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Abstract

The capsid and tail proteins are considered the main structural proteins for phages and
also their footprint since they exist only in phage genomes. These proteins are known to
lack sequence conservation, making them extremely diverse and thus posing a major
challenge to identify and annotate them in genomic sequences. In this study, we aim to
overcome this challenge and predict these proteins by using deep neural networks with
composition-based features. We develop two models trained with k-mer features to
predict capsid and tail proteins respectively. Evaluating the models on two different
testing sets shows that they outperform state-of-the-art methods with improved F-1
scores.

Introduction 1

Phages or bacteriophages are viruses that infect bacteria. These microorganisms can 2

reproduce through two different life cycles, lysogeny and lytic. For the lysogeny cycle, 3

the phage integrates its genome with the bacteria genome and stays there. In this cycle, 4

the phage becomes part of the bacterial genome and replicates together with the 5

bacteria; whereas for the lytic cycle, the phage enters the bacterial cell, uses its 6

machinery to replicate, reproduce new phages, and then lyses the cell membrane to 7

disperse into the environment, resulting in death of the invaded bacterium [1]. 8

Phages are getting increasing attention primarily due to the advent of the shotgun 9

metagenomic sequencing. This technology enables comprehensive sampling of the 10

genomes that are present in a given environmental sample, such as soil and seawater, 11

while circumventing the culture of the microorganisms, which is both labor intensive 12

and often infeasible [2]. Furthermore, there is increasing interest in characterizing the 13

interactions between phages and their bacterial hosts. Understanding the interactions 14

has important implications, one of which is in combating antibiotic resistance in 15

bacteria where phages can be introduced to infect and kill pathogenic bacteria or 16

induced into lytic stage if already integrated in bacteria [3]. 17

However, uncovering viral sequences has been challenging. Despite being the most 18

abundant organisms on earth with an estimate of more than 1030 [4], only 8108 19

complete virus genomes are curated at NCBI currently. Consequently, methods for 20

predicting/annotating viral sequences that rely heavily on reference databases, such as 21

the alignment-based methods, are not effective in detecting novel viruses and phages. 22

Indeed, if the input sequence does not align to any sequence in the reference database, it 23

would be annotated as unknown sequences. This problem is further exacerbated by the 24

lack of well established taxonomic and phylogenetic relationships in viruses and phages 25

as they do not have the ribosomal genes that are conserved universal markers in other 26

organisms for phylogenetic classifications [5]. 27
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To overcome these challenges, composition-based methods were introduced to 28

circumvent the requirement of universal or markers genes [6–8]. The composition-based 29

methods use the composition of the sequence, such as k-mers, as features to train 30

machine learning models and then use the trained models to predict the taxonomy of 31

new sequences. The composition-based prediction methods can make prediction on any 32

sequence even if it does not align to the reference database. 33

Many studies built machine learning models to classify a given sequence to either 34

viral or nonviral sequences. For example, Feng et al. trained a naive Bayes classifier 35

with amino acid composition and dipeptide composition as features [9]. Later, Ding et 36

al. developed PVPred that uses SVM with g-gap dipeptide composition as features and 37

selects the most significant features by analyzing the variance [10]. Subsequently, Zhang 38

et al. developed a random forest ensemble method with a set of features that include 39

pseudo-amino acid composition (PseAAC) and position-specific scoring matrix 40

(PSSM) [11]. Recently, Manavalan et al. used SVM with feature selection of amino acid 41

composition to classify sequences as viral or nonviral proteins [6]. 42

Other studies focus on models that classify phage protein sequences to either 43

structural or nonstructural proteins. Structural proteins can be either capsid or tail 44

proteins, and nonstructural proteins can be anything else such as viral binding or even 45

bacterial proteins. Capsid and tail proteins are considered the footprint of the phage 46

genome. The tail protein encodes a tail shape protein that acts as a mediator for the 47

phage to attach onto the membrane of the bacteria during infection. The capsid protein 48

encodes a shell structure that encapsulates the phage genetic material. The capsid is 49

known to exist in all sequenced viruses and phages; it protects the phage/virus from 50

degradation by the host enzymes. The capsid also acts as a mediator to infect bacteria 51

by attaching the phage to its host and enabling its penetration through the host 52

membrane. 53

These vital roles of capsid and tail proteins motivated Seguritan et al. [7] to develop 54

iVIREONS to predict them. iVIREONS consists of a set of 30 artificial neural network 55

models that use amino acid frequency and isoelectric as features. However, the set of 56

models can output different predictions for the same input, which challenges the user to 57

determine the correct prediction. More recently, another machine learning model 58

VIRALpro was developed to also predict capsid and tail sequences [8] using SVM with 59

amino acid frequency and HMM models. VIRALpro outperforms iVIREONS [8], but is 60

remarkably slower since it uses HMM. 61

In this study, we built two machine learning models that also predict capsid and tail 62

proteins respectively. For this purpose, we used the deep neural network models; these 63

models are considered the most modern machine learning models to date, known for 64

their exceptional performance that outperform their predecessors [12]. They have been 65

extensively used in the fields of computer vision and natural language processing [12], 66

and only recently gained attention in the field of genomics [13]. However, to our 67

knowledge, there has not been any study that harnesses the power of these models to 68

predict capsid and tail proteins. 69

We propose two distinct deep neural network models that predict capsid and tail 70

phage protein respectively. We trained the models using k-mer frequency as features and 71

examined different k-mer sizes ranging from one to four. We evaluated the models with 72

two test data sets and compared our models with iVIREONS [7] and VIRALpro [8]. 73
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Materials and Methods 74

Data Collection 75

We collected all the phage and prophage sequences from Phaster [14]. The Phaster 76

database consists of curated phage and prophage proteins taken from NCBI and the 77

prophage database [15]. This database is publicly available and regularly updated. 78

As of May 2018, Phaster included a total of 260, 403 phage and prophage protein 79

sequences. Redundant sequences (i.e., sequences are identical to each other) were 80

removed, leaving 187, 670 unique sequences. Figure 1 shows the distribution of the 81

protein sequences of Phaster after removing the redundant sequences: 66.38% are 82

hypothetical or putative proteins, 9% are enzymes, and 16.31% are hard to categorize 83

with no clear description. The remaining 8% consist of capsid, tail, and nonstructural 84

proteins, and are used in this study. 85

Non−Structural (3.01%)

Hypothetical (66.38%)

Capsid & Tail (5.24%) Enzyme (9.05%)

Others (16.31%)

Fig 1. Distribution of protein sequences in Phaster database

The capsid, tail, and nonstructural proteins were annotated similarly to 86

iVIREONS [7] and VIRALpro [8], that is, the description of the fasta files was used to 87

annotate the proteins. For example, if the description contains the word ’capsid’, the 88

corresponding sequence was labeled as capsid protein. Hypothetical or putative 89

sequences were not included to ensure data quality. A comprehensive list of the words 90

used for the annotation is provided in Table 1 of the supplemental material. Thus the 91

annotated proteins include 3, 401 unique capsid proteins, 6, 442 unique tail proteins, and 92

5, 654 unique nonstructural proteins. These proteins are divided into training and 93

testing sets, as detailed in the next section. 94

Training & Testing sets 95

The capsid, tail, and nonstructural proteins were split into three sets, one training set 96

and two testing set. The three sets are mutually exclusive, the same protein sequence 97

does not exist in more than one set. The training set is used to train the deep learning 98

models and the two testing sets are used to validate the trained models. We call the 99

first testing set the representative testing set because it includes sequences that are 100

similar to the training set. Figures 2a and 2b show the identity of the best-hits of the 101

representative testing set against the training set. These figures show that the majority 102

of sequences in the representative testing set are highly similar to the training set: 80% 103
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Fig 2. Distribution of identity of the best-hits of the testing and training
sets. Figures 2a and 2b present the best-hits of the representative set against the
training set for capsid and tail models respectively, and Figure 2c and 2d show the
best-hits of the independent set against the training set for capsid and tail models
respectively.

of these sequences have an identity between 40% and 100%. The second testing set is 104

the independent testing set, including proteins that are less similar to the training set. 105

Figures 2c and 2d show the identity of the best-hits of the independent testing set 106

against the training set: 60% of the sequences in the independent testing set have an 107

identity of less than 20%, and more than 30% have an identity between 20% and 40%. 108

These best-hits are generated by blastp: the testing set, whether the representative or 109

the independent set, is the query, and the training set is the subject. 110

Table 1 shows the number of sequences used in the training and testing sets for 111

capsid and tail models. The training and testing sets are selected randomly (see 112

supplemental Figure 1 for details on how we built these sets). 113

Extraction of k-mer Features 114

K-mer frequencies of the protein sequences were used as features to train the different 115

deep learning models. Various k-mer sizes were examined ranging from one to four. 116

Table 2 shows the number of features for every k-mer size (e.g., for k-mer size ≤ 2, we 117

November 15, 2018 4/14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2018. ; https://doi.org/10.1101/477885doi: bioRxiv preprint 

https://doi.org/10.1101/477885
http://creativecommons.org/licenses/by/4.0/


Table 1. Distribution of capsid, tail, and nonstructural protein sequences
in the training and testing sets for capsid and tail models.

Dataset # of sequences to train
& test for capsid models

# of sequences to train
& test tail models

Training set Capsid (P): 2241
Nonstructural (N): 3678

Tail (P): 4229
Nonstructural (N): 3678

Representative
testing set

Capsid (P): 960
Nonstructural (N): 1576

Tail (P): 1813
Nonstructural (N): 1576

Independent
testing set

Capsid (P): 200
Nonstructural (N): 400

Tail (P): 400
Nonstructural (N): 400

(P) means positive sequences, (N) means negative sequences. The same nonstructrual
sequences are used as negative sequences for both capsid and tail models.

would have 420 features with 20 features for k-mer size one and 400 features for k-mer 118

size two). 119

Table 2. number of features based on the k-mer size.

k-mer size ≤ 1 ≤ 2 ≤ 3 ≤ 4

# of features 20 420 8, 420 168, 420

The number of features goes exponentially when the size of k-mer increases.

Training Deep Neural Network Models 120

Four different deep learning architectures with varying numbers of layers and nodes 121

were investigated: the first model has two layers with 12 and 8 nodes respectively; the 122

second model has four layers with 400, 200, 100, and 50 nodes respectively; the third 123

model has four layers with 600, 300, 150, and 60 nodes respectively; the fourth and most 124

complex model has four layers with 800, 400, 200, and 100 nodes respectively. 125

For all models, the following parameters were used: “relu” as activation function, 126

“adam” as optimizer, and “binary crossentropy” as loss function. The models were 127

trained using 150 epochs with a batch size of 10. The architectures as well as the 128

parameters used were determined through extensive experimentation. 129

We provide a naming convention for these models in Figure 3. For example, 130

‘Capsid:12:8 ’ predicts capsid proteins and has two layers: 12 nodes in the first layer and 131

eight nodes in the second layer. ‘Tail:400:200:100:50 ’ predicts tail proteins and has four 132

layers: 400 nodes in the first layer, 200 nodes in the second layer, 100 nodes in the third 133

layer, and 50 nodes in the forth layer. 134

Capsid 400:200:100:50, ≤ 2 
Model label 
which can be 
‘capsid’ or 
‘tail’

# of nodes in 
the 1st layer

# of nodes in 
the 2nd layer

# of nodes in 
the 3rd layer

# of nodes in 
the 4th layer

kmer sizes used for 
this model. ≤ 2 means 
420 kmers: 20 kmer of 
size 1 and 400 kmer of 
size 2.

Fig 3. Naming convention of the implemented deep neural network models.
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Validation of The Trained Models 135

Two Different Testing sets 136

To validate the trained models, two different testing sets were used: the representative 137

and independent testing sets. The representative testing set assesses the models when 138

the input sequence is similar to the training set. On the other hand, the independent 139

testing set evaluates the models when the predicted sequence is considerably different 140

from the training set, which mimics the real-world problem of virus annotation where a 141

significant number of new sequences are not similar to the reference database sequences. 142

Performance Criteria 143

Accuracy, F1-score, Recall, and Precision were used to assess the prediction of the 144

trained models. We present the formula of Accuracy, F1-score, Recall, and Precision in 145

Equations 1, 2, 3, and 4 respectively: 146

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

F1 =
2× Precision×Recall

Precision+Recall
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

TP is the number of capsid or tail sequences that are classified correctly, TN is the 147

number of the nonstructural sequences that are classified correctly, FP is the number of 148

the nonstructural sequences that are classified incorrectly (as either capsid or tail), FN is 149

the number of capsid or tail sequences that are classified incorrectly (as nonstructural). 150

Results 151

Framework of The Proposed Predictor 152

DeepCapTail is a publicly available framework that predicts capsid and tail proteins. 153

This framework can be downloaded at https://github.com/Dhooha/DeepCapTail. This 154

framework consists of a machine learning project written in Python and uses the 155

scikit-learn library [16]. Figure 4 shows the steps followed to build DeepCapTail: (1) 156

different deep neural network architectures were investigated with different k-mer sizes 157

in order to decide on the most effective architectures as well as k-mer sizes; (2) the most 158

effective deep neural networks were used to train capsid and tail models using the 159

training set; (3) these models were tested using two distinct testing sets, dubbed 160

representative and independent testing sets; (4) the best capsid and tail models were 161

selected based on the F1-score. 162

Performance of Capsid and Tail Models on The Training set 163

Initially it was unclear what would be an applicable deep learning architecture for this 164

problem. For this reason, different deep learning architectures were examined and 165

compared on the training set with 10-fold cross-validation. First, an extremely small 166

deep learning architecture with two layers of 8 and 12 nodes was examined; then, the 167
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Observe the performance of these 
models

Decide on what can be 
the most plausible Deep 
Neural Network 
architectures and kmer 
features. Use these 
architectures to train 
capsid and tail models 
on the training-set.

Train different Deep 
Neural Network 
architectures with 
different kmer sizes 
using the 
training-set with 
10-fold cross 
validation.

Capsid 12:8 with kmer size ≤ 2

Tail 600:300:150:60 with kmer size ≤ 1

Capsid 12:8 with kmer size ≤ 3

Tail 600:300:150:60 with kmer size ≤ 2
Tail 600:300:150:60 with kmer size ≤ 3

Capsid 12:8 with kmer size ≤ 1

Trained capsid and tail models
Validate these 
trained models using 
2 different 
testing-sets 
(representative and 
independent 
testing-sets).

Select the best 
capsid and tail 
models based 
on f1-score.

Tail 600:300:150:60 with kmer size ≤ 1 
Tail 600:300:150:60 with kmer size ≤ 2
Tail 600:300:150:60 with kmer size ≤ 3

Capsid 400:200:100:50 with kmer size ≤ 1
Capsid 400:200:100:50 with kmer size ≤ 2
Capsid 400:200:100:50 with kmer size ≤ 3

Fig 4. The four steps of DeepCapTail pipeline. (1) decide on the most effective
deep neural network architecture and k-mer features using the performance of 10-fold
cross validation; (2) use these most effective architectures and features to train capsid
and tail models using the training set; (3) validate these models using two different
testing sets: representative and independent testing sets; (4) select the best capsid and
tail models based on the F1-score.

number of layers as well as the number of nodes was increased until observing an 168

improvement in capsid and tail predictions with the architecture 400:200:100:50 that 169

has four layers. From this, we kept increasing the number of nodes to have the 170

architectures 600:300:150:60 and 800:400:200:100. We also increased the number of 171

layers to five and six, but the performance dropped and therefore we stopped at the 172

architectures with four layers. 173

Figures 5a and 5b show the F1-scores of capsid and tail models trained using 10-fold 174

cross-validation on the training set. These models are not exceedingly large, and thus 175

training was done in a timely fashion (e.g., training ‘Capsid 400:200:100:50, ≤ 3’ with 176

10-fold cross-validation took less than 30 minutes using a high performance computing 177

system: Intel’s Broadwell processors (2 x E5-2683v4 2.1GHz ) with 128 GB of memory 178

(2400 MHz) and 32 cores). F1-score was reported instead of the accuracy because 179

F1-score is more reliable when the positive and negative classes are imbalanced, which is 180

the case of our data. The next sections show the performance analysis of all the models 181

presented in Figures 5a and 5b. 182

All the models that use k-mer size ≤ 4 have either the same or lower F1-scores 183

compared to at least one of the models that use lower k-mer sizes and therefore were 184

not considered further for the remaining study (e.g., Figure 5a indicates that the 185

F1-score median of ‘Capsid 400:200:100:50, ≤ 3’ is 92%, whereas, the F1-score median 186

of ‘Capsid 400:200:100:50, ≤ 4’ drops by 3%. For tail models, Figures 5b shows that the 187

F1-score median of ‘Tail:400:200:100:50, ≤ 4’ drops by 1% compared to 188

‘Tail:400:200:100:50, ≤ 3’). Similarly, the models that have architecture of 12:8 provide 189

the lowest F1-scores compared to all other models and therefore were also not 190

considered in the remaining study (e.g., Figure 5a shows that the F1-score median of 191

‘Capsid 12:8, ≤ 3’ is 88% compared to 91% for ‘Capsid 400:200:100:50, ≤ 3’. For tail 192

prediction, Figure 5b indicates that ‘Tail 12:8, ≤ 3’ has an F1-score median of 90% 193
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Fig 5. Box-plots of F1-scores of the capsid and tail models using different
k-mer features. k-mer features are not mutually exclusive, in other words, a model
trained with k-mer ≤ 2 has a total of k-mer features equal to 420 coming from a total of
20 k-mers of size one and 400 k-mer of size two. (a) for capsid models and (b) for tail
models.

compared to 92% for the model ‘Tail 400:200:100:50, ≤ 3’). One can argue that the 194

complexity of the models 400:200:100:50 compared to 12:8 may not justify the little 195

improvement of F1-scores. However, although the models 400:200:100:50 have a higher 196

number of nodes compared to 12:8, they still can be trained in minutes. It takes less 197

than 30 minutes to train ‘Capsid 400:200:100:50, ≤ 3’. The training step is performed 198

once, then the model is saved to predict capsid proteins in just a few milliseconds. 199

Overall, the models 800:400:200:100 have either similar or lower performance than the 200

smaller models 600:300:150:60 and 400:200:100:50 and therefore were not considered 201

further in the remaining study. 202

To summarize, the models 400:200:100:50 and 600:300:150:60 performed better than 203

12:8 and 800:400:200:100 as well as the models that use k-mer size ≤ 4. For this reason, 204

models with the architectures 400:200:100:50 and 600:300:150:60 using k-mer sizes ≤ 1, 205

≤ 2, and ≤ 3 were further analyzed. In the next section, these models were evaluated 206

using two different testing sets: the representative and independent testing sets. 207

Performance of Capsid and Tail models on The Testing sets 208

In this part of the study, we trained the deep neural network architectures 209

400:200:100:50 and 600:300:150:60 with different k-mer sizes ≤ 1, ≤ 2, and ≤ 3. Then 210

we evaluated these trained models with two different testing sets: the representative and 211

independent testing sets. 212

Using The Representative Testing set 213

The representative testing set includes sequences that are highly identical to the 214

training set. It assesses the capsid and tail models when the input sequence happens to 215

be similar to the training sequences. Figures 6a and 6b show the ROC curves of capsid 216

and tail models using the representative testing set. 217

Figure 6a shows that the ROC curves of the different capsid models are extremely 218

similar: their AUCs are between 96% and 97%. Figure 6b shows that the ROC curves 219

of the tail models are similar as well: their AUCs are between 93% and 97%. The AUCs 220

of capsid and tail models using the representative testing set are both greater than 90%. 221

A cut-off of 0.5 was used to compute the accuracy, F1-score, recall, and precision of 222

these models; Table 3 shows the results. 223

November 15, 2018 8/14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2018. ; https://doi.org/10.1101/477885doi: bioRxiv preprint 

https://doi.org/10.1101/477885
http://creativecommons.org/licenses/by/4.0/


Specificity

S
en

si
tiv

ity
1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Capsid 400:200:100:50, ≤ 1
Capsid 400:200:100:50, ≤ 2
Capsid 400:200:100:50, ≤ 3
Capsid 600:300:150:60, ≤ 1
Capsid 600:300:150:60, ≤ 2
Capsid 600:300:150:60, ≤ 3

(a)

Specificity

S
en

si
tiv

ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tail 400:200:100:50, ≤ 1
Tail 400:200:100:50, ≤ 2
Tail 400:200:100:50, ≤ 3
Tail 600:300:150:60, ≤ 1
Tail 600:300:150:60, ≤ 2
Tail 600:300:150:60, ≤ 3

(b)

Specificity

S
en

si
tiv

ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Capsid 400:200:100:50, ≤ 1
Capsid 400:200:100:50, ≤ 2
Capsid 400:200:100:50, ≤ 3
Capsid 600:300:150:60, ≤ 1
Capsid 600:300:150:60, ≤ 2
Capsid 600:300:150:60, ≤ 3

(c)

Specificity

S
en

si
tiv

ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tail 400:200:100:50, ≤ 1
Tail 400:200:100:50, ≤ 2
Tail 400:200:100:50, ≤ 3
Tail 600:300:150:60, ≤ 1
Tail 600:300:150:60, ≤ 2
Tail 600:300:150:60, ≤ 3

(d)

Fig 6. ROC curves of capsid and tail models using the representative and
independent testing sets. Figures 6a and 6b are for the evaluation of capsid and tail
models using the representative testing set. Figures 6c and 6d are for the evaluation of
capsid and tail models using the independent testing set.

Table 3 shows that the capsid and tail models performed exceptionally well on the 224

represented testing set (e.g., F1-scores are equal or higher than 89%). The models that 225

use k-mer size ≤ 2 or ≤ 3 outperformed the models that use k-mer size ≤ 1 (e.g., the 226

F1-score of Capsid 400:200:100:50 using k-mer size ≤ 2 and ≤ 3 is 92% compared to 227

90% for the same architecture using k-mer size ≤ 1). However, it is difficult to know if 228

the models that use k-mer size ≤ 3 are better than the models that use k-mer size ≤ 2 229

since they have the same F1-score. These observations are valid for both capsid and tail 230

models. The next section shows the details on how these models performed differently 231

on the independent testing set. 232

Using The Independent Testing set 233

The independent testing set is another testing set used to assess the capsid and tail 234

models. Contrarily to the representative testing set, the independent testing set is 235

substantially different from the training set. It evaluates the capsid and tail models 236

when the input sequence happens to be highly divergent from the training sequences, 237
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Table 3. Evaluation of Accuracy, F1-score, Recall, Precision, and AUC of
capsid and tail models using the representative testing set

Models Acc F1 Recall Precision AUC

Capsid 400:200:100:50, ≤ 1 0.93 0.9 0.89 0.91 0.97
Capsid 400:200:100:50, ≤ 2 0.94 0.92 0.88 0.95 0.97
Capsid 400:200:100:50, ≤ 3 0.94 0.92 0.91 0.92 0.97
Capsid 600:300:150:60, ≤ 1 0.93 0.9 0.88 0.93 0.96
Capsid 600:300:150:60, ≤ 2 0.94 0.92 0.89 0.95 0.96
Capsid 600:300:150:60, ≤ 3 0.94 0.92 0.92 0.92 0.97
Tail 400:200:100:50, ≤ 1 0.89 0.89 0.87 0.91 0.94
Tail 400:200:100:50, ≤ 2 0.92 0.92 0.89 0.95 0.97
Tail 400:200:100:50, ≤ 3 0.91 0.92 0.93 0.91 0.95
Tail 600:300:150:60, ≤ 1 0.9 0.9 0.87 0.93 0.95
Tail 600:300:150:60, ≤ 2 0.92 0.93 0.91 0.94 0.96
Tail 600:300:150:60, ≤ 3 0.92 0.92 0.91 0.94 0.93

which might be the case of many newly sequenced phage proteins. 238

Figures 6c and 6d show the ROC curves of capsid and tail models using the 239

independent testing set. The performance of these models dropped, which is expected 240

because the sequences of the independent testing set are highly divergent from the 241

sequences of the training set (e.g., the AUC of ‘Capsid 400:200:100:50, ≤ 3’ dropped 242

from 97% to 81%. The AUC of ‘Tail 600:300:150:60, ≤ 3’ dropped from 93% to 82%). 243

Both capsid and tail AUCs are above 80%. 244

We compute the accuracy, F1-score, recall, and precision of these models using a 245

cut-off of 0.5. Table 4 shows the results. 246

Table 4. Evaluation of Accuracy, F1-score, Recall, Precision, AUC of
capsid and tail models using the independent set.

Models Acc F1 Recall Precision AUC

Capsid 400:200:100:50, ≤ 1 0.77 0.61 0.52 0.71 0.78
Capsid 400:200:100:50, ≤ 2 0.69 0.62 0.75 0.53 0.77
Capsid 400:200:100:50, ≤ 3 0.79 0.67 0.64 0.7 0.81
Capsid 600:300:150:60, ≤ 1 0.78 0.6 0.5 0.75 0.8
Capsid 600:300:150:60, ≤ 2 0.76 0.6 0.52 0.69 0.76
Capsid 600:300:150:60, ≤ 3 0.73 0.64 0.72 0.57 0.79
Tail 400:200:100:50, ≤ 1 0.75 0.72 0.66 0.81 0.79
Tail 400:200:100:50, ≤ 2 0.7 0.73 0.81 0.66 0.78
Tail 400:200:100:50, ≤ 3 0.68 0.73 0.88 0.62 0.79
Tail 600:300:150:60, ≤ 1 0.74 0.74 0.72 0.75 0.8
Tail 600:300:150:60, ≤ 2 0.7 0.71 0.75 0.68 0.77
Tail 600:300:150:60, ≤ 3 0.76 0.76 0.76 0.77 0.82

Best capsid and tail models are in bold.

Contrary to the results of the representative testing set, it is easier to distinguish the 247

best models for capsid and tail predictions using the independent testing set. The best 248

capsid model is ‘Capsid 400:200:100:50, ≤ 3’, with an accuracy and F1-score of 76% and 249

66% respectively. The best tail model is ‘Tail 600:300:150:60, ≤ 3’, with an accuracy 250

and F1-score of 76%. We compare our best models with state-of-the-art prediction 251

programs in the next section. 252
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Performance Comparison of Our Best Capsid and Tail Models 253

with State-Of-The-Art using Two Different Testing sets 254

We compare our best capsid model ‘Capsid 400:200:100:50, ≤ 3’ and our best tail model 255

‘Tail 600:300:150:60, ≤ 3’ with two state-of-the-art programs, iVIREONS [7] and 256

VIRALpro [8]. To this end, the representative and independent testing sets were used 257

and results are shown in Figure 7. 258
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Fig 7. Barplot of the accuracy, F1score, recall, and precision of our best
capsid and tail models as well as iVIREONS and VIRALpro. Figures 7a and
7b evaluate the capsid and tail models using the representative testing set. Figures 7c
and 7d evaluate the capsid and tail models using the independent testing.

Our capsid model ‘Capsid 400:200:100:50, ≤ 3’ and our tail model ‘Tail 259

600:300:150:60, ≤ 3’ outperform iVIREONS [7] and VIRALpro [8] with both the 260

representative and independent testing sets. Using the representative testing set, our 261

capsid model ‘Capsid 400:200:100:50, ≤ 3’ has a F1-score of 92% compared to 0% and 262

40%, and our tail model ‘Tail 600:300:150:60, ≤ 3’ records a F1-score of 92% compared 263

to 73% and 0.03% for iVIREONS and VIRALpro respectively. 264

The successful prediction of most of the sequences in the representative testing set is 265

expected as our models were trained on similar sequences. However, iVIREONS and 266

VIRALpro were trained on sequences that are different from the representative testing 267

set. Supplemental Figure 2 shows that more than 60% of the training set of the two 268

models have an identity less than 40% to the representative testing set, which can be 269

the reason why they were unable to perform as well as our models. 270

However, using the independent testing set, the performance of our models dropped, 271

but still performed better than iVIREONS and VIRALpro. Our capsid model ‘Capsid 272

400:200:100:50, ≤ 3’ outperforms iVIREONS and VIRALpro with an F1-score of 67% 273

compared to 0% and 57% respectively, and our tail model ‘Tail 600:300:150:60, ≤ 3’ 274

presents an F1-score equal to 76% compared to 67% and 72% for iVIREONS and 275

VIRALpro respectively. 276

The performance of our models dropped with the independent testing set because 277

the testing set is substantially different from the sequences used to train the models. 278
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The independent testing set is also different from the training set used by both 279

iVIREONS and VIRALpro. 280

Supplemental Figure 3 shows that more than 70% of the training set used by these 281

models have an identity less than 40% to this testing set. This means all of these 282

models are tested on sequences that are different from their training sequences, and for 283

this reason, we consider the independent testing set unbiased compared to the 284

representative testing set. 285

Performance Comparison of Our Best Capsid and Tail Models 286

with State-Of-The-Art using Viral Metagenomic Data 287

We compare the performance of ‘Capsid 400:200:100:50, ≤ 3’ and ‘Tail 600:300:150:60, 288

≤ 3’ with iVIREONS [7] and VIRALpro [8] using viral metagenomic data. We use the 289

same viral metagenomic data that were employed by VIRALpro [8] to assess their 290

capsid and tail predictors. This data consists of five different metagnomic datasets with 291

no homology to known proteins. These five datasets do not have any capsid or tail 292

annotation, and this is why we cannot compute F1-scores on this dataset. We present 293

relevant details about these datasets in Table 5 (more details on these datasets can be 294

found in [8]). 295

Table 5. Overview of the 5 metagenomic datasets that we use to compare
our capsid and tail models with the iVIREONS and VIRALpro.

Metagenomic
datasets

# of se-
quences

Relevant details

Moore phages 1172 marine phage proteins.
RnaCoastal 86 RNA viral proteins of sea water samples.
Oresund-Struct 85 sea water phages isolated from the Strait

of Oresund; using MS-based proteomics
this dataset are identified as viral struc-
tural proteins.

Oresund-Hypo 524 sea water phages isolated from the Strait
of Oresund; using MS-based proteomics
this dataset are identified as viral hypo-
thetical proteins.

Oresund-NonStruct 156 sea water phages isolated from the Strait
of Oresund; using MS-based proteomics
this dataset are identified as viral non-
structural proteins.

We present in Figure 8 the Venn Diagram of capsid and tail predictions using the 296

metagenomic dataset of Oresund Struct. As we detailed in Table 5, this dataset is 297

identified as structural viral proteins by MS-based proteomics [8]. For tail prediction, 298

our model as well as iVIREONS and VIRALpro agreed on the prediction of most of the 299

tail sequences: 33 sequences were identified by all these models as tail sequences. 300

However, for the capsid prediction, our model and the iVIREONS and VIRALpro agreed 301

on the prediction of only two capsid sequences. It is difficult to know if these predictions 302

are correct, since we do not have the annotation of capsid and tail proteins for this 303

metagenomic dataset. The Venm Diagram of the prediction of capsid and tail proteins 304

for the four remaining of metagenomic datasets is shown in the supplemental material. 305
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Fig 8. Venn Diagram of the capsid and tail predictions of our models as
well as iVIREONS and VIRALpro using the metagenomic dataset
‘Oresund Struct’. Figure 8a presents the number of predicted capsid proteins, and
Figure 8b presents the number of predicted tail proteins

Conclusion 306

We proposed the deep learning models ‘Capsid 400:200:100:50, ≤ 3’ and ‘Tail 307

600:300:150:60, ≤ 3’ that predicts capsid and tail proteins of phages. We evaluated 308

these models using two different testing sets. Our models outperformed the 309

state-of-the-art iVIREONS and VIRALpro, which suggests that our models are more 310

accurate in prediction. We also compared the performance of our models, iVIREONS 311

and VIRALpro using five different viral metagenomic datasets. All of these models 312

agreed on the annotation of some of the capsid and tail proteins; however, it is difficult 313

to assess the accuracy of these models since the correct answer is not known. 314

References

1. Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage.
2011;1(1):31–45.

2. Thomas T, Gilbert J, Meyer F. Metagenomics-a guide from sampling to data
analysis. Microbial informatics and experimentation. 2012;2(1):3.

3. Chan BK, Abedon ST. Phage therapy pharmacology: phage cocktails. In:
Advances in applied microbiology. vol. 78. Elsevier; 2012. p. 1–23.

4. Suttle CA. Marine viruses—major players in the global ecosystem. Nature
Reviews Microbiology. 2007;5(10):801.

5. Edwards RA, Rohwer F. Viral metagenomics. Nature Reviews Microbiology.
2005;3(6):504.

6. Manavalan B, Shin TH, Lee G. PVP-SVM: sequence-based prediction of phage
virion proteins using a support vector machine. Frontiers in microbiology.
2018;9:476.

7. Seguritan V, Alves Jr N, Arnoult M, Raymond A, Lorimer D, Burgin Jr AB,
et al. Artificial neural networks trained to detect viral and phage structural
proteins. PLoS computational biology. 2012;8(8):e1002657.

November 15, 2018 13/14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2018. ; https://doi.org/10.1101/477885doi: bioRxiv preprint 

https://doi.org/10.1101/477885
http://creativecommons.org/licenses/by/4.0/


8. Galiez C, Magnan CN, Coste F, Baldi P. VIRALpro: a tool to identify viral
capsid and tail sequences. Bioinformatics. 2016;32(9):1405–1407.

9. Feng PM, Ding H, Chen W, Lin H. Naive Bayes classifier with feature selection
to identify phage virion proteins. Computational and mathematical methods in
medicine. 2013;2013.

10. Ding H, Feng PM, Chen W, Lin H. Identification of bacteriophage virion proteins
by the ANOVA feature selection and analysis. Molecular BioSystems.
2014;10(8):2229–2235.

11. Zhang L, Zhang C, Gao R, Yang R. An ensemble method to distinguish
bacteriophage virion from non-virion proteins based on protein sequence
characteristics. International journal of molecular sciences.
2015;16(9):21734–21758.

12. LeCun Y, Bengio Y, Hinton G. Deep learning. nature. 2015;521(7553):436.

13. Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L.
DeepARG: a deep learning approach for predicting antibiotic resistance genes
from metagenomic data. Microbiome. 2018;6(1):23.

14. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a
better, faster version of the PHAST phage search tool. Nucleic acids research.
2016;44(W1):W16–W21.

15. Srividhya K, Rao GV, Raghavenderan L, Mehta P, Prilusky J, Manicka S, et al.
Database and comparative identification of prophages. In: Intelligent Control and
Automation. Springer; 2006. p. 863–868.

16. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research.
2011;12:2825–2830.

November 15, 2018 14/14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2018. ; https://doi.org/10.1101/477885doi: bioRxiv preprint 

https://doi.org/10.1101/477885
http://creativecommons.org/licenses/by/4.0/

