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Abstract

Background: The aboveground plant efficiency has improved significantly in

recent years, and the improvement has led to a steady increase in global food

production. The improvement of belowground plant efficiency has the potential

to further increase food production. However, the belowground plant roots are

harder to study, due to inherent challenges presented by root phenotyping.

Several tools for identifying root anatomical features in root cross-section images

have been proposed. However, the existing tools are not fully automated and

require significant human effort to produce accurate results. Automated machine

learning tools have the potential to accomplish this complex task.

Methods: We propose a fully automated approach, called Deep Learning for

Root Anatomy (DL-RootAnatomy), for identifying anatomical traits in root

cross-section images. Using the Faster Region-based Convolutional Neural

Network (Faster R-CNN), the DL-RootAnatomy models detect objects such as

root, stele and late metaxylem, and predict rectangular bounding boxes around

such objects. Subsequently, the bounding boxes are used to estimate the root

diameter, stele diameter, late metaxylem average diameter and number.

Conclusions: Experimental evaluation using standard object detection metrics,

such as intersection-over-union and mean average precision, has shown that our

models can accurately detect the root, stele and late metaxylem objects.

Furthermore, the results have shown that the measurements estimated based on

predicted bounding boxes have very small root mean square error when compared

with the corresponding ground truth values, suggesting that DL-RootAnatomy

can be used to accurately detect anatomical features. Finally, a comparison with

existing approaches, which involve some degree of human interaction, has shown

that the proposed approach is more accurate than existing approaches.
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1 Introduction

The crop scientific community has made significant strides in increasing global food

production through advances in genetics and management, with majority of the

progress achieved by improving aboveground plant efficiency [1, 2, 3]. The below-

ground plant roots, which provide water and nutrients for plant growth, are rela-

tively less investigated. This is primarily because of the difficulty in accessing the

roots, and the complexity of phenotyping root biology and function [4, 5]. Hence,

root potential has largely been untapped in crop improvement programs [4, 5]. Over

the past decade, different root phenotyping approaches have been developed for

studying root architecture, e.g., basket method for root angle [6]; rhizotron method

for tracking root branching, architecture and growth dynamics [7]. Recent advances

in magnetic resonance imaging and X-ray computed tomography detection systems

have provided the opportunity to investigate root growth dynamics in intact plants

at high temporal frequency [8, 9, 10, 11, 12]. However, each of these techniques

comes with a range of inherent biases or limitations (such as artificial plant growth

conditions), with none of the techniques currently available clearly standing out

as a promising approach that could become a blanket fit [13, 14, 15]. The recent

high throughput approaches, such as X-ray computed tomography, are extremely

expensive, and thus beyond the reach of common crop improvement programs, in

addition to not having the bandwidth to capture large genetic diversity.

Machine learning approaches have been used successfully to address a wide variety

of biological problems, including problems relevant to crop sciences, such as genome

annotation [16], predicting gene functions [17], discovery of genetic variation and

genotyping [18], identification of genomic regions of interest [10, 19], high through-

put phenotyping based on aerial image analysis [20]. Furthermore, applications of

advanced deep learning and image analysis techniques to challenging problems in

crop analysis have led to state-of-the-art results that outperform the results of tra-

ditional machine learning and image analysis techniques [21, 22].

Most relevant to this work, machine learning, and more specifically, deep learning,

are expanding the ability to accurately predict a plant phenotype [23, 24, 25, 26,

27, 28, 29, 30], enabling the researchers to capture a wide range of genetic diversity,

a task which has been hardly possible in the past, given the amount of time and

effort involved in manual analysis [24].
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In particular, several prior studies have focused on data-driven approaches and

tools for identifying and quantifying root morphological parameters, for example,

changes in root architecture, or branching and growth [31, 32, 33, 34, 35, 36]. While

the study of root morphological parameters is important in relation to the health

and productivity of crops, the study of root anatomical parameters, such as stele

and the xylem vessels, is equally important. Root anatomical parameters represent

the conduits for transport of water and nutrients to the plant’s aboveground parts.

Hence, they are significantly affected by different rhizosphere conditions, and in

turn, affect crop productivity [5].

Innovations in image acquisition technologies have made it possible to gather

relatively large sets of root cross-section images, enabling studies on root anatomy.

Several approaches and tools for quantifying root anatomical variation based on

cross-section images have been proposed in recent years [37, 38, 39]. However, the

existing tools are only partially automated, as they require user input and fine-

tuning of the parameters for each specific image or for a batch of images. Fully

automated tools exist for the analysis of hypocotyl cross-sections (i.e., the region in

between seed leafs and roots) in the context of secondary growth [40, 41], but they

are not directly applicable to the analysis of root cross-section images. Thus, there

is a pressing need for automated root cross-section image analysis tools that can

handle the amount of data produced by image acquisition techniques at a low cost.

To address this limitation, we have taken advantage of recent advances in deep

learning and image analysis, and developed a state-of-the-art, fully-automated deep

learning approach for identifying and quantifying root anatomical parameters, in-

dicative of the physiological and genetic responses of root anatomical plasticity in

field crops. Specifically, we have considered the following parameters: root diameter

(RD), stele diameter (SD), late metaxylem diameter (LMXD) and late metaxylem

number (LMXN), which were studied in relation to water-deficit stress by Kadam

et al. [42, 43]. A graphical illustration of these parameters is shown in Figure 1.

Our proposed approach is based on the Faster R-CNN network [44], and can be

used to produce models that can detect objects of interest in a root cross-section im-

age (i.e., root, stele and late metaxylem), together with their corresponding bound-

ing boxes. Subsequently, the bounding boxes can be used to estimate anatomical

parameters such as RD, SD, LMXD, LMXN. Once trained, our models generalize
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well to unseen images, while eliminating the need for the end-user to hand-draw a

stele border or manually choose the metaxylem cells, tasks that are time-consuming,

and also prone to noise and errors.

To summarize, our contributions are as follows:

• We have proposed an approach based on Faster R-CNN to detect root, stele

and late metaxylem objects, and their corresponding bounding boxes, in root

cross-section images.

• We have investigated the Faster R-CNN models with respect to the number of

instances needed to accurately detect root, stele and late metaxylem objects,

and their corresponding bounding boxes.

• We have evaluated the ability of the predicted bounding boxes to produce

accurate estimates for the RD, SD, LMXD, and LMXN anatomical properties,

and performed error analysis to identify sources of errors.

• We have compared the results of the proposed fully-automated Faster R-CNN

approach with the results obtained from existing automated (i.e., RootAna-

lyzer) and semi-automated (i.e., RootScan) approaches in terms of accuracy.

2 Background

Plant phenomics, defined as “characterizing the plasticity of the plant response when

exposed to a range of environmental conditions” [23], has become possible due to

advances in high-throughput imaging technologies, coupled with advances in deep

learning and image analysis [24, 25, 26]. Most of the recent studies on plant phe-

notyping are focused on identifying and quantifying aboveground plant traits using

deep learning approaches. For example, several studies have used use deep learn-

ing regression approaches to count leaves in rosette plants based on high-resolution

RBF images [27, 28, 29], motivated by a recent leaf segmentation challenge [45].

Other investigations have focused on identifying diseases [46] or phenotyping for

stress/nutrient deficiencies [24].

While the belowground plant phenotype is overall less studied than the above-

ground phenotype, several studies have focused on approaches and tools for quanti-

fying morphological traits such as root length [35] and root system architecture [33].

Such approaches generally rely on standard image analysis techniques as opposed

to state-of-the-art machine learning approaches.
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Figure 1 Root anatomical traits. (Top) Root cross-section with highlighted root diameter and

stele. Image taken at 50x magnification. (Bottom) Enlarged stele with highlighted stele diameter,

and late metaxylem diameter. The late metaxylem number is also a trait of interest. Image

taken at 100x magnification.

Of most interest to us are approaches and/or tools that can be used to iden-

tify anatomical root traits (such as RD, SD, LMXD and LMXN) in root cross-

section images. Approaches in this category can be roughly categorized as manual,

semi-automated, and automated approaches. Manual analysis of root images relies

heavily on subjective assessments, and is suitable only for low throughput analysis.

ImageJ [47] is an image analysis tool that has been extensively used to manually

identify and quantify root anatomical traits [42, 48, 43], given that it enables re-

searchers to mark objects of interest and obtain their measurements. In particular,

the ImageJ software was used to acquire ground truth annotations for our analysis.

Semi-automated tools require user feedback to tune parameters for individual im-

ages in order to get accurate results. RootScan [37] and PHIV-RootCell [39] are

semi-automated image analysis tools that identify and quantify anatomical root

traits. RootScan involves several steps for the analysis of each image. It starts by

isolating the cross-section from the background using a global thresholding tech-

nique [49]. Subsequently, the stele is segmented based on the contrast between pixel

intensities within and outside the stele. Different cells within the stele (e.g., late
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metaxylem) are classified based on their area according to background knowledge

on root anatomy for a particular species. After each step, the user has to “approve”

the segmentation/classification performed automatically or alternatively correct it,

before moving to the next step. The tool can be run on a set of images in batch

mode, but the user still needs to provide input for each step of the analysis for each

image, as explained above. The output of RootScan consists of a table with area

measurements and counts of different anatomical traits.

The PHIV-RootCell tool for root anatomy is built using the ImageJ software

[47], and provides options for selecting regions of interest (ROI) such as root, stele,

xylem, and for measuring properties of these regions. It was designed for analyzing

rice root cross-section images. Similar to RootScan, domain knowledge is used to

identify ROIs. The PHIV-RootCell tool uploads and analyzes one image at a time,

and does not have an option for batch uploading or processing. Furthermore, it

requires user’s supervision at each segmentation and classification step [39]. For

example, it requires the user to validate the root selection, stele selection, central

metaxylem selection, among others. Given the amount of user involvement required

by this tool, PHIV-RootCell was not used in our comparative analysis.

As opposed to semi-automated tools that require user feedback, a fully automated

approach should involve “a single click” and should produce accurate results without

any human intervention during the testing and evaluation phases. However, human

input and supervision in the form of background knowledge or labeled training ex-

amples may be provided during the training phase. In this sense, RootAnalyzer is

an automated tool, which incorporates background knowledge about root anatomy.

The first step in RootAnalyzer is aimed at performing image segmentation to distin-

guish between root pixels (corresponding to boundaries of individual root cells) and

background pixels. To achieve this, RootAnalyzer utilizes a local thresholding tech-

nique to analyze each pixel’s intensity by comparing it with the mean pixel intensity

in a small square neighborhood around that pixel (defined by a width parameter,

W ). Subsequently, RootAnalyzer constructs a difference image, and classifies pix-

els as root or background pixels based on a threshold, T , used on the difference

image. The next step is focused on detecting root cells and closing small leaks in

cell boundaries, using an interpolation approach. Finally, cells are classified in dif-

ferent categories, such as stele cells, cortex cells, epidermal cells, etc. based on size,
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shape, and position. Two thresholds are used to classify cells as small or large: a

threshold, As, for small cells, and a threshold, Al, for large cells. Furthermore, stele

cells are classified based on an additional threshold, N , on the maximum distance

from a cell to any of its nearest neighbor cells. The RootAnalyzer tool allows for

both single image processing and batch processing. Single image processing allows

the user to adjust and tune parameters, and also to interact with the tool at each

stage of the segmentation and classification. Batch processing requires the user to

provide the parameters to be used with a specific batch of plant images. Similar

to RootScan, RootAnalyzer outputs a table of area measurements and counts for

regions of interest. This tool was designed for wheat and also tested on maize [38].

As opposed to the tools for root anatomy described above, which use background

knowledge about the root anatomy of the species of interest, current automated

machine learning tools for hypocotyl cross-section analysis, such as [40, 41], use user

input in the form of labeled data to train a model, and can potentially be generalized

to other species [50]. Both [40] and [41] use image processing and analysis tools to

extract features, which are subsequently used to train traditional support vector

machines and random forest classifiers, respectively.

Similar to Hall et al. [40] and Sankar et al. [41], we have developed an automated

approach, DL-RootAnatomy, that uses training data to construct models for detect-

ing objects in root cross-section images. However, instead of extracting features and

building standard machine learning classifiers, we have used deep learning, specifi-

cally Faster R-CNN networks, to concurrently extract features and detect objects

of interest, as described in the next section.

3 Methods

While there are many anatomical traits that can be identified, and measured or

counted (e.g., RootScan outputs more than 20 anatomical parameters), we have

focused on measuring the root diameter (RD), stele diameter (SD), and late

metaxylem diameter (LMXD), and counting the number of late metaxylem in-

side the stele (LMXN), as motivated by [42, 43]. These tasks can be achieved with

modern object detection techniques.
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3.1 Overview of the Proposed Approach

We have used Faster R-CNN [44], a state-of-the-art network for object detection,

to detect objects of interest (i.e., root, stele, late metaxylem), and subsequently

mark each object with a bounding box. More precisely, we have trained a Faster R-

CNN model to identify the root and stele within a cross-section image, and another

similar model to identify the late metaxylem within the stele region of a cross-

section. Given the bounding box of an object, identified by the Faster R-CNN

model, we have calculated its diameter by averaging the width and height of the

bounding box. The count of late metaxylem was obtained by counting the number

of late metaxylem objects detected by the Faster R-CNN network.

The proposed Faster R-CNN model architecture used to detect the root and stele

in a root cross-section image is shown in Figure 2. Faster R-CNN has two main

components. The first component consists of a Region Proposal Network (RPN),

which identifies Regions of Interest (which potentially contain objects of interest),

and also their location. The second component consists of a Fast R-CNN [51], which

classifies the proposed regions (i.e., objects) into different classes (e.g. root and

stele), and also refines the location parameters to generate an accurate bounding

box for each detected object. The two components share the convolutional layers of

VGG-16 [52], which is used as the backbone of the Faster R-CNN model.

More details on convolutional neural networks, VGG-16 and Faster R-CNN ap-

proach used to detect objects and generate bounding boxes are provided below.

3.2 Convolutional Neural Networks and VGG-16

Convolutional Neural Networks (CNNs) [53] are widely used in image analysis.

While originally designed for image classification, the features extracted by CNNs

are informative for other image analysis tasks, including object detection. A CNN

consists of convolutional layers followed by non-linear activations, pooling layers and

fully connected layers, as seen in the example in Figure 3 (which shows a specific

CNN architecture called VGG-16 [52]). A convolutional layer uses a sliding window

approach to apply a set of filters (low-dimensional tensors) to the input image.

The convolution operation captures local dependencies in the original image, and it

produces a feature map. Different filters produce different feature maps, consisting

of different features of the original image (e.g., edges, corners, etc.). A convolution
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Figure 2 Proposed Faster R-CNN model architecture, which has two main components: 1) a

region proposal network (RPN), which identifies regions that may contain objects of interest and

their approximate location; and 2) a Fast R-CNN network, which classifies objects as root or stele,

and refines their location, defined using bounding boxes. The two components share the

convolutional layers of the pre-trained VGG-16 [52].

layer is generally followed by a non-linear activation function, such as the Rectified

Linear Unit (i.e., ReLU), applied element-wise to generate a rectified feature map.

The ReLU activation replaces all the negative pixels in a feature map with zero

values. A pooling layer is used to reduce the dimensionality of the rectified feature

map. Intuitively, the pooling operation retains the most important information in a

feature map by taking the maximum or the average pixel in each local neighborhood

of the feature map. As a consequence, the feature map becomes equivariant to scale

and translation [54].

After a sequence of convolutional layers (together with non-linear activations) and

pooling layers, a CNN has one or more fully connected layers. In fully connected

layers all neurons in the current layer are connected to all neurons in the next layer.

The first fully connected layer is connected to the last downsized feature map. The

fully connected layers are used to further reduce the dimensionality and to capture

non-linear depenencies between features [54]. The last fully connected layer uses

a softmax activation function, and has as many output neurons as the number of

classes in the classification task.

There are several pre-trained CNN architectures available, including VGG-16 [52],

shown in Figure 3. VGG-16 has been shown to give very good performance in
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Figure 3 VGG-16. The original VGG-16 architecture consists of 13 convolution+ReLU layers, five

pooling layers, and three fully connected layers. A convolution+ReLU layer produces a feature

map, while a pooling layer reduces the dimensionality of the feature map. The last fully connected

layer uses a softmax activation function to predict one of the 1000 categories. The dimensions

corresponding to each layer are also shown.

the ImageNet competition, where the network was trained on millions on images

with 1000 categories [52]. Furthermore, VGG-19 was used with good results in the

original Faster R-CNN study [44], which motivated us to use it also in our model.

As can be seen in Figure 3, VGG-16 has 13 convolutional+ReLU layers, 5 pooling

layers, and 3 fully connected layers. The dimensions corresponding to each layer are

also shown in Figure 3.

3.3 Region Proposal Network (RPN)

As mentioned above, the region proposal network identifies regions that could po-

tentially contain objects of interest, based on the last feature map of the pre-trained

convolutional neural network that is part of the model, in our case VGG-16 [52].

More specifically, using a sliding window approach, k regions are generated for each

location in the feature map. These regions, are represented as boxes called anchors.

The anchors are all centered in the middle of their corresponding sliding window,

and differ in terms of scale and aspect ratio [44], to cover a wide variety of ob-

jects. The region proposal network is trained to classify an anchor (represented as a

lower-dimensional vector) as containing an object of interest or not (i.e., it outputs
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an “objectness” score), and also to approximate the four coordinates of the object

(a.k.a., location parameters). The ground truth used to train the model consists

of bounding boxes provided by human annotators. If an anchor has high overlap

with a ground truth bounding box, then it is likely that the anchor box includes

an object of interest, and it is labeled as positive with respect to the object versus

no object classification task. Similarly, if an anchor has small overlap with a ground

truth bounding box, it is labeled as negative. Anchors that don’t have high or small

overlap with a ground truth bounding box are not used to train the model. During

training, the positive and negative anchors are passed as input to two fully con-

nected layers corresponding to the classification of anchors as containing object or

no object, and to the regression of location parameters (i.e., four bounding box co-

ordinates), respectively. Corresponding to the k anchors from a location, the RPN

network outputs 2k scores and 4k coordinates.

3.4 Fast R-CNN

Anchors for which the RPN network predicts high “objectness” scores are passed

to the last two layers (corresponding to object classification and location parame-

ter refinement, respectively) of a network that resembles the original Fast R-CNN

network [51], except for how the proposed regions are generated. Specifically, in the

original Fast R-CNN, the regions were generated from the original image using an

external region proposal method (e.g., selective search).

As opposed to the original Fast R-CNN [51], in the Fast R-CNN component of

the Faster R-CNN model, the external region proposal method is replaced by an

internal RPN, described in the previous subsection, which is trained to identify

regions of interest [44]. Highly overlapping regions, potentially corresponding to the

same object, can be filtered using a non-maximum suppression (NMS) threshold.

A pooling layer is used to extract feature vectors of fixed length for the regions of

the interest proposed by RPN. Subsequently, the feature vectors are provided as

input to two fully connected layers, corresponding to the classification of the object

detected and the regression of its location, respectively.

The object classification layer in Fast R-CNN uses the softmax activation, while

the location regression layer uses linear regression over the coordinates defining the
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location as a bounding box. All parameters of the network are trained together

using a multi-task loss [51].

3.5 Faster R-CNN Training

The Fast R-CNN network and the region proposal network share several convolu-

tional layers, specifically the 13 convolutional layers of VGG-16. We have initialized

the parameters of the 13 convolutional layers using the VGG-16 network pre-trained

on the ImageNet dataset. As many image features are highly transferable between

different datasets, this initialization based on VGG-16 allowed us to learn accurate

models from a relatively small number of root cross-section labeled images.

Given that the region proposal network and the Fast R-CNN network share 13

convolutional layers, they are co-trained using an iterative process that alternates

between fine-tuning the RPN and fine-tuning the Fast R-CNN network (with fixed

proposed regions produced by RPN) [44]. All the model parameters are updated

using stochastic gradient descent (SGD).

In our preliminary experimentation, we found that it is difficult to accurately

detect the late metaxylem at the same time with the root and stele. Thus, we have

trained a Faster R-CNN model to detect root and stele, and another Faster R-CNN

model to detect late metaxylem.

4 Experiments and Results

Our goal is to utilize the proposed approach to identify and quantify root anatomical

parameters based on cross-section images from genetically diverse accessions in

different crops. We evaluated the approach using rice images as a case study.

4.1 Dataset

Twenty-five accessions of Oryza species were grown in plastic pots (25 cm in height;

26 and 20 cm diameter at the top and bottom, respectively), filled with 6 kg of clay

loam soil. Three replications per each accession were maintained under well-watered

conditions and roots were sampled 60 days after sowing, to obtain fully mature

roots. The roots were harvested and washed thoroughly and stored in 40% alcohol.

To obtain the cross-section images used in this study, root samples stored in 40%

alcohol were hand sectioned with a razor blade using a dissection microscope. Images

of root sections were acquired with the Axioplan 2 compound microscope (Zeiss,
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Table 1 Ground Truth Statistics. Statistics such as minimum (Min), maximum (Max), and average

together with standard deviation (Avg ±std) are shown for the ground truth measurements, including

RD, SD, LMXD and LMXN.

Statistics RD SD LMXD LMXN

Min 354 115 15 1

Max 1352 419 65 12

Avg ± std 869± 194 216 ± 55 36 ± 8 5.4 ± 1.8

Germany) at 50x and 100x magnification. For each of the 25 rice accessions included

in the study, three biological replicate root samples from root-shoot junction and

6 cm from the root tip were obtained. From each replicate, 2-3 images were taken

at root-shoot junction, and 2-3 images at 6 cm from the tip of the root. Images

may have two versions: a 50× magnification version, which captures the whole root

diameter (top image in Fig. 1), and a 100× magnification version, which captures

only the stele diameter (bottom image in Fig. 1). However, not all 50× images have

a 100× correspondent. Specifically, there are 388 images at 50× magnification, and

339 images at 100× magnification. For each root image, we manually measured

root anatomical parameters, such as root cross-section diameter, stele diameter,

late metaxylem average diameter and late metaxylem number, using the ImageJ

software [47]. The manual measurements and counts constitute our ground truth

to which we compared the measurements produced by our models. Statistics about

the dataset, including the minimum, maximum, average and standard deviation for

root diameter, stele diameter, late metaxylem average diameter and late metaxylem

number, respectively, are presented in Table 1.

In addition, each 50× magnification image was also manually labeled by indepen-

dent annotators with bounding boxes that represent root, stele, and late metaxylem,

respectively, and each 100× magnification image was labeled with boxes that repre-

sent the late metaxylem. We used the LabelImg tool [55] to perform the bounding

box labeling. This tool produces annotations in the Pascal Visual Object Classes

(VOC) XML format [56], a standard format used for annotating images with rect-

angular bounding boxes corresponding to objects. The bounding boxes in the 50×

and 100× magnification images constitute the ground truth to which we compared

the bounding boxes of the objects detected by our models.
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4.2 Training, Development and Test Datasets

We performed a set of experiments using 5-fold cross-validation. Specifically, we

split the set of 50× magnification images into five folds, based on accessions, such

that each fold contained 5 accessions out of the 25 accessions available. The exact

number of 50× magnification images (instances) in each fold is shown in Table 2.

For each fold, Table 2 also shows the number of corresponding 100× magnification

images (instances) available (note that not every 50× magnification image has a

corresponding 100× magnification image). In each 5-fold cross-validation experi-

ment, four folds were used for training, and the fifth fold was used for test. To tune

hyper-parameters, we used one of the training folds as the development dataset.

The results reported were averaged over the 5 folds. The reason for splitting the set

of images based on accessions was to avoid using images from the same plant or the

same replicate both in the training and test datasets.

Table 2 Fold distribution. Number of instances in each of the 5 folds used to perform cross-validation

for the 50× and 100× magnification images, respectively. The total number of instances in the

dataset is also shown in the last column.

Fold Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

Instances (50×) 71 79 86 77 75 388

Instances (100×) 62 60 80 69 68 339

4.3 Evaluation Metrics

We used three standard metrics in our evaluation, driven by preliminary obser-

vations. First, given that there exist exactly one root and one stele in an image,

we observed that these objects are always detected in the 50× magnification im-

ages. We used the Intersection-over-Union (IoU) metric to measure how well the

predicted bounding boxes overlap with the ground truth bounding boxes. Second,

given that the number of LMX objects varies between 1 and 12, and these objects

are relatively small, the corresponding object detection models are prone to both

false positive and false negative mistakes. Thus, we used mean average precision

(mAP), a standard metric in object detection, to evaluate the ability of our models

to accurately identify the LMX objects. Both IoU and mAP metrics range between

0 and 1 with a preference for higher values. Finally, we used the root mean square

error (RMSE) metric to measure the ability of the proposed approach to detect

objects and corresponding bounding boxes that lead to root/stele/LMX diameter
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measurements and LMX counts close to those available as ground truth. For RMSE,

smaller values are better.

4.4 Hyper-parameter Tuning

Deep learning models, in general, and the Faster R-CNN models, in particular,

have many tunable hyper-parameters. We tuned several hyper-parameters shown

by Zhang et al. [57] to affect the performance of the Faster R-CNN models, and

used the values suggested by Ren et al. [44] for the other hyper-parameters. More

specifically, we tuned the IoU threshold used in the RPN network to identify anchors

that could potentially include an object of interest (i.e., positive instances/anchors).

Furthermore, we tuned the non-maximum suppression (NMS) threshold which is

used to filter region proposals produced by the trained RPN network (specifically,

if two proposals have IoU larger than the NMS threshold, the two proposals will be

considered to represent the same object). At last, we tuned the fraction of positive

instances in a mini-batch.

The specific values that we used to tune the IoU threshold were 0.4, 0.5 and 0.6,

the valued used to tune the NMS threshold were 0.6, 0.7 and 0.8, and the values

used to tune the fraction of positive instances in a mini-batch were 1:5 and 1:4.

To observe the variation of performance with the tuned parameters, and select the

values that gave best performance, we trained a model corresponding to a particular

combination of parameters on three training folds, and evaluated the performance

of the model on the development fold. The performance of the models for root and

stele detection was measured using the IoU metric (by comparing the predicted

bounded boxes with the ground truth bounded boxes), while the performance of

the models for LMX detection was measured using the mAP metric (by comparing

the detected LMX objects with the ground truth LMX objects) to ensure that the

Faster R-CNN models can accurately detect all the LMX objects.

Our tuning process revealed that the performance did not vary significantly with

the parameters for our object detection problem. However, the best combination of

parameters for the root/stele models consisted of the following values: 0.4 for the

IoU threshold, 0.8 for the NMS threshold and 1:4 for the fraction of positive anchors

in a mini-batch. The best combination of parameters for the LMX models consisted

of the following values: 0.5 for the IoU threshold, 0.8 for the NMS threshold, and
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1:4 for the fraction of positive anchors in a mini-batch. We used these combinations

of values for the root/stele and LMX models, respectively, in the our experiments

described in the next section.

4.5 Experimental Results

5 25 50 100 150 200 250 all

0.85

0.9

0.95

Number of training images

Io
U RD (50×)

SD (50×)

5 25 50 100 150 200 250 all
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m
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P LMXD (50×)
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Figure 4 Variation of performance with the number of training images for root/stele detection

model (Left plot), and for the LMX detection model (Right plot), respectively. We used 50×
magnification images to detect root and stele objects, and both 50× and 100× magnification

images to detect LMX. The performance of the root/stele detection model was measured using

the IoU metric (which shows how accurately the predicted bounding boxes match the ground

truth), while the performance of the LMX detection model was measured using the mAP metric

(which shows how accurately LMX objects were detected). The plots show average values over 5

splits together with standard deviation.

4.5.1 Variation of Performance with the Number of Training Instances

As opposed to the existing tools for identifying anatomical parameters in root cross-

section images, which incorporate background knowledge about the root anatomy

of a particular species and the types of images used, our proposed deep learning

approach is easily generalizable to various species and types of images, given that

a representative set of annotated images is provided as training data. Under the

assumption that data annotation is expensive and laborious, we aim to understand

how many images are necessary for good performance on roots from a particular

species. Intuitively, the number of required images should be relatively small, given

that our model relies on a VGG-16 network pre-trained to detect a large number of

objects that are generally more complex than root, stele and late metaxylem.
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To validate our intuition, we have performed an experiment where we varied the

number of images used for training, while keeping the number of test images fixed.

Specifically, we used 5, 10, 25, 50, 75, 100, 150, 200, 250, and all available training

images in that split, respectively, to train models for detecting the root, stele and

late metaxylem in an images. The 50× magnification images were used to train

the models for root/stele, while and 100× magnification images were used to train

models for late metaxylem. The models learned were used to detect the root, stele,

and LMX objects in the test images.

The performance of the models was measured by comparing the predicted objects

with the ground truth objects. We used the IoU metric to evaluate the predicted

bounded boxes for root/stele by comparison with the corresponding ground truth

bounding boxes. We used the mAP metric to measure the ability of the models to

accurately detect LMX. The variation of performance with the number of training

images is shown in Figure 4 for root/stele (Left plot) and LMX (Right plot). As

can be seen, in the case of the 50× magnification images, the performance increases

with the number of training images, but tends to stabilize generally around 250

images. This confirms our intuition that only a small number of labeled images is

needed to learn accurate models for the problem at hand. Furthermore, the left

plot in the figure shows that the IoU values for both root and stele objects are

around 0.95, when all the training images are used, although the root bounding

boxes are slightly better than the stele bounding boxes. Similarly, the LMX objects

are detected with high accuracy, as shown on the right plot of Figure 4, where the

mAP values are close to 0.9 consistently for models trained with smaller or larger

number of 100× magnification images. Similar performance is obtained with the

models trained from all 50× magnification images. The plots for both root/stele

and LMX also show that generally the variance decreases with the size of the data.

The slow decrease in performance that is observed sometimes between two training

set sizes can be explained by the addition of some inconsistently labeled images

present in the original dataset, as shown in Figure 5.

4.5.2 Performance Evaluation Using RMSE

As described above, once the root/stele and LMX detection models were trained,

they were used to detect root/stele/LMX objects in the test data. Subsequently,
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Table 3 RMSE Results. The RMSE results for root diameter (RD), stele diameter (SD), late

metaxylem diameter (LMXD) and late metaxylem number (LMXN) for 5 splits, together with the

average and standard deviation over the 5 splits. The number of 50× magnification images used in

these experiments is 388, while the number of 100× magnification images is 339. For each

measurement, the magnification of the images that were used to train the model that produced that

measurement (i.e., 50× or 100×) is also shown. Furthermore, for each split, the test fold

corresponding to that split is shown.

Split (Test Fold) RD SD LMXD LMXD LMXN LMXN

(50×) (50×) (50×) (100×) (50×) (100×)

Split 1 (Fold 5) 62.77 21.93 3.67 2.45 0.81 1.37

Split 2 (Fold 4) 32.18 17.54 3.77 3.13 0.71 0.45

Split 3 (Fold 3) 61.19 21.96 3.53 3.22 0.91 0.83

Split 4 (Fold 2) 33.12 20.01 3.58 3.56 1.90 0.63

Split 5 (Fold 1) 43.67 20.94 2.43 1.61 0.74 0.25

Average 46.59 20.39 3.40 2.79 1.02 0.71

Standard deviation 14.77 1.81 0.55 0.77 0.50 0.43

the detected objects were further used to calculate RD, SD, LMXD and LMXN. To

evaluate the models in terms of their ability to produce the right root/stele/LMX

diameter and LMX number, we have used the RMSE error computed by compar-

ing the measurement/count estimates obtained from the predicted bounded boxes

with the ground truth measurements/counts. The RD and SD measurements were

evaluated based on models trained/tested with the 50× magnification images, while

LMXD and LMXN were evaluated based on models trained/tested with 50× and

100× magnification images, respectively. Intuitively, the LMXD/LMXN results ob-

tained with the models trained on the 100× magnification images should be more

accurate, as those images have higher resolution. The results of the experiments cor-

responding to the five splits, together with their average and standard deviation,

are shown in Table 3.

As can be seen from Table 3, the average RMSE error for RD over the 5 splits is

46.59 µm. Given that root diameter for the images in our dataset varies between

354 µm and 1352 µm (see Table 1), this result is very encouraging. Similarly, the

average RMSE error for SD over the five splits is 20.39 µm, which is low, given

that the stele diameter varies between 115 µm and 419 µm. As opposed to root

and stele, the LMXD is significantly smaller, varying between 15 µm and 65 µm.

However, the average RMSE error is 3.40 µm for the model trained using the 50×

magnification images, and decreases by almost 1 µm for the model trained with the

100× magnification images (the exact value is 2.79 µm). In terms of LMXN, the
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ground truth numbers vary between 1 and 12, with an average of 5.4 LMX objects

per image. The average RMSE error for LMXN is 1.02 for the models trained on the

50× magnification images, and down to 0.71 for the models trained on the 100×

magnification images. Thus, we can say that our models miss roughly one LMX

per image, when trained with the 50× magnification images, and less than that,

when trained with the 100× magnification images. We performed error analysis

to understand if these results might be useful in practice. Specifically, we analyzed

images where our models made mistakes in terms of LMXN, and observed that some

of those images were annotated in an inconsistent way by the human annotators, as

can be seen in Figure 5. This observation is not surprising, as human annotators are

prone to mistakes and inconsistencies. As opposed to that, the automated models

produced by our proposed approach produce more consistent results, once they are

well trained. At last, Table 3 shows that the RMSE results obtained do not vary

significantly with the split, as shown by the relatively small standard deviation.

Together, these results suggest that the proposed approach has the potential to

replace the labor-intensive manual annotations of root cross-section images.

4.5.3 Comparison with RootAnalyzer and RootScan

We aimed to compare DL-RootAnatomy with RootAnalyzer and RootScan tools

on all 388 50× magnification images in our dataset.

Given the batch processing capability of RootAnalyzer by comparison with the

amount of user effort involved by the RootScan, we started our comparative analysis

with RootAnalyzer. As described in Section 2, RootAnalyzer has five parameters

that need to be tuned: W , T , Al, As and N . To understand the range of parameters

that our images require for good performance, we experimented with a variety of

images and parameters, and observed that RootAnalyzer freezes for some images,

regardless of the parameters used. Specifically, it freezes or produces degenerate

results on images for which the root has a dark, solid boundary, and the epidermal

cells are not clearly identifiable, while it works as expected on images for which

the root has identifiable epidermal cells. Examples of images that can or cannot be

analyzed by RootAnalyzer are shown in Figure 6 (a) and (b), respectively. Out of

the 388 images, we identified 323 with clear epidermal cells and used those in the
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(a) LMXN=4 (b) LMXN=3

(c) LMXN=4 (d) LMXN=3

(e) LMXN=12 (f) LMXN=11

Figure 5 Examples of inconsistent annotations in our dataset. Specifically, image (a) was labeled

as having LMXN=4 (the smaller LMX was included in the count), while image (b) was labeled as

having LMXN=3 (the smaller LMX was not included in the count although it has size comparable

with the smaller LMX counted in (a)). Similarly, image (c) was incorrectly labeled as having

LMXN=4, while the similar image in (d) was properly labeled as having LMNX=3. Finally, images

(e) and (f) show a larger number of LMX which have variable size, but it is not very clear which

LMX were counted and which were not counted to get the 12 and 11 counts, respectively.
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Table 4 Number of instances that can be analyzed with RootAnalyzer in each of the 5 folds, out of

the total number of instances in each fold. These are the images that were used in the comparison

between our approach and existing tools. The total number of instances used in the comparison is

also shown in the last column.

Fold Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

Instances 57 70 73 58 65 323

Total-fold 71 79 86 77 75 388

comparison between our tool and other related tools. The distribution of the 323

images analyzed with RootAnalyzer over the 5 folds is shown in Table 4.

As mentioned before, RootScan is a semi-automated tool, which requires human

interaction/approval at each stage. For example, after automatically detecting the

root border (and similarly the stele border and late metaxylem border), the tool

presents the user with the opportunity to manually redraw or adjust the border,

if the automatically detected border does not look as expected. We ran RootScan

with human interaction to estimate the human error/bias in our dataset, under

the assumption that without human error, the adjusted borders should lead to

minimal differences between the original ground truth manual measurements and

the RootScan measurements. We refer to this experiment as RootScan (adjusted)

in what follows. We also run RootScan in an automated fashion, where we approved

the borders identified by the tool, without any further adjustment. We refer to this

experiment as RootScan (automated).

First, we ran RootAnalyzer on the 323 images in batch mode, with a set of overall

good parameters manually identified in our preliminary examination of these im-

ages. With just one click, all the images were processed and the results were output

in a csv file. We then fed the 323 images into the semi-automated tool, RootScan,

and performed experiments in either the automated or adjusted modes. We used

the measurements produced by each tool to calculate the RMSE error for each fold

and averaged the error over the 5 folds. Finally, we tested our DL-RootAnatomy

approach on the 323 images using the 5-fold cross-validation setup. For LMXD and

LMXN, we used both models trained on the 50× magnification images and models

trained on the 100× magnification images. The results of the experiments described

are shown in Table 5.

As can be seen from Table 5, our proposed approach, DL-RootAnatomy, is the

most accurate when compared to the existing tools, specifically RootAnalyzer and
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(a) (b)

Figure 6 Examples of root boundaries: (a) boundary with clear and identifiable epidermal cell; (b)

dark solid boundary with unclear or unidentifiable epidermal cell.

Table 5 Comparison between the RMSE results of our proposed approach (called DL-RootAnatomy),

and the RMSE results of RootAnalyzer, RootScan (automated) and RootScan (adjusted). The

number of images used in these experiments is 323. RootScan (adjusted) is seen as an estimate of

the human error. DL-RootAnatomy was run on both 50× and 100× magnification images to detect

LMX objects. The other tools were used with the 50× magnification images (as they do not work

properly with 50× magnification images). The RMSE is calculated for: root diameter (RD), stele

diameter (SD), LMX diameter (LMXD), and LMX number (LMXN). The results are averaged over

five splits. Corresponding to each average, standard deviation is also show.

Method RD SD LMXD LMXN

RootAnalyzer 208.44 ± 22.40 172.21 ± 20.65 32.89 ± 10.62 4.01 ± 0.54

RootScan (automated) 132.33 ± 40.08 428.89 ± 13.29 45.20 ± 2.88 19.58 ± 1.66

DL-RootAnatomy (50×) 43.67 ± 16.80 20.51 ± 1.84 3.58 ± 0.57 1.13 ± 0.43

DL-RootAnatomy (100×) N/A N/A 2.79 ± 0.93 0.64 ± 0.31

RootScan (adjusted) 66.82 ± 20.86 42.27 ± 25.54 6.26 ± 2.39 0.72 ± 0.23

∼∼∼ Human Error

RootScan. First, the DL-RootAnatomy models have an average RMSE error of

43.67 µm for RD (slightly different from the error reported in Table 3, as a smaller

number of images were used in this experiment, as described above). The RootScan

(adjusted) average RMSE, which is assumed to approximate the human error in

the ground truth, is 66.82 µm, slightly higher than the error obtained by the DL-

RootAnatomy. Second, our approach gives the smallest error also for SD, specif-

ically, 20.51 µm, followed again by RootScan (adjusted) with an error of 42.27.

Third, our approach has the smallest error for LMXD (3.58 µm for the 50×, and

2.79 µm for the 100× images), with the RootScan (adjusted) as the second win-

ner (with RMSE 6.26 µm). Finally, in terms of LMXN, our models trained with

50× images are slightly worse than RootScan (adjusted) (1.13 versus 0.72), while

the models trained with 100× images are slightly better than RootScan (adjusted)
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(a) (b) (c) (d)

Figure 7 (Top) RootAnalyzer: With the same set of parameters, in the left image the root border

(red), stele border (yellow), endodermis (green) and late-metaxylem (purple) are detected

reasonably well, while in the right image, only half of the stele border is detected. Given that the

tool fails to properly detect the stele border, it also fails to detect the late metaxylem. (Bottom)

RootScan: In the left image, RootScan fails to detect the stele border. In the right image, it

correctly identifies three out of six late metaxylem, and introduces one false positive.

(0.64 versus 0.72). The other two automated tools, RootAnalyzer and RootScan

(automated), give significantly higher errors overall, with RootAnalyzer being bet-

ter between the two, but not good enough to be used for the automated analysis of

rice images.

Thus, we claim that the existing tools do not work well on the rice root images

studied in this article. We identified several possible reasons:

(1) For a given tool, it is hard to find parameters that are universally good for

all images in our dataset. For example, for a given set of parameters, the

segmentation result from the RootAnalyzer in Figure 7 (Top) shows that the

parameters are appropriate for the left image (a), but not appropriate for

the right image (b). Similarly, the default parameters used by RootScan do

not work well for all images, as can be seen in Figure 7 (Bottom), where the

RootScan does a poor job at identifying the stele border in the image on the

left (c), and also a poor job at identifying LMX in the image on the right (d).

(2) Input images are grown in different conditions, for example in hydroponic

(water based nutrient supply) or in soil, and/or are collected using different

techniques. Growing or collection differences lead to differences in image’s

color, contrast and brightness. Figure 8 shows input images for RootAnalyzer,

RootScan, PHIV-RootCell, and DL-RootAnatomy, respectively.

(3) Each tool is designed with certain image characteristics in mind, and may not

work on images that do not exhibit those characteristics. As described above,
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(a)
(b)

(c) (d)

Figure 8 Sample input images used by different tools. (a) Sample input image for RootAnalyzer,

which shows a clear difference between background pixels and cell border pixels. (b) Sample input

image for RootScan. (c) Sample input image for PHIV-RootCell, which works with root

cross-section images that contain a central metaxylem (marked with a white rectangle). (d)

Sample root cross-section image from the dataset used in this study.

RootAnalyzer assumes a clear cell boundary and does not work for images

that contain a solid boundary where the cells are not clearly identifiable.

(4) Each tool is designed for a particular species, and incorporates background

knowledge for that particular species. As different species may have different

root anatomy, a tool designed for a species may not work for other species.

For example, RootAnalyzer is designed to automatically analyze maize and

wheat root cross-section images, and “may work” for other species [38].

5 Conclusions and Future Work

In this paper, we presented a fully automated approach for processing root cross-

section images to extract anatomical root features. The approach is based on Faster

R-CNN networks, which were used to detect root, stele and LMX objects, and to

predict bounding boxes for each detected object. Subsequently, the bounding boxes

were used to obtain anatomical properties, specifically, root diameter, stele diame-

ter, LMX diameter and LMX number. Our Faster R-CNN models had VGG-16 as

a backbone, to take advantage of the extensive training of the VGG-16 network,

and were fine-tuned on root cross-section images.
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We evaluated the models in terms of their ability to detect the objects of interest,

and also in terms of their ability to lead to accurate measurements for RD, SD,

LMXD and LMXN. The results of the evaluation showed that our models produced

accurate and consistent annotations, when trained on a relatively small number of

training images. Furthermore, a comparison with existing tools for analyzing root

cross-section images showed that our automated tool identifies anatomical features

more accurately than those obtained with tools that require manual adjustment.

Overall, these results suggest that our tool, DL-RootAnatomy, can potentially be

used in practice to accelerate the speed at which root cross-section images are

analyzed, and save significant human efforts and costs.

As part of future work, we plan to package our approach as a user-friendly stan-

dalone applications that allows easy training and annotation of images by agricul-

tural domain experts. The evaluation in this paper was done on rice images. We

plan to study domain adaptation approaches that allow the transfer of knowledge

from rice models to models for other plant species, without labeling a large number

of images from the other species of interest.
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