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Abstract

Deep brain stimulation (DBS) is known to be an effective treatment for a variety of

neurological disorders, including Parkinson’s disease and essential tremor (ET). At

present, it involves administering a train of pulses with constant frequency via

electrodes implanted into the brain. New ‘closed-loop’ approaches involve delivering

stimulation according to the ongoing symptoms or brain activity and have the potential

to provide improvements in terms of efficiency, efficacy and reduction of side effects.

The success of closed-loop DBS depends on being able to devise a stimulation strategy

that minimizes oscillations in neural activity associated with symptoms of motor

disorders. A useful stepping stone towards this is to construct a mathematical model,

which can describe how the brain oscillations should change when stimulation is applied

at a particular state of the system. Our work focuses on the use of coupled oscillators to

represent neurons in areas generating pathological oscillations. Using a reduced form of

the Kuramoto model, we analyse how a patient should respond to stimulation when
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neural oscillations have a given phase and amplitude. We predict that, provided certain

conditions are satisfied, the best stimulation strategy should be phase specific but also

that stimulation should have a greater effect if applied when the amplitude of brain

oscillations is lower. We compare this surprising prediction with data obtained from ET

patients. In light of our predictions, we also propose a new hybrid strategy which

effectively combines two of the strategies found in the literature, namely phase-locked

and adaptive DBS.

Author summary

Deep brain stimulation (DBS) involves delivering electrical impulses to target sites

within the brain and is a proven therapy for a variety of neurological disorders. Closed

loop DBS is a promising new approach where stimulation is applied according to the

state of a patient. Crucial to the success of this approach is being able to predict how a

patient should respond to stimulation. Our work focusses on DBS as applied to patients

with essential tremor (ET). On the basis of a theoretical model, which describes neurons

as oscillators that respond to stimulation and have a certain tendency to synchronize,

we provide predictions for how a patient should respond when stimulation is applied at

a particular phase and amplitude of the ongoing tremor oscillations. Previous

experimental studies of closed loop DBS provided stimulation either on the basis of

ongoing phase or amplitude of pathological oscillations. Our study suggests how both of

these measurements can be used to control stimulation. As part of this work, we also

look for evidence for our theories in experimental data and find our predictions to be

satisfied in one patient. The insights obtained from this work should lead to a better

understanding of how to optimise closed loop DBS strategies.

Introduction 1

Symptoms of several neurological disorders are thought to arise from overly synchronous 2

activity within neural populations. The severity of clinical impairment in Parkinson’s 3

disease (PD) is known to be correlated with an increase in the beta (13-35 Hz) 4

oscillations in the local field potential (LFP) and in the activity of individual neurons in 5
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the basal ganglia [1, 2]. The tremor symptoms associated with essential tremor (ET) are 6

thought to arise from synchronous activity in a network of brain areas including the 7

thalamus [3]. In both PD and ET the muscle activity driving the tremor is coherent 8

with local field potentials in the thalamus [4] and bursts of spikes produced by 9

individual thalamic neurons [5]. 10

Deep brain stimulation (DBS) is a well-established treatment option for PD and ET 11

which involves delivering stimulation via electrodes implanted into the brain. The 12

present generation of the technology involves manually tuning the parameters of 13

stimulation, such as the pulse width, frequency and intensity in an attempt to achieve 14

the best treatment. In particular, the choice of frequency is known to be crucial for 15

efficacy, and high frequency DBS (120-180 Hz) has been found to be effective for PD 16

and ET patients [6]. High frequency DBS is known to suppress the pathological 17

oscillations occurring in PD [7], but despite its long history, the underlying mechanisms 18

causing this suppression remain unclear, and several distinct theories have been 19

proposed [8–10]. One influential theory suggests that high frequency DBS activates 20

target neurons to such an extent that their synaptic transmission becomes saturated 21

and they are no longer able to transmit pathological oscillations [11]. Since high 22

frequency DBS can cause side-effects such as speech-impairments [12] and gambling 23

tendencies [13], improvements to this treatment approach are desirable. 24

It is thought that improvements could be achieved if future devices were to operate 25

‘closed-loop’, delivering stimulation only when needed and according to the ongoing 26

symptoms of the patient [14]. A number of approaches to closed-loop DBS can be found 27

in the literature and of these we focus on two, namely adaptive DBS [15] and 28

phase-locked DBS [16]. In adaptive DBS high frequency stimulation is applied only 29

when the amplitude of oscillations exceed a certain threshold [15]. In phase-locked DBS 30

stimulation is applied according to the instantaneous phase of the oscillations, which for 31

ET patients corresponds to stimulation at roughly the tremor frequency (typically ∼ 5 32

Hz) [16]. The principles behind both of these approaches are illustrated in Figure 1. 33

Together, these studies suggest that the effects of DBS are dependent on both the phase 34

and amplitude of the oscillations at the time of stimulation. 35

Modelling the effects of DBS generally poses a challenge since the brain networks 36

involved in disorders such as ET (cortico-thalamic circuit) and PD (cortico-basal-gangla 37
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circuit) are complex and it is still debated from which parts of these circuits the 38

pathological oscillations originate [17,18]. The task can be made more tractable by 39

considering a simple phenomenological model which does not attempt to explicitly 40

describe the underlying circuits, but rather focuses on general mechanisms leading to the 41

synchronization of neurons. One example of this is the Kuramoto model, [19] where the 42

dynamics of neurons are described using a system of homogeneously coupled oscillators, 43

whose phases evolve according to a set of underlying differential equations. Such models 44

are particularly attractive due to their simplicity and explicit dependence on phase, 45

which makes them convenient for describing the effects of phase-locked stimulation. 46

Coupled oscillator models have been used before to describe the effects of applying 47

DBS at particular phases of ongoing oscillations [20,21]. In particular, Wilson and 48

Moehlis [21] have described how the optimal intensity of stimulation should depend on 49

the phase of the ongoing oscillations. The phase-dependent effects of stimulation 50

predicted using the coupled-oscillator model [21] have been shown to generalize to other 51

models, as they have been also observed in a biologically realistic model of a neural 52

circuit generating oscillations related to PD [22]. However, to the best of our knowledge, 53

the predictions of these models have not been directly compared with the experimental 54

effects of closed-loop DBS. Furthermore, it has not been described how the effects of 55

DBS should depend on another important characteristic of the ongoing oscillations - 56

namely, the amplitude. In this paper, we attempt to understand the mechanisms which 57

may give rise to the effects of phase-locked DBS by using a reduced Kuramoto model. 58

We analyse how the effects of stimulation should depend on the phase and amplitude of 59

the ongoing tremor oscillations. In addition to this, we compare our predictions with 60

previously obtained experimental data. 61

Models 62

Neural oscillators 63

We aim to describe how an underlying system of neural oscillators can give rise to 64

oscillations, such as those found in LFP and tremor. In classic coupled oscillator models, 65

neural oscillators correspond to individual neurons which spontaneously produce 66

spikes [23]. In mathematical models of neurons (e.g. the Hodgkin-Huxley model) a state 67
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Fig 1. Strategies for closed-loop DBS. (a) Adaptive DBS is delivered only when the
amplitude of oscillations exceed a predefined threshold, indicated here by a green line.
(b) Phase-locked DBS is delivered only at certain phases of pathological oscillations. In
this example, it the stimulation coincides with the troughs of the oscillation.

of a neurons is described by a set of variables, and for certain parameters, it produces 68

spikes at regular intervals, thus its variables have periodic behaviour. A description of 69

such a neuron can be simplified by projecting the state of the neuron on its phase, such 70

that the state of each neuron is simply described by a one-dimensional phase variable, 71

which in absence of external input increases with constant rate from phase 0 to 2π, 72

corresponding to an evolution of a neuron from spike to spike [24]. 73

The above interpretation of neural oscillators as regular-spiking neurons may be 74

suitable for describing relatively fast beta oscillations occurring in PD, but during 75

slower tremor oscillations thalamic neurons produce a burst of activity during a single 76

cycle [5]. Therefore, if one interprets neural oscillators in ET as neurons, the phase 77

would rather describe the changes in a variable governing the burst cycle (e.g. calcium 78

level inside neuron). Alternatively, neural oscillators in ET can be interpreted as 79

micro-circuits, which due to their internal connectivity produce oscillations in the 80

activity of constituent neurons [25]. Since we aim here to develop a general theory, we 81

simply consider the set of N neural oscillators with phases {θm(t)}. Nevertheless, we 82

make two assumptions about the oscillators related to how they react to input, and how 83

their phases determine the activity of the whole population. In the remainder of this 84

subsection we describe these assumptions and discuss how they could be justified under 85

different interpretations of individual oscillators mentioned above (regular-spiking 86

neurons, bursting neurons and micro-circuits). 87
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First, we assume that if the stimulating input is provided to an oscillator when it is 88

in phase θ, its phase will change according to a phase response function Z(θ). Biological 89

regular-spiking neurons respond more to stimulation when they are already outside their 90

refractory period and their membrane potential is closer to the spiking threshold [26]. 91

Under such conditions, stimulation accelerates a neuron towards spiking. The function 92

Z(θ) should therefore have higher values in the second part of the spiking cycle. In 93

addition to this and under certain conditions, stimulation just after spiking and during 94

the refractory period can slow a neuron’s spiking [26]. Therefore, Z(θ) should have 95

negative values for θ just above 0. Both of these characteristics can be captured using 96

the phase response function Z(θ) = − sin(θ). We use this simplified phase response 97

function in the first part of our paper and then later consider a more general form. We 98

are not aware of any experimental studies of phase-response curves of bursting neurons, 99

but one could expect that the change in the onset of the next burst will also depend on 100

when during the bursting cycle the stimulation is provided. Phase response functions 101

have been studied in a mathematical model of a micro-circuit composed of connected 102

populations of excitatory and inhibitory neurons [27]. When such micro-circuit receives 103

an input, the phase of the oscillations it produces either advances or reduces depending 104

on when within the cycle the input is provided [27]. 105

Second, we define the average activity of neural oscillators as a superposition of 106

cosine functions, i.e. 107

f(t) =
1

N

N∑
n=1

cos[θn(t)]. (1)

We chose to transform the phase through a cosine function, because this periodic 108

function has a maximum at 0, and in classic coupled oscillator model, phase 0 109

corresponds to the phase when neurons produce spikes [23]. When regular-spiking 110

neurons are considered, their activity features spikes, rather than varying smoothly like 111

the cosine function, but nevertheless, the effects of spikes on downstream neurons are 112

prolonged in time due to non-instantaneous decay of post-synaptic potentials, thus the 113

cosine function could be seen as a qualitative approximation of the effect of neuron’s 114

activity on downstream cells. If neural oscillators are assumed to correspond to bursting 115

neurons or micro-circuits, the choice of the cosine function is more natural, because 116
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their rate of producing spikes varies more gradually. We would assume that the activity 117

of bursting neurons or micro-circuits is highest at phase 0, so the function f(t) 118

qualitatively reflects the fluctuations in firing rate. 119

Relating neural oscillator model to experimental data 120

The purpose of this subsection is to relate the phases of individual oscillators to the 121

quantities that can be measured from experimental LFP or tremor data, such as the 122

instantaneous phase and the amplitude of the signal. 123

The function f(t) is an abstract representation of neural activity and is not directly 124

measurable in typical studies with patients. The experimentally measured signal fe(t) is 125

known to be highly correlated to neural activity [5], so it is reasonable to assume fe(t) 126

to be some transformed version of f(t). We assume this transformation to be a simple 127

scaling and shifting, namely 128

fe(t) = cf(t) + d. (2)

It is common to subtract the mean from a signal, resulting in a signal f̃e(t) which is 129

independent of d. This yields a simple relationship between the experimentally 130

measured data and neural activity, 131

f̃e(t) = cf(t). (3)

The experimental signal f̃e(t) is typically analysed using the Hilbert transform Ĥ, 132

which provides for each time point t the values of instantaneous phase ψe and the 133

envelope amplitude ρe 134

ρee
iψe = f̃e(t) + iĤ[f̃e(t)]. (4)

By inserting Eq. (3) into Eq. (4), we can relate the neural activity resulting from 135

coupled oscillators to the experimental phase and amplitude 136

ρee
iψe = c{f(t) + iĤ[f(t)]}. (5)

We would like to now relate the experimental phase ψe and amplitude ρe to quantities 137

obtained using the coupled oscillator model. The order parameter for a system of 138
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oscillators is defined to be 139

r =
1

N

N∑
n=1

eiθn . (6)

Since r is a complex number, it can be written as 140

r = ρeiψ, (7)

The amplitude ρ is a measure of synchrony, with complete desynchrony and synchrony 141

corresponding to 0 and 1, respectively. Using the Euler relation, the order parameter 142

can be written as 143

ρeiψ =
1

N

N∑
n=1

cos[θn(t)] + i
1

N

N∑
n=1

sin[θn(t)]. (8)

We expect the phases {θn} to increase monotonically with time and under these 144

conditions, Ĥ[cos(θn)] ' sin(θn). Using this and the expression for the time series given 145

by Eq. (1), Eq.(8) can be written as 146

ρeiψ = f(t) + iĤ[f(t)]. (9)

Comparing this with Eq. (5), it can be seen that 147

ρee
iψe = cρeiψ. (10)

Therefore the experimental amplitude and phase is relatable to the magnitude and 148

phase of the order parameter using 149

ρe = cρ, ψe = ψ. (11)

In summary, assuming the experimental data and neural activity are related according 150

to Eq. (2) and that the phases {θn} increase monotonically with time, we can use the 151

Hilbert transform of the experimental data to relate the envelope amplitude and 152

instantaneous phase to the magnitude and phase of the order parameter, respectively. 153
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Kuramoto model 154

The oscillation data we are concerned with arises from the correlated electrical activity 155

of neural populations. In order to describe such systems we use a coupled oscillator 156

model where the time-evolution for the set of N oscillators are given by the Kuramoto 157

equations, with an additional term describing the effects of stimulation [19,20] 158

dθl
dt

= ωl +
k

N

N∑
n=1

sin(θn − θl) + IX(t)Z(θl). (12)

The first term, ωl is the natural frequency of oscillator l, which describes the frequency 159

in the absence of external inputs. It corresponds to the frequency with which a neuron 160

spontaneously produces spikes or bursts (depending of the interpretation of oscillators 161

introduced above). The second term describes the interactions between oscillators, 162

where k is the coupling constant which controls the strength of coupling between each 163

pair of oscillators and hence their tendency to synchronize. The third term describes the 164

effect of stimulation. The intensity of stimulation is denoted by I and X(t) is a function 165

which equals 1 if stimulation is applied at time t and 0 otherwise. The phase response 166

function for a single oscillator is given denoted by Z(θl). To avoid confusion, we use 167

‘intensity’ to refer to the magnitude of stimulation I, while the word ‘amplitude’ is used 168

to refer to the amplitude of order parameter ρ or of the experimental signal ρe. Using 169

the definition of the order parameter given in Eq. (7), Eq. (12) can be transformed to 170

give 171

dθl
dt

= ωl + kρ sin(ψ − θl) + IX(t)Z(θl). (13)

In this form, it is clear that each oscillator has a tendency to move towards the 172

population phase ψ and that the strength of this tendency is controlled by the coupling 173

parameter k. To gain an intuition for this behaviour readers may wish to explore an 174

online simulation of the model [28]. 175

Reduced model 176

In the previous section, we outlined the conditions for which a relationship should hold 177

between the experimental envelope amplitude and instantaneous phase and the 178

quantities associated with the coupled oscillator model, namely the magnitude and 179
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phase of the order parameter. A subject’s response to stimulation can be quantified 180

using the amplitude response curve (ARC) and the phase response curve (PRC), which 181

respectively describe changes in the envelope amplitude and phase of the oscillations at 182

the time of stimulation. From a theoretical perspective, the response curves arise from 183

changes to an underlying state of oscillators which in turn gives rise to measurable 184

changes in the ‘macroscopic’ quantities, namely the amplitude and phase of the order 185

parameter. Therefore, in order to obtain an analytical expression for the response 186

curves, we need to know how the order parameter evolves as a function of time. Ott and 187

Antonsen showed that such an expression can be found under the assumption of an 188

infinite system of oscillators and where the distribution of frequencies g(ω) is Cauchy 189

with centre ω0 and width γ. In this section, we summarize their results. 190

For an infinite system of oscillators, the order parameter can be expressed in terms 191

of the distribution of oscillators f(ω, θ, t) 192

r(t) =

∫ ∞
−∞

∫ 2π

0

f(ω, θ, t)eiθdωdθ, (14)

and the time evolution of f(ω, θ, t) for the Kuramoto system given by Eq. (13) is given 193

by the continuity equation 194

∂f(ω, θ, t)

∂t
+

∂

∂θ

{[
ω +

k

2i
(re−iθ − r∗e−iθ) + IX(t)Z(θ)

]
f(ω, θ, t)

}
= 0. (15)

Central to the work of Ott and Antonsen [29] is the use of a guess, or ansatz, for the 195

distribution of oscillators given by 196

f(θ, ω, t) =
g(ω)

2π

{
1 +

∞∑
n=1

[
αn(ω, t)einθ + αn(ω, t)∗e−inθ

]}
, (16)

where α(ω, t) is a certain function. Ott and Antonsen [29] considered the case of a 197

Kuramoto system with a periodic driving term of strength I and frequency Ω, whose 198

dynamical equations are given by 1
199

dθl
dt

= ωl +
k

N

N∑
n=1

sin(θn − θl) + I sin(Ωt− θl). (17)

1Note that Eq. (17) assumes that individual neurons react to stimulation in the same way as to
input from other neurons.
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Using this, the ansatz and the result that r(t) = α∗(ω0 − iγ, t) [30], the time 200

evolution for the order parameter is found to satisfy (for γ = 1) 201

dr

dt
=

1

2
[(kr + I)− (kr + I)∗r2]− [1− i(Ω− ω0)]r. (18)

Therefore the state of the Kuramoto system for a large number of oscillators has been 202

reduced from one being described by the set of N phases {θj} to one being described by 203

ρ and ψ. 204

Results 205

Simplified Response Curves 206

A patient’s response to phase-locked DBS is typically quantified using the ARC, which 207

describes changes in the envelope amplitude of pathological oscillations (e.g. tremor) as 208

a function of the phase at which the stimulation was delivered. Some studies also report 209

the PRC, which describes changes in the phase of the pathological oscillation as a 210

function of the stimulation phase. Although the effect of phase-locked DBS may also 211

depend on the the amplitude of the ongoing pathological oscillations, this dependence 212

on amplitude has not been analysed before, due primarily to the difficulties associated 213

with obtaining a function of two independent variables from noisy data. Instead, the 214

averaged response curves have been reported [16,31], which are only functions of the 215

phase and are averaged over the amplitude. Such curves are readily obtainable using 216

standard signal processing techniques. 217

In this subsection, we derive expressions for the ARC and PRC, where the phase 218

response function for a single oscillator is taken to be Z(θ) = − sin(θ). By setting 219

Ω→ 0 and for general γ, Eq. (17) describes a system experiencing an impulse given by 220

the phase response function Z(θ) = − sin(θ). 221

dr

dt
= (iω0 − γ)r +

kr

2
(1− |r|2) +

I

2
(1− r2). (19)

Inserting the expression for the order parameter Eq. (7) into Eq. (19) gives expressions 222
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Fig 2. Instantaneous response curves as function of ψ for different values of synchrony
ρ. Dashed lines were obtained from Eqs. (22) and (23). Panels (a) and (b) show the
ARC and PRC, respectively. Solid lines were calculated by simulating a large ensemble
of Kuramoto oscillators.

for the time evolution of ρ and ψ 223

dρ

dt
= −γρ+

kρ

2
(1− ρ2) + P (ρ, ψ) (20)

and 224

dψ

dt
= ω0 + Ψ(ρ, ψ), (21)

where 225

P (ρ, ψ) =
I

2
(1− ρ2) cos(ψ) (22)

and 226

Ψ(ρ, ψ) = − I

2ρ
(1 + ρ2) sin(ψ). (23)

The functions P (ρ, ψ) and Ψ(ρ, ψ) are the instantaneous response curves for a 227

population of oscillators with a phase response function of Z(θ) = − sin(θ). This 228

simplified case leads to very specific qualitative predictions. For both response curves, 229

the effects of stimulation are predicted to be more magnified when stimulation is applied 230

at lower amplitudes. In addition to this, whether or not stimulation has an amplifying 231

or suppressing effect on the respective quantities is dependent only on the phase. In the 232

absence of stimulation, the first term of Eq. (20) predicts the amplitude to decay with a 233
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rate proportional to the diversity of natural frequencies of individual oscillators γ whilst 234

the second term predicts the amplitude to increase according to a term proportional to 235

the coupling strength k. Eq. (21) predicts the phase ψ to evolve according to ω0. 236

To demonstrate the amplitude dependent effects of stimulation predicted by Eqs. 237

(22) and (23) we simulate the Kuramoto model using a large number of oscillators 238

(N = 3000). The stimulation amplitude I was chosen to be small at ' 0.04 and 239

numerical integration was performed using the Euler method with a time step of 240

δt ' 0.001. For such a system and in the absence of stimulation, the magnitude of the 241

order parameter ρ will tend asymptotically to [1− (2/k)]−0.5 for k > 2 [29]. We can 242

therefore fix the value of ρ in simulation by choosing an appropriate value of k. The 243

parameters ω0 and γ were not expected to affect the response curves and hence were 244

arbitrarily chosen to be ω0 = 30 and γ = 1. After the system has evolved to the 245

asymptotic state, we provide stimulation at a particular phase over a single time step. 246

The changes in ρ and ψ resulting from the perturbation divided by δt would then 247

approximately equal to P (ρ, ψ) and Ψ(ρ, ψ), respectively. Figure 2 shows the response 248

functions P (ρ, ψ) and Ψ(ρ, ψ) for different amplitudes ρ and also a comparison with 249

results from simulating a population of Kuramoto oscillators. 250

Figure 2a and Eq. (22) shows the ARC is shifted with respect to Z(θ) and that, for 251

a given ρ, the most effective reduction of oscillation amplitude is achieved when 252

phase-locked stimulation is provided at phase π. An intuition for these effects is shown 253

in Figure 3a. The form of the phase response function Z(θ) leads to a region of phases 254

for which the oscillators will either slow down or speed up upon stimulation. Stimulation 255

applied to a population of oscillators corresponds to a perturbation with a differential 256

effect across the system of oscillators, i.e. with some oscillators responding differently to 257

others and depending on their phase. It is this differential effect which gives rise to 258

changes in the width of the oscillator distribution and therefore changes in amplitude. 259

In particular, if stimulation is applied when the distribution of oscillators is centred 260

around 180 degrees, stimulation is shown to have a desynchronising effect as half the 261

oscillators will speed up and the other half will slow down, as illustrated in Figure 3a. 262

An intuition for the amplitude dependent effects can also be seen in Figure 3a. If we 263

consider the case where the system is strongly synchronised (orange curve), then 264

stimulation can have little effect on amplitude since all oscillators would be perturbed 265
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Fig 3. Intuition behind amplitude dependent effects on the ARC. For each panel, the
top plot shows the phase response function for an individual oscillator Z(θ). The
bottom part shows the shape of this function as represented by arrows indicating the
effect of stimulation at a particular phase. The length of the arrows reflect the
magnitude of phase change due to stimulation. The orange and red curves schematically
show distributions of oscillators centred around ψ = 180◦, as discussed in the text. (a)
For the single harmonic case of Z(θ) = − sin(θ), the amplitude dependent effects are
predicted to be monotonic, with magnified effects at lower amplitudes. (b) For the
higher harmonic case of Z(θ) = sin(6θ) a non-monotonic relationship is predicted.

by a similar amount. If we now increase the width of the oscillator distribution (red 266

curve) and the amplitude reduces, then the differential effects gives rise to a greater 267

amplitude change, thus stimulation at lower amplitudes leads to magnified effects. It is 268

also evident from Figure 2 that there exists a relationship between the ARC and slope 269

of the PRC. In particular, the ARC is negative at those phases for which the slope of 270

the PRC is positive. One can also see from Eqs. (22) and (23) that for a given ρ, the 271

ARC (P (ρ, ψ)) is proportional to the negative derivative of the PRC with respect to ψ 272

(∂Ψ(ρ,ψ)
∂ψ ). We will later analyse how this relationship generalizes. 273

Generalised response curves 274

In this subsection we consider the case where the phase response function Z(θ) has a 275

general form, since the phase response curves of biological neurons may have diverse 276

shapes [26]. We start by providing an intuition for why the qualitative effects of 277

stimulation are expected to be different when Z(θ) contains higher harmonics. For the 278

case of Z(θ) = sin(6θ), as shown in Figure 3b, and the simple case of oscillators 279

October 16, 2018 14/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/448290doi: bioRxiv preprint 

https://doi.org/10.1101/448290
http://creativecommons.org/licenses/by/4.0/


distributed around 180 degrees, the effects of stimulation may actually be greater at 280

larger amplitudes - which is in contrast to our results for the single harmonic case. In 281

the high amplitude regime, as shown by the orange curve, the qualitative effects of 282

stimulation are predicted to be similar to that of the single harmonic case. At lower 283

amplitudes, some of the oscillators will be shifted away from the centre of the 284

distribution while other towards it, reducing the overall effect of stimulation. To analyse 285

this more formally, we now consider the case where Z(θ) takes the form of a general 286

Fourier series 287

Z(θ) =
a0

2
+
∞∑
m=1

am cos(mθ) +
∞∑
m=1

bm sin(mθ). (24)

Using the results from Lai and Porter [30], an expression for the time evolution of the 288

order parameter can be obtained, 289

dr

dt
= (iω0 − γ)r +

kr

2
(1− |r|2)

+
iI

2

{
a0r +

∞∑
m=1

am[(r∗)m−1 + rm+1] + i
∞∑
m=1

bm[(r∗)m−1 − rm+1]

}
.

(25)

Inserting the expression for the order parameter (Eq. (7)) into Eq. (25), we find 290

expressions for the time evolution of ρ and ψ, but now the instantaneous response 291

curves for amplitude and phase, respectively, are given by (cf. [32]) 292

P (ρ, ψ) =
I

2
(1− ρ2)

∞∑
m=1

ρm−1

[
am sin(mψ)− bm cos(mψ)

]
, (26)

and 293

Ψ(ρ, ψ) =
I

2

{
a0 + (1 + ρ−2)

∞∑
m=1

ρm
[
am cos(mψ) + bm sin(mψ)

]}
. (27)

Eqs. (26) and (27) describe the instantaneous response curves for a system of oscillators 294

whose distribution satisfies Eq. (16). Its worth noting that both equations are 295

independent of the parameters of the Kuramoto model and are only dependent on the 296

characteristics of an oscillator distribution satisfying the ansatz. It is known [30,33,34] 297

that the presence of higher harmonic modes in the phase response function Z can cause 298

the oscillators to cluster and lead to a breakdown of the ansatz given by Eq. (16). Lai 299
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Fig 4. Instantaneous response curves as function of ψ for different values of synchrony
ρ, for sample response function of individual oscillators including higher harmonic
Z(θ) = − sin(3θ). Dashed lines were calculated from Eqs. (26) and (27). Panels (a) and
(b) show the ARC and PRC, respectively. Solid lines show results from simulating a
large ensemble of Kuramoto oscillators. In panel (b) theoretical predictions and
simulations overlap so closely for some ρ that only a single curve can be seen.

et al. [30] investigated the effects of introducing noise through the phase response 300

function and found good agreement between theory and simulation only when Z 301

consisted of a dominant first harmonic mode. We therefore expect Eqs. (26) and (27) to 302

reasonably approximate the response when Z has a dominant first harmonic and/or the 303

stimulation amplitude I is small [35]. 304

Using the methodologies from before, we simulated a population of Kuramoto 305

oscillators to demonstrate the predicted amplitude dependence of stimulation for the 306

case of Z(θ) containing higher harmonics. Figure 4 shows an example of the ARC and 307

PRC for the case of Z(θ) = − sin(3θ). In contrast to Figure 2, the effects of stimulation 308

are not necessarily monotonic functions of ρ. This can be seen for the case of the ARC 309

shown in Figure 4a, where the effects are magnified between ρ = 0.35 and ρ = 0.70 but 310

are reduced between ρ = 0.70 and ρ = 0.90. For the PRC in Figure 4b, it is clear that 311

the effects are monotonic but that the effects of stimulation now reduce with reducing 312

amplitude, in contrast with the single harmonic case. 313

The expressions for the instantaneous response curves can be used to make 314

qualitative predictions about how a subject should respond to stimulation. Eqs. (26) 315

and (27) involve an expansion according to the harmonics of Z, with each term being 316

the product of both a phase dependent part and an amplitude dependent part. If we 317

restrict our analysis to the simple case where Z is well-approximated to be a single 318

harmonic mode, then it can be seen that whether stimulation has a suppressive or 319
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Fig 5. Plots of the amplitude dependent multipliers for each Fourier mode of the ARC
(a) and the PRC (b). For a given Z(θ) with a single mth Fourier mode, the multipliers
show how the size of the effects of stimulation are expected to change as a function of ρ.

amplifying effect on amplitude is dependent only on the phase and the magnitude of 320

these effects is determined by the amplitude. Plots of the amplitude dependent part for 321

several harmonic modes can be seen in Figure 5 for both the PRC and ARC. For the 322

case of Z containing a single harmonic, each curve describes how the magnitude of the 323

response curves is expected to change as a function of amplitude. Figure 5a shows the 324

magnitude of the ARC as a function of ρ for several harmonic modes. A non-monotonic 325

relationship is predicted only for higher modes m > 1, with the maxima occurring for 326

each curve at 327

ρ̃m =

[
m− 1

m+ 1

] 1
2

(28)

In the high synchrony regime ρ > ρ̃m, the gradient in each case is found to be negative, 328

implying that when stimulation is applied at lower ρ, the effects of stimulation increase. 329

In the low synchrony regime ρ < ρ̃m, stimulation applied at lower amplitudes ρ is 330

predicted to lead to smaller effects. For the case of the first harmonic mode, where 331

ρ̃1 = 0 implies that the gradient is negative across the range 0 ≤ ρ ≤ 1, the predicted 332

effects are particularly noteworthy as they are both quantitatively and qualitatively 333

different from the other modes. Concisely, for Z consisting of a single first harmonic 334

mode, we predict that delivering stimulation at lower ρ will result in greater effects, for 335

all values of ρ. 336

Figure 5b shows the magnitude of the PRC as a function of amplitude for several 337

harmonic modes. Here we find the qualitative differences between the effects of the first 338
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harmonic mode and higher modes to be even more notable. A monotonic relationship is 339

predicted across the harmonic modes but with differing gradients between the first and 340

higher modes. The condition for positive (or zero) gradients is that ρ2 ≥ − (m−2)
m , which 341

is only satisfied for m > 1, hence for higher modes, a positive (or zero) gradient can be 342

found for all ρ in contrast to a negative gradient for all ρ for the first mode. 343

Qualitatively, this means that for Z consisting of a dominant higher harmonic, 344

delivering stimulation at lower ρ will result in smaller changes in phase. For Z 345

consisting of a dominant first harmonic, the opposite is predicted, namely delivering 346

stimulation at lower ρ will result in larger effects. These effects become particularly 347

apparent if the oscillation amplitude is close to 0, where the ρ−1 term attached to the 348

first harmonic begins to become very large. 349

Finally, it is worth noting that for stimulation to have an effect on amplitude, the 350

function Z(θ) does not need to have a region where Z(θ) < 0 (i.e. it does not need to be 351

of type II). Although in the examples we used Z(θ) with negative regions, Z(θ) can be 352

shifted by adding a constant a0, and this constant will not affect ARC, because it does 353

not appear in Eq. 26. A critical condition for the stimulation to have an effect on 354

amplitude is that the function Z(θ) is not constant, which allows the stimulation to 355

have a differential effect on oscillators in different phases. 356

Relationship between averaged response curves 357

Existing experimental studies have reported the ARC and PRC averaged across 358

amplitudes of pathological oscillations. In this subsection, we study the properties of 359

such averaged curves. In the next subsection we use this relationship to test if the 360

response to stimulation of individual patients is well described by the Kuramoto model. 361

Expressions for the averaged response as a function of ψ can be obtained by taking 362

expectation values using the function h(ρ|ψ), which is the probability density function 363

for the system being in a state ρ given a phase ψ. In the absence of stimulation, the 364

dynamics of ρ for the Kuramoto system are phase-shift invariant. Therefore, if the 365

effects of stimulation are small, it is reasonable to assume that h(ρ|ψ) ' h(ρ) and 366

P̄ (ψ) =

∫ 1

0

h(ρ)P (ρ, ψ)dρ =
I

2

∞∑
m=1

vm
[
am sin(mψ)− bm cos(mψ)

]
, (29)
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and 367

Ψ̄(ψ) =

∫ 1

0

h(ρ)Ψ(ρ, ψ)dρ =
I

2

{
a0 +

∞∑
m=1

ṽm

[
am cos(mψ) + bm sin(mψ)

]}
, (30)

where 368

vm =

∫ 1

0

h(ρ)(1− ρ2)ρm−1dρ, (31)

and 369

ṽm =

∫ 1

0

h(ρ)(1 + ρ−2)ρmdρ. (32)

We first describe the relationship between the ARC and PRC for the cases where Z 370

contains a single dominant harmonic as in these cases clear predictions can be made by 371

the model. First, we use the derivative of Ψ̄(ψ) giving 372

dΨ̄

dψ
= −I

2

∞∑
m=1

mṽm

[
am sin(mψ)− bm cos(mψ)

]
(33)

and also by dividing P̄ (ψ) by dΨ̄
dψ leads to 373

P̄ (ψ) = −dΨ̄

dψ



∞∑
m=1

vm [am sin(mψ)− bm cos(mψ)]

∞∑
m=1

mṽm [am sin(mψ)− bm cos(mψ)]

 . (34)

Now considering the case where Z contains only the qth harmonic 374

P̄ (ψ) = −dΨ̄

dψ

{
vq [aq sin(qψ)− bq cos(qψ)]

qṽq [aq sin(qψ)− bq cos(qψ)]

}
= −

(
vq
qṽq

)
dΨ̄

dψ
,

(35)

which shows that in the cases where Z contains a single harmonic the averaged ARC is 375

a scaled version of the negative gradient of the averaged PRC. 376

Since the constants vq, ṽq and q are all positive, it is expected that for Z containing 377

a single or dominant harmonic, a strong positive correlation should exist between P̄ (ψ) 378

October 16, 2018 19/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/448290doi: bioRxiv preprint 

https://doi.org/10.1101/448290
http://creativecommons.org/licenses/by/4.0/


1 2 3 4

Number of Harmonics

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

Fig 6. Box plots showing the correlation coefficients between P̄ (ψ) and −Ψ̄′(ψ)
calculated by generating a random phase response functions Z with differing number of
harmonics.

and −Ψ̄′(ψ). To investigate the correlation coefficient for higher harmonics, we 379

simulated the Kuramoto model using randomly generated phase response functions. 380

The parameters of the Kuramoto model (N , ω0, γ) were the same as in previous 381

simulations. The number of harmonics (nh) to use in each function was chosen 382

sequentially from 1 to 4. In each case, the harmonics of each function were chosen to be 383

a random subset of size nh from the set {1, 2, 3, 4}. A random phase response function 384

Z was generated by choosing a set of coefficients {am} and {bm} (which includes 385

randomising a0) whose values were sampled from a standard normal distribution. For 386

each Z with a given number of harmonics, the response curves as a function of phase 387

were calculated at values of synchrony ρ = {0.4, 0.6, 0.8}. The phases were chosen from 388

a uniformly spaced grid between 0 and 2π. The response of the system was taken to be 389

from a single pulse of stimulation. For a given number of harmonics, 30 averaged 390

response curves were calculated. The correlation coefficient between P̄ (ψ) and −Ψ̄′(ψ) 391

was then calculated by first averaging P (ρ, ψ) an Ψ(ρ, ψ) across ρ and then calculating 392

−Ψ̄′(ψ) by averaging the gradient in the forward and backward direction around a 393

particular phase ψ. Figure 6 shows the value of the correlation coefficient to be only 394

slightly affected by increases in the number of harmonics. This implies that if a system 395

is well described by the Kuramoto model, then a strong positive correlation between 396

P̄ (ψ) and −Ψ̄′(ψ) should exist. 397
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The results of this subsection extend previous observations [21,36] that stimulation 398

is most effective when applied at the phase which maximizes Z ′(θ). However, the phase 399

response curves of individual oscillators Z(θ) are difficult to measure. Nevertheless, Eq. 400

(35) shows an analogous relationship to exist between averaged population response 401

curves. Together with Eq. (11), the above analysis predicts that there also should exist 402

a positive correlation between experimentally measured ARC and the gradient of 403

experimentally measured PRC. 404

Comparison with experimental data 405

The results presented in previous sections provide a framework within which we can 406

make some qualitative predictions about how a patient should respond to phase-locked 407

DBS. In this subsection we compare two key predictions of the theory with 408

experimental data: 409

1. There should exist a strong correlation between averaged ARC (P̄ (ψ)) and the 410

negative gradient of the averaged PRC (−Ψ̄′(ψ)). 411

2. If the phase response function Z contains a dominant first harmonic, then the 412

effects of stimulation should be magnified if it is applied when the amplitude of 413

oscillation ρ is low. 414

We tested these predictions using data from the study of Cagnan et al. [16]. In this 415

study, phase-locked DBS was delivered according to the tremor measured by an 416

accelerometer attached to the patient’s hand. Data was collected from 6 ET patients 417

and 3 dystonic tremor patients. We investigated the 5 ET patients that exhibited a 418

significant response to stimulation. The data from these 5 patients was associated with 419

6 hemispheres, with datasets 4L and 4R denoting tremor data for the left and right 420

hand of Patient 4, with stimulation delivered to the contralateral hemisphere. 421

The tremor data was filtered using a Butterworth filter of order 2 with cut-off 422

frequencies at ±2 Hz around the tremor frequency. Stimulation was delivered over a set 423

of trials (typically 9), with each trial consisting of 12 blocks of 5 second phase-locked 424

stimulation at a randomly chosen phase from a set of 12. Each block of phase-locked 425

stimulation was also separated by a 1 second interblock of no stimulation. The envelope 426

amplitude and instantaneous phase were calculated using the Hilbert transform. The 427
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averaged amplitude response for a particular phase was calculated to be the difference 428

between the average envelope amplitude within a 1 second window before the end of the 429

stimulation block and the average envelope amplitude within a 1 second window prior 430

to the onset of stimulation. The averaged phase response was calculated using a similar 431

methodology. The unwrapped phase was calculated for the data 1 second prior to the 432

onset of stimulation. A linear function was fitted to this phase evolution and 433

extrapolated to the end of the stimulation block. The value for the instantaneous phase 434

obtained using this extrapolation could be taken as the expected phase of the system in 435

the absence of stimulation. The difference between the actual phase at the end of the 436

stimulation block and this expected phase was taken to be the phase response. In both 437

cases, the responses for a particular phase were averaged over all trials in the dataset. 438

The derivative of the PRC with respect to ψ was calculated numerically by averaging 439

the gradient in the forward and backward direction around a particular phase ψ. To 440

determine the effects of amplitude on the response curves, we use a ‘single pulse’ 441

method, where the data is binned at low, medium and high amplitudes, with each bin 442

containing the same number of points. Within each bin we calculate the response of the 443

system from a single pulse of stimulation. In the case of the amplitude response, we 444

calculate the difference in the mean of the amplitude after and before the pulse. The 445

data used for calculating the mean in each case is taken between pulses. In the case of 446

the phase response, a straight line is fitted to the unwrapped phase evolution from 447

before the pulse. The phase response is taken to be the difference between the actual 448

phase and the linear extrapolation evaluated at a point after the pulse and just before 449

the next pulse. 450

We first tested Prediction 1 for each patient and excluded those patients which 451

either do not have significant correlation (p < 0.05) or have negative correlation. The 452

lack of significant correlation between P̄ (ψ) and −Ψ̄′(ψ) could indicate that the patient 453

is not well described by the Kuramoto model or that the response curves have not been 454

accurately determined. We therefore restrict subsequent testing of Prediction 2 to only 455

those patients who exhibit significant correlation. To infer whether the phase response 456

function Z for a given patient contains a dominant first harmonic, we used the property 457

illustrated in Figure 5b, namely that the magnitude of the PRC should increase with 458

reducing ρ only if Z contains a single first harmonic. For such patients, we would then 459
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Patient Correlation coefficient p-value

1 0.31 0.333
3 0.08 0.815
4R 0.04 0.894
4L -0.25 0.430
5 0.72 0.008
6 0.20 0.530

Table 1. Table showing the correlation coefficients and corresponding p-values
between P̄ (ψ) and −Ψ̄′(ψ) for each ET patient with a significant effect of stimulation
on amplitude of tremor, reported in the study of Cagnan et al. [16].
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Fig 7. Plots showing the measured ARC and the negative gradient of the PRC for
Patient 5. The curves were z-scored to have comparable scale. The error bars indicate
the standard error of the mean.

expect the magnitude of the ARC to increase with reducing ρ. Table 1 gives the 460

correlation coefficients between P̄ (ψ) and −Ψ̄′(ψ) for each patient where DBS was 461

found to have a significant effect on tremor. From these, significant correlation was only 462

found for Patient 5, with the correlation coefficient being (0.72). The response curves 463

for this patient are shown in Figure 7. Table 1 also lists uncorrected p-values for the 464

correlation. Since we analysed data from 6 datasets, the Bonferoni corrected p-value of 465

correlation for Patient 5 would still be significant (p = 0.048). In summary, we did not 466

find strong support for Prediction 1, as the correlation between the ARC and the 467

negative gradient of the PRC was significant in only 1 out of the 6 datasets analysed. 468

As outlined above, we then tested Prediction 2 only for Patient 5 who fulfilled 469

Prediction 1. To determine the effects of amplitude on the response curves, we analysed 470

the response of the system using the single pulse method. This is because the amplitude 471

of tremor can vary substantially within the 5-second stimulation intervals. Figure 8 472

shows the response curves at 3 amplitude bins for Patient 5. To quantify the 473
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(a) (b)

Fig 8. Response curves as a function of ψe for Patient 5 calculated by binning
according to amplitude. Panel (a) shows the ARC and (b) shows the PRC. The error
bars are the standard error of the mean.

magnification of the response curves, we compute the standard deviation across the 474

phase bins. The uncertainty on the standard deviation σ is calculated using the method 475

of propagating errors [37]. We find this to be most appropriate here as it allows us to 476

incorporate the errors of the binned response curves. For a dataset consisting of M 477

points Y = {yj} with mean ȳ and corresponding standard errors ∆Y = {∆yj}, we find 478

the error on the standard deviation ∆σ to be 479

∆σ =
1

Mσ

{ M∑
j=1

[
(yj − ȳ)∆yj

]2}0.5

. (36)

Figure 9b shows the extent of magnification across 3 amplitude bins for the PRC. For 480

Patient 5, we find evidence for increasing magnification with reducing amplitude, which 481

when taken together with the positive correlation between P̄ (ψ) and −Ψ̄′(ψ), is 482

indicative of a Kuramoto system with a phase response function Z containing a 483

dominant first harmonic mode. For such a system, Prediction 2 states that we should 484

also find increasing magnification of the ARC with reducing amplitude. Figure 9a shows 485

the extent of magnification across 3 amplitude bins for the ARC. Here we can see 486

evidence for increasing magnification with reducing amplitude for Patient 5, which 487

agrees with our predictions and was the only patient to exhibit such effects across all 488

the amplitude bins. For completeness, Figure 9 also shows the results of the above 489

analysis for other patients. It is evident in Figure 9b that, for all patients, the 490

magnification of the PRC is higher for stimulation at lower ρ. Interestingly, Figure 9a 491
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Fig 9. Magnification of the response curves calculated using the standard deviation for
3 amplitude bins low (l), medium (m) and high (h). Panel (a) shows the magnification
for the ARC and (b) shows the magnification for the PRC.

shows that the magnification of the ARC for stimulation at lower ρ is only exhibited by 492

Patient 5, which is also the only patient who had significant correlation between the 493

ARC and negative gradient of the PRC. 494

Discussion 495

We have presented a framework for testing the theory that oscillations found in tremor 496

data can be represented by a Kuramoto system, whose behaviour is described by Eq. 497

(13). The theories we present make clear qualitative predictions about the amplitude 498

dependence of the response curves which we can test using experimental data. The 499

effects of stimulation on tremor amplitude are summarized in Figure 10. For the cases 500

where the phase response function Z(θ) contains a single dominant harmonic, whether 501

the effects of stimulation are suppressive or amplifying depends on the phase at which 502

the stimulation is applied (compare columns), while the magnitude of the stimulation 503

effect depends on the amplitude of oscillations (compare rows) at the point of 504

stimulation. If the phase response function has a dominant first harmonic, the effect is 505

largest when the tremor amplitude is lower (illustrated in the figure), while for phase 506

response functions with a dominant higher harmonic, the magnitude of the effect is a 507

non-monotonic function of the amplitude. The magnitude of the phase shift of the 508

signal due to stimulation also depends on the phase response function. If it has a 509

dominant first harmonic, then the effects should increase with reducing amplitudes; 510
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stimulation time stimulation time

stimulation time stimulation time

Suppressive phase Amplifying phase

Large tremor

Small tremor

Fig 10. Schematic illustration of the effects of stimulation at different phases (columns)
and different amplitudes (rows), when the phase response function of individual
oscillators has a dominant first harmonic. In each display, blue curve shows the tremor
signal, dotted lines indicate the maximum and mean of the signal before stimulation,
and red bar indicates the time of stimulation.

thus the oscillation should get most easily entrained to phase-locked stimulation if the 511

amplitude of the oscillation is small. For phase response functions containing a 512

dominant higher harmonic, the effects of stimulation should increase with increasing 513

amplitude. The analysis of population response curves in this paper is similar to that 514

presented by Hannay et al. [32]. The formula for the PRC given in Eq. (27) is the same 515

as that given by Hannay et al. They also derive a similar expression for the ARC, but 516

define the ARC to be the ratio of the amplitude post and pre stimulation, while we 517

define it to be the difference between these amplitudes, which is closer to the convention 518

used in the DBS literature. Here we extend their analysis of response curves in a way 519

which is more relevant for designing adaptive DBS. 520

Relationship to experimental data 521

We find good agreement between our theories and the data from one patient, namely a 522

strong positive correlation between P̄ (ψ) and −Ψ̄′(ψ) together with increasing 523

magnification of the PRC with reducing amplitude is associated with an increasing 524

magnification of the ARC with reducing amplitude. 525

The lack of significant correlation between P̄ (ψ) and −Ψ̄′(ψ) for the other patients 526

could be due to experimental noise, which may prevent the response curves from being 527

determined accurately. However, another possibility is that these patients are simply 528

not well described by the models presented here. This could be due to the various 529
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assumptions, both about the nature of stimulation and the form for the distribution of 530

oscillators, which are used to derive the theoretical response curves. Since the 531

theoretical response curves are only valid for those distributions satisfying the ansatz 532

given by Eq. (16), the response curves for any distribution deviating from this form are 533

expected to be different from those predicted. Distributions not represented by the 534

ansatz include those clustered configurations which can arise through random effects or 535

stimulation applied through phase response functions containing higher harmonic modes. 536

Eq. (13) also assumes that each oscillator responds only according to a single phase 537

response function Z(θ), which may not be a good approximation for certain patients. 538

Since we interpret an oscillator as representing the activity of neurons or micro-circuits, 539

it follows that these neurons should have some spatial separation in the brain [38] and 540

hence experience stimulation differently depending on their location relative to the 541

electrode. This is not an effect which is captured by the models presented here. 542

Furthermore, our computational model does not capture the effects of synaptic 543

plasticity triggered by stimulation. Presence of such plasticity may be suggested by a 544

delayed appearance of tremor following offset of the prolonged phase-locked 545

stimulation [16]. Finally, ET is known to be a heterogeneous disorder [39] and different 546

patients are likely to have different underlying pathologies. As a result of this, the 547

assumptions used in the model may need to differ depending on the patient. 548

Hybrid DBS 549

In light of our predictions, we propose a new strategy for DBS which may be effective 550

for certain patients, namely those for whom the effects of DBS are magnified when 551

stimulation is applied at lower amplitudes. The approach, illustrated in Figure 11, 552

combines the aforementioned phase-locked and adaptive approaches described in Figure 553

1. The general idea is to only apply high frequency DBS at high amplitudes in order to 554

drive the tremor into low synchrony regimes that are more susceptible to phase-locked 555

DBS. With such a control strategy, the high frequency DBS would be used less often 556

than in the current adaptive DBS approach, as it would only be used to bring the 557

tremor into the low synchrony regime, at which point phase-locked DBS would suppress 558

the amplitude further, thereby keeping the system in this mode. 559

Separating the high and low synchrony regimes can be done using an amplitude 560
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Fig 11. Hybrid DBS strategy. High frequency DBS is applied when the amplitude of
oscillations exceed a predefined threshold. Below this threshold, phase-locked DBS is
applied.

threshold, in a similar way to the adaptive DBS approach [15]. When the amplitude of 561

oscillations exceeds the threshold, then high frequency DBS would be delivered since the 562

patient would be in the high synchrony regime. If the amplitude of oscillations falls 563

below the threshold, then phase-locked DBS is delivered, since the patient would be in 564

the low synchrony regime. In addition to the various parameters of stimulation, the 565

choice of threshold is also likely to be an important factor in determining the overall 566

efficacy of the method [40]. 567

Future Work 568

The theories we have presented here leave plenty of scope for future work. On the 569

theoretical side, investigating the effects of clustering on the response curves in addition 570

to considering a multi-population Kuramoto model would be two possible avenues to 571

explore. Its also worth mentioning that the instantaneous response curves given by Eq. 572

(26) and Eq. (27) are independent of the parameters of the Kuramoto model and can be 573

derived using only the assumption of the Ott and Antonsen ansatz. Therefore, in 574

principle, they should be valid for other systems for which the Ott and Antonsen ansatz 575

can be applied, such as an infinite network of theta neurons [41]. Kuramoto-like phase 576

models arise through the phase reduction of oscillating units. By contrast, theta 577

neurons can be in both excitable and oscillatory regimes while still being amenable to 578

the Ott-Antonsen reduction [42]. It would be interesting to relate the phase-response 579
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curves of the population dynamics [43] to the data presented here. Furthermore, the 580

model analysed in this paper assumes a Cauchy distribution for the natural frequencies, 581

which has very long tails, and other distributions (e.g. Gaussian) may be a more 582

realistic description of neuronal frequencies. It has recently been demonstrated that the 583

Ott and Antonsen ansatz can be applied to systems where the natural frequencies are 584

Gaussian distributed [44], and it would be interesting to extend the analysis of 585

population response curves to this case. 586

On the experimental side, there is the question of the hybrid DBS strategy, whose 587

efficacy remains to be determined. To further strengthen our conclusions, we also hope 588

to perform our analyses on more data. Given that testing our theories is conditional on 589

finding patients for whom P̄ (ψ) is correlated to −Ψ̄′(ψ), a study such as ours would 590

greatly benefit from a larger dataset, both in terms of the number of patients and the 591

length of time each patient is stimulated for. The latter would allow us to determine the 592

response curves more accurately, which is expected to be particularly beneficial for our 593

methods. Obtaining longer datasets poses a challenge due to the inherent difficulties 594

associated with recording from patients, particularly the onset of fatigue. Alternatively, 595

improvements to the accuracy of the response curves could be realised by improving the 596

methods used to calculate them. 597
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