
Tensorflow Based Deep Learning Model and Snakemake Workflow for Peptide-Protein

Binding Predictions

Gokmen Altay*

La Jolla Institute for Allergy and Immunology

9420 Athena Circle, 92037, La Jolla, CA, USA

*Corresponding author: altay@lji.org

Abstract

In this study, we first present a Tensorflow based Deep Learning (DL) model that provides high

performances in predicting the binding of peptides to major histocompatibility complex (MHC)

class I protein. Second, we provide the necessary Python codes to run the model and also easily

input large train and test peptide binding benchmark dataset. Third, we provide Snakemake

based workflow that allows to run all the model and performance analysis over all the different

test alleles at once in parallel over computer and clusters. We also provide comparison analysis

of the performances of various models. Finally, in order to help attaining to the best possible DL

model by a community effort, this work is intended to be a ready to modify base model and

workflow for the global Deep Learning community with no domain knowledge in MHC-peptide

binding problem and thus provides all the necessary reference code templates and

benchmarking data sets for further developments on the presented model architecture. All the

reproducible Python codes, Snakemake workflow and benchmark data sets and a tutorial are

available online at https://github.com/altayg/Deep-Learning-MHCI.

Introduction

Cytotoxic T-cell lymphocytes (CTLs) interacts with complexes of peptides and major MHC class I

(MHCI) molecules presented on the cell surface to detect and destroy the cells that harbor

intracellular threats [1]. Accurate prediction of bindings between peptides and MHC protein

helps the design of more potent, peptide-based vaccines and immunotherapies [2].

There are many machine learning (ML) methods that were developed to infer the binding

between peptides and MHC class I protein with high accuracy [2-7] . Among them, NetMHC [1]

and NetMHCpan [3], which are neural network (NN) based models, are considered as the state

of the art models to predict binding between peptides and MHC class I molecules [7]. Deep

Learning [8] is an advanced version of NN, where the word deep mainly refers to the deeper

number of hidden layers in the model. DL based methods were shown to be outperforming

classical ML methods where there is very large data available and thus found applications in

various areas such as image recognition [9], speech recognition [10], predicting the activity of

potential drug molecules [11], analyzing particle accelerator data [12], reconstructing brain

circuits [13], and predicting the effects of mutations in non-coding DNA on gene expression

and disease [14] and many others [8]. There have been very recently several DL based

approaches developed to predict binding between peptides and MHC class I molecules, such as

MHCflurry [7], MHCnuggets [4], HLA-CNN [2] and DeepMHC [6]. In this study, we present a

convolutional neural network (CNN) based DL approach and demonstrate that, on average, it

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

outperforms state-of-the art algorithm NetMHCpan [3] and also provides competitive

performances with some of the other contemporary algorithms that have open source software

code available to perform comparisons. In order to ease the readability of the manuscript, we

name our DL model as DL-MHC in the rest of the paper.

Motivation:

Although there are many available models to predict MHCI binding prediction, there is still no

consensus on the best performing and optimal model on the problem. Although, most of the

new models are published by presenting slightly better performances than netMHCpan [3], it is

still considered as the state-of-the-art [7]. Most of the Deep Learning (DL) based models have

similar performances to each other. Although, each publication with a new DL model shows a

slightly better performance than some others, there is no reproducible model that was shown

to provide better performances in general with comparison to all the other available DL models

considering most of all the alleles. Each related publication comes with slightly different set of

alleles and thus, performances are valid for the studied alleles of the presented models. Also,

the tiny differences in the average performances would not mean that the presented model

would perform best in general. Especially, when it comes to Deep Learning, randomization has

a significant role in its performances. At each run, the models might perform slightly different

on the same dataset. An attempt to set all the randomizations as constant in the model might

also limit the performance of the models on average as there are many different alleles to

consider. Among others, these might be some of the reasons that there is still no consensus on

a best performing DL model for MHCI and peptide binding prediction problem and NetMHC [1]

and netMHCpan [3] are still considered as gold standards and referenced usually as the state-

of-the-art.

We consider that the best performing DL model architecture might be attained by a global

community effort. For example, after an overwhelming interest by the global Machine Learning

(ML) community on the famous MNIST dataset (yann.lecun.com/exdb/mnist), it is very recently

reported that a novel model was developed that provides 0% error rate [15]. However,

applications of protein-peptide binding predictions with DL or ML is being developed only by a

number of researchers with the domain knowledge. This study also aims engaging the global DL

community in this very important problem of immune system. By this challenge, we expect that

very skilled DL developers, with no domain knowledge, will eventually come up with

dramatically best performing model for the peptide-protein binding prediction problem. In

order to encourage DL community in general, we specified some potential obstacles and

provided solutions.

One reason that might prevent the wider DL community not to engage with this important

problem is that there is no easily run workflow available, such as Snakemake [16], to run a

newly developed DL model over all the different alleles at once. Entering amino acid sequences

of peptide data into DL model is another related challenge. In this study, we provide large

peptide train and test datasets with the necessary Python source code to easily access and use

them in any new application easily along with the documentation to explain them to any user

with no background about the problem. We also provide a step-by-step tutorial to easily run all

the presented DL models and the Snakemake workflow to evaluate the performance of all the

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

different alleles at one run in parallel on a single machine making use of multiple CPUs or

submit as batch jobs over clusters.

Another reason that might prevent the wider DL community not to engage with the problem

might be that there are not much open source DL models that use the most popular DL library

Tensorflow (tensorflow.org). Developed by Google, Tensorflow dominates the field with the

largest active community, which has around three times as many GitHub forks and more than

six times as many Stack Overflow questions than the second most popular framework [17]. It

also returns by far the highest number of resulting pages compared to any other DL library

when searched by any internet search engine. Tensorflow allows developing any kind of DL

architecture and not limited with its ready to use modules. Most of the experienced DL

developers use or know Tensorflow and thus an open source exemplary model along with

already implemented very large protein-peptide binding dataset would help them easily engage

with the problem. This way, even though they do not have any domain knowledge, they can

start modifying the provided running DL model architecture and utilizing their long experience

in DL model development, they might end up with dramatically higher performance scores than

the reference exemplary model. In this study, we developed a Tensorflow based DL model,

named as DL-MHC, which on average provides competitive performances with the state-of-

the-art model netMHCpan [3]. However, as finding the best model is not the main purpose of

this study, we do not claim that it performs best considering all the DL models available. As we

present in the performance results, DL-MHC provides better results than netMHCpan [3] in

some of the alleles and similar performances to other DL models and there are not very large

significant differences among them in general.

A similar study approach to accelerate the development of DL methods within biology by

providing application examples and ready to apply and adapt code templates was recently

published in [18]. It provides exemplary DL models and source codes for the prediction of

subcellular localization, protein secondary structure and the binding of peptides to MHC Class II

molecules. However, they used somewhat unpopular NN Lasagne library based on Theano DL

library (www.deeplearning.net/software/theano). In 2017, it was announced that Theano

developer team will put an end to Theano development after the 1.0 release and thus is

regarded currently as being almost dead. On the other hand, in this study, we used the most

popular DL library, Tensorflow, and showed that the provided reference DL model, DL-MHC, is

providing competitive prediction performance with the state-of-the-art model NetMHCpan in

the prediction of binding of peptides to MHC Class I molecules. Although there are several DL

implementations on the problem, to the best of our knowledge, only one of them provide a

Tensorflow based open source DL model [19], which uses Recurrent Neural Networks (RNN)

and can be utilized as complimentary with our CNN based DL model by the DL community. Also,

it does not provide any comparison with other similar models. In this study, but also provide a

comparison analysis with various model which can be used as a quick performance reference

table by the developers who might want to compare the performance of their new models

quickly by the provided model performances on the given large benchmark dataset. This study

uniquely provides Snakemake based workflow that allow running all the models and

performance analysis over all the different test alleles at once in parallel over computer or

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

clusters. This would save a significant amount of time for developers and let them focus only on

the model developments.

As the summary of main contributions of this study, first, we provide a Tensorflow based DL

model that provides high prediction performances and can be used as a base to easily modify

and attain to best performing DL model architectures. We also provide very large peptide-

protein binding train and test datasets along with their Python source codes ready for using to

input them in any new DL model. We provide comparison analysis over various recent models

with the used benchmark datasets that can be used as a quick reference performance scores

table for any newly developed DL model. Second, we provide a Snakemake based workflow that

allow running all the models and performance analysis over all the different test allele datasets

at once in parallel over computer or clusters. We also provide a step-by-step tutorial for

running the presented DL model and the Snakemake workflow. We hope these contributions

will help more engagement of the global DL community with no domain knowledge on the

binding of peptides to MHC proteins and thus provide an infrastructure to further

developments. This way, we might help the problem being better aware of wider developers

and cause getting wider attention to it.

Methods and Materials

Dataset:

The first dataset we used is the benchmark dataset used in the analysis of HLA-CNN [2] and we

downloaded the dataset from the GitHub repository link given in the paper for the software of

HLA-CNN. This dataset was filtered, processed and prepared by [5], which includes HLA class I

binding data curated from four popular publicly available MHC datasets that are SYFPEITHI [20],

AntiJen [21], MHCBN [22] and IEDB [23]. As described in [2], the peptides that contain unknown

or indiscernible amino acids, denoted as ‘X’ or ‘B’, are removed from the dataset before the

training. The test datasets for 15 different alleles were downloaded from IEDB automatic server

benchmark page (http://tools.iedb.org/auto_bench/mhci/weekly/). In the dataset, binding is

classified if ic50 measurements are less than 500nm. This training and test dataset is called as

Dataset 1 in this study in the repository to make the modifications easier in future if new and

different datasets are wanted using with the workflow. We provide this dataset in our GitHub

repository of DL-MHC but it is already available in HLA-CNN repository [2]. Using the exact same

dataset with HLA-CNN study allowed us to directly compare DL-MHC with the comparison

analysis of HLA-CNN [2]. This way, we make sure that we compare with the exact same results

produced by the authors of the algorithms that we compare and avoid any potential usage bias

on this dataset.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

Encoding Peptide Sequence for Deep Learning Model Input

The best way to explain the procedure is by example. In Table 1, we illustrate how we encode a

peptide sequence 'KAYKSIVKY' into a matrix of 9 rows and 20 columns. The exemplary peptide

sequence has 9 amino acids and thus 9-mer in length.

Table 1: Example of encoding the peptide sequence 'KAYKSIVKY' into one-hot encoded data

matrix.
K
A
Y
K
S
I
V
K
Y

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The procedure to encode a peptide sequence into a one hot encoded data matrix is as follows.

We first assign a unique integer number to each one of the 20 possible amino acids.

All possible amino acids are ACEDGFIHKMLNQPSRTWVY. From left to right we assign their

indexes as unique numeric representations instead of each amino acid letter. In the same

order:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Namely, the index of A is 0, the

index of C is 1 and the index of Y is 19. In order to represent A as one-hot encoded vector, we

generate a one-hot encoded vector of size 20 with all zero values except the first index, as it is

set to be 1 like this [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]. As seen in the above example from

Table 1, for a 9-mer length peptide sequence, we repeat the process for each amino acid and

build a matrix of 9 rows and 20 columns. If the peptide sequence was 11, then we would

generate a data matrix of 11 rows and 20 columns in a similar way. Similar approach for

encoding peptide sequence is also used in [19]. In our DL model, the Python function that

performs this mapping operation is named as Pept_OneHotMap.

Proposed Deep Learning Model, DL-MHC:

We build a Deep Learning model with Convolutional Neural Network [8]. As seen in Figure 1,

Our module architecture has three parallel connections of different filter sizes, which was

inspired by the Inception module from GoogleNet [24]. We call our Deep Learning (DL) model

for MHCI binding prediction as DL-MHC for the rest of the paper. It has 8 of two-dimensional

(2D) convolutional neural network (CNN) layers in each of the three parallel connections, which

are then flattened and concatenated before entering into the fully connected dense layer of

100 nodes. The output is passed through a dropout process with 50% keep rate and enters to

final layer with 2 nodes for the two possible output labels, binding and not-binding.

We use AUC (Area Under the ROC (receiver operating characteristic) Curve) as the main

performance metric because it is mostly the convention to use AUC in the related publications.

As we selected AUC, following the tradition to measure the performances, we have used

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

Softmax activation function in the output layer. If we had selected Accuracy or Precision as the

performance metric, we would use Sigmoid function as the final activation function. For the

optimization of the cost function, Adam optimizer [25] is used. We also employed adaptive

learning rates as input to the optimizer. The learning rate starts with 0.003 and decreases with

iterations until 0.0001 at the least minimum. The maximum number of iterations (epocs) are

set as 2000 for the current analysis of the manuscript. The batch size for the mini batches is set

to 40. We did not use the max-pooling as it did not help to the performances in our analysis.

However, with a different DL architecture, this process might be helpful and suggested for

trying in the future developments.

Early Stopping Criteria:

We developed a slightly different approach than others as early stopping criteria to the

problem of interest. To our knowledge, other peptide-protein binding prediction NN based

models use a single validation dataset. If the performance score (e.g. accuracy) or validation

loss does not improve after a predefined number of epocs, then the model stops training even

though it does not loop through the maximum number of epocs defined before training. In DL-

MHC, instead of a single validation dataset, we use three different small validation datasets (20

samples each) and define a stopping rule based on the improvements of their three accuracy

scores together. Details of it can be seen in DLMHC.py script available in the repository. If there

is no improvement in the combined performance of the validation datasets after 300 epocs,

then the training is terminated. Validation datasets are randomly extracted from the training

dataset, and this way, we might have more stable results by not relying on a single validation

dataset for early stopping. Regarding our many trials, it is worth mentioning that this approach

was observed having a significant role in the higher performance of DL-MHC. Since our study is

not aiming to find the best DL model but aims paving a smooth way in that endeavor, we did

not fine tune each component of our DL model. For instance, as an exemplary suggestion for a

potential further improvement on this early stopping criteria might be selecting balanced

validation datasets with respect to the ratio of binding or non-binding labels instead of

randomly selecting them. This and similar improvements are available to try by the interested

DL developers upon our proposed model and benchmarking.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

1. 2. 3.

#CNN

filters

Filter/

Strides #CNN

filters

Filter/

Strides #CNN

filters

Filter/

Strides

128

(2,2) /

(1,1 128

(1,2) /

(1,1) 128

(2,1) /

(1,1)

128

(2,2) /

(2,2) 128

(2,2) /

(2,2) 128

(2,2) /

(2,2)

256

(2,2) /

(2,2) 256

(2,2) /

(2,2) 256

(2,2) /

(2,2)

256

(2,2) /

(2,2) 256

(2,2) /

(2,2) 256

(2,2) /

(2,2)

256

(2,2) /

(2,2) 256

(2,2) /

(2,2) 256

(2,2) /

(2,2)

512

(1,2) /

(1,2) 512

(1,2) /

(1,2) 512

(1,2) /

(1,2)

512

(1,1) /

(1,1) 512

(1,1) /

(1,1) 512

(1,1) /

(1,1)

256

(1,1) /

(1,1) 256

(1,1) /

(1,1) 256

(1,1) /

(1,1)

Figure 1. Deep Convolutional Neural Network Architecture: The data enters from connections

1,2 and 3. CNN filters are two-dimensional (2D) convolutional filters. There are three parallel

connections, 8 layers each, of CNN filters. In each of the 2D convolutional layer of each of the

three parallel connections, Leaky Relu activation (α=0.2) is used.

Results

Flatten Flatten Flatten

[Concatenation]

Fully connected layer (100 nodes)
+ Leaky Relu activation (α=0.2)

Dropout layer (keeps 50%)

Final layer
(2 nodes: Binding & Not Binding)

+ Softmax activation

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

We followed the general practices in most of the publications in this field and thus used AUC

(Area under the ROC Curve.) and SRCC (Spearman's Rank Correlation Coefficient) as

performance metrics. We present the performance results in the below tables.

The average performances of some of the popular algorithms in Dataset 1 were presented in

Table 2. Since Dataset 1 is the same dataset used in [2], we present the same performance

scores for NetMHCpan, sNebula [5], and HLA-CNN from [2]. We compare those results with our

proposed DL-MHC model. Regarding AUC, DL-MHC provides the best average performance

compare to the others. We do not include the scores of HLA-CNN to the performance

comparison because it was mentioned in [6] that HLA-CNN software code is using the test

dataset as if it is a validation set during training, which is not a correct approach regarding real

ML practice. This might help HLA-CNN model to have an incorrect advantage while deciding

when to stop training and might lead to overestimated prediction performance. In fact, in [6]

they attempted to correct this point in HLA-CNN model code and in their analysis, the resulting

AUC performance of the corrected HLA-CNN model software was 2.4% lower than the previous

one. Therefore, the presented HLA-CNN’s average AUC score 0.855 is approximated to be 0.834

in Table 2. This makes our proposed DL-MHC model having the highest AUC average score with

0.853. We could not include the DL model, DeepMHC, of [6] as they did not provide their open

source code in the their publication. Regarding SRCC, as seen in Table 2, DL-MHC performs

highest among all the others in Dataset 1 on average.

Table 2: Average performances of various algorithms over 14 test data sets of 9 different alleles

of Dataset 1. (HLA-CNN model was shown to have lower performances than the scores quoted

in this table; because its current software uses training data for stopping criteria, which is

against ML practice.)

 Dataset 1
 AUC SRCC
DL-MHC 0.853 0.559
NetMHCpan 0.794 0.542
sNebula 0.749 0.462
HLA-CNN 0.855 0.551

More specifically, as seen in Table 3, DL-MHC provides the best AUC performance on 8 out of

the 14 test data sets of Dataset 1. As explained above, HLA-CNN is just for reference but is not

directly compared here. The second-best performer is NetMHCpan with 5 out of 14 test

datasets. As presented in Table 4, regarding the detailed SRCC scores, DL-MHC provides the

highest performances in 7 out of 14 test data sets in Dataset 1. Then, the second-best

performer is NetMHCpan with 5 out of 14 test data sets. Individual test set results assure the

high performance scores of DL-MHC observed on average.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 3: Average AUC performances of various algorithms over 14 test data sets of 9 different

alleles of Dataset 1. (HLA-CNN model was shown to have lower performances than the scores

quoted in this table; because its current software uses training data for stopping criteria, which

is against ML practice.)

Dataset 1

Peptide

length NetMHCpan sNebula HLA-CNN DL-MHC

 IEDB HLA AUC AUC AUC AUC

1029125 B*27:05 9 0.959 0.959 0.918 0.929

1029061 B*57:01 9 0.943 0.575 0.807 0.727

1028928 A*02:01 9 0.955 0.909 0.955 0.909

1028928 B*07:02 9 1 0.9 1 1

315174 B*27:03 9 0.893 0.607 1 1

1028790 A*02:01 9 0.574 0.778 0.681 0.691

1028790 A*02:01 10 0.677 0.704 0.589 0.742

1028790 B*02:02 9 0.713 0.68 0.804 0.708

1028790 A*02:03 9 0.696 0.629 0.746 0.755

1028790 A*02:03 10 0.75 0.697 0.837 0.908

1028790 A*02:06 9 0.77 0.848 0.819 0.806

1028790 A*02:06 10 0.768 0.68 0.92 0.864

1028790 A*68:02 9 0.806 0.713 0.909 0.920

1028790 A*68:02 10 0.62 0.813 0.991 0.991

 Average 0.794 0.749 0.855 0.853

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 4: Average SRCC performances of various algorithms over 14 test data sets of 9 different

alleles of Dataset 1.

Dataset 1

Peptide

length NetMHCpan sNebula HLA-CNN DL-MHC

IEDB HLA SRCC SRCC SRCC SRCC

1029125 B*27:05 9 0.751 0.752 0.684 0.700

1029061 B*57:01 9 0.612 0.169 0.443 0.284

1028928 A*02:01 9 0.57 0.539 0.57 0.693

1028928 B*07:02 9 0.648 0.522 0.648 0.852

315174 B*27:03 9 0.657 0.179 0.837 0.836

1028790 A*02:01 9 0.615 0.505 0.58 0.280

1028790 A*02:01 10 0.407 0.432 0.327 0.334

1028790 B*02:02 9 0.582 0.372 0.426 0.288

1028790 A*02:03 9 0.539 0.477 0.373 0.522

1028790 A*02:03 10 0.208 0.419 0.307 0.566

1028790 A*02:06 9 0.63 0.51 0.578 0.503

1028790 A*02:06 10 0.572 0.525 0.638 0.602

1028790 A*68:02 9 0.534 0.482 0.581 0.660

1028790 A*68:02 10 0.272 0.591 0.722 0.714

Average 0.542 0.462 0.551 0.559

Conclusion

We presented a high-performance DL model, DL-MHC, comparisons with some other models,

Python source code of the model and data input process of the benchmark datasets, a

Snakemake based workflow to run performance analysis over all the different alleles at once in

parallel. This study is aimed to provide a base DL model and benchmark datasets with all the

necessary codes upon which new and better DL models can be conveniently tried and

developed by the DL community who might not necessarily have the domain knowledge.

Therefore, with this study, we aim to make it convenient to any DL developer to focus on this

very important problem of immunology. We hope that this study will increase the amount of

interest and consequently result better DL models on the problem, which might help attaining a

new state-of-the-art model that performs dramatically better than current models that are

approximately providing similar performances on average.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgement

We thank to the authors of [2] for their prompt supports to run their software. We also thank

to Sandeep K. Dhanda for the discussions on MHC-peptide binding problem and its applications.

Funding

Research reported in this publication was supported by National Institute of Allergy and

Infectious Diseases (NIAID) of the National Institutes of Health (NIH) under award

number: R24AI108564.

References

1. Trolle T, Metushi IG, Greenbaum JA, Kim Y, Sidney J, Lund O, Sette A, Peters B, Nielsen

M: Automated benchmarking of peptide-MHC class I binding predictions.

Bioinformatics 2015, 31:2174-2181.

2. Vang YS, Xie XH: HLA class I binding prediction via convolutional neural networks.

Bioinformatics 2017, 33:2658-2665.

3. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M: NetMHCpan-4.0:

Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and

Peptide Binding Affinity Data. Journal of Immunology 2017, 199:3360-3368.

4. Bhattacharya R, Sivakumar A, Tokheim C, Guthrie VB, Anagnostou V, Velculescu VE,

Karchin R: Evaluation of machine learning methods to predict peptide binding to MHC

Class I proteins. bioRxiv 2017, 10.1101/154757.

5. Luo H, Ye H, Ng HW, Sakkiah S, Mendrick DL, Hong HX: sNebula, a network-based

algorithm to predict binding between human leukocyte antigens and peptides.

Scientific Reports 2016, 6.

6. Jianjun H, Zhonghao L: DeepMHC: Deep Convolutional Neural Networks for High-

performance peptide-MHC Binding Affinity Prediction. bioRxiv 2017, 10.1101/239236

7. O'Donnell TJ, Rubinsteyn A, Bonsack M, Riemer AB, Laserson U, Hammerbacher J:

MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell Systems 2018,

7:129-+.

8. LeCun Y, Bengio Y, Hinton G: Deep learning. Nature 2015, 521:436-444.

9. Farabet C, Couprie C, Najman L, LeCun Y: Learning Hierarchical Features for Scene

Labeling. Ieee Transactions on Pattern Analysis and Machine Intelligence 2013, 35:1915-

1929.

10. Hinton G, Deng L, Yu D, Dahl GE, Mohamed AR, Jaitly N, Senior A, Vanhoucke V, Nguyen

P, Sainath TN, Kingsbury B: Deep Neural Networks for Acoustic Modeling in Speech

Recognition. Ieee Signal Processing Magazine 2012, 29:82-97.

11. Ma JS, Sheridan RP, Liaw A, Dahl GE, Svetnik V: Deep Neural Nets as a Method for

Quantitative Structure-Activity Relationships. Journal of Chemical Information and

Modeling 2015, 55:263-274.

12. Ciodaro T, Deva D, de Seixas JM, Damazio D: Online particle detection with Neural

Networks based on topological calorimetry information. 14th International Workshop

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

on Advanced Computing and Analysis Techniques in Physics Research (Acat 2011) 2012,

368.

13. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W: Connectomic

reconstruction of the inner plexiform layer in the mouse retina. Nature 2013, 500:168-

+.

14. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC, Hua YM,

Gueroussov S, Najafabadi HS, Hughes TR, et al: The human splicing code reveals new

insights into the genetic determinants of disease. Science 2015, 347.

15. Igor Aizenberg AG: Image Recognition using MLMVN and Frequency Domain Features.

In Proceedings of the 2018 IEEE International Joint Conference on Neural Networks

(IJCNN 2018). 2018: 1550-1557.

16. Koster J, Rahmann S: Snakemake--a scalable bioinformatics workflow engine.

Bioinformatics 2012, 28:2520-2522.

17. Ranking Popular Deep Learning Libraries for Data Science

[https://www.kdnuggets.com/2017/10/ranking-popular-deep-learning-libraries-data-

science.html]

18. Jurtz VI, Johansen AR, Nielsen M, Armenteros JJA, Nielsen H, Sonderby CK, Winther O,

Sonderby SK: An introduction to deep learning on biological sequence data: examples

and solutions. Bioinformatics 2017, 33:3685-3690.

19. Mazzaferro C: Predicting Protein Binding Affinity With Word Embeddings and

Recurrent Neural Networks. bioRxiv 2017.

20. Rammensee HG, Bachmann J, Emmerich NPN, Bachor OA, Stevanovic S: SYFPEITHI:

database for MHC ligands and peptide motifs. Immunogenetics 1999, 50:213-219.

21. Toseland CP, Clayton DJ, McSparron H, Hemsley SL, Blythe MJ, Paine K, Doytchinova IA,

Guan P, Hattotuwagama CK, Flower DR: AntiJen: a quantitative immunology database

integrating functional, thermodynamic, kinetic, biophysical, and cellular data.

Immunome Res 2005, 1:4.

22. Lata S, Bhasin M, Raghava GP: MHCBN 4.0: A database of MHC/TAP binding peptides

and T-cell epitopes. BMC Res Notes 2009, 2:61.

23. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK,

Gabbard JL, Hix D, Sette A, Peters B: The immune epitope database (IEDB) 3.0. Nucleic

Acids Res 2015, 43:D405-412.

24. C. Szegedy WL, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.

Rabinovich: Going Deeper With Convolutions. arXiv 2014, arXiv:1409.4842.

25. Diederic P. Kingma JB: Adam: A Method for Stochastic Optimization. arXiv 2014.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410928doi: bioRxiv preprint

https://doi.org/10.1101/410928
http://creativecommons.org/licenses/by-nc-nd/4.0/

