicted class as indicated. (c) A snapshot of contig view (X-axis 

genomic coordinates of Mycobacterium tuberculosis) of BGC predictions by (red) DeepBGC, 

(blue) ClusterFinder, and (orange) antiSMASH combined with ClusterFinder. A novel BGC 

candidate predicted only by BGC is highlighted (light red shade). (d) The novel BGC structure is 

given, respective genes are colored based on the underlying domain type. For domain IDs see 

Supplementary Table S9. 
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Figure 1. 

 
Figure 2. 
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Figure 3. 

 
 
Figure 4. 
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Figure 5. 
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Table 1. Random forest classifiers and antiSMASH performance for classifying BGCs based on 

their products and their underlying activity. The classifier was trained using 1355 MIBiG labeled 

BGCs belonging to one or more compound classes including Polyketides (PKS), Non-Ribosomally 

synthesized Peptides (NRP), Ribosomally Synthesized and Post-translationally modified Peptides 

(RiPP), Saccharides, Terpenes, Alkaloids, and those belonging to other rarer classes (“other”). 

Areas Under the Curve (AUC) was determined using 5-fold cross-validation. Respective confusion 

matrix and important domain features are provided in Supplementary Figure S9-S10. For 

molecular activity classification random forest was used as before on 370 molecular activity 

labeled MIBiG BGCs. Only antibacterial, cytotoxic, inhibitor or antifungal classes are accounted 

for. 
  

RandomForest antiSMASH  
Samples AUC Precision Recall AUC Precision Recall 

Polyketide 644 0.903 0.876 0.898 0.870 0.901 0.806 
NRP 433 0.907 0.904 0.850 0.915 0.939 0.852 
RiPP 199 0.907 0.935 0.823 0.897 0.958 0.799 

Saccharide 179 0.811 0.906 0.631 0.607 0.769 0.223 
Other 154 0.583 0.876 0.171 0.671 0.594 0.370 

Terpene 120 0.824 0.867 0.658 0.744 0.908 0.492 
Alkaloid 39 0.607 0.733 0.216 0.785 0.434 0.590 
Average 252 0.792 0.871 0.607 0.784 0.786 0.590 

Antibacterial 180 0.629 0.615 0.508    
Cytotoxic 140 0.706 0.694 0.542    
Inhibitor 81 0.545 0.473 0.115    

Antifungal 71 0.532 0.360 0.073    
Average 118 0.603 0.536 0.310    
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