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Abstract 

 

In this study, we first present a Tensorflow based Deep Learning (DL) model that provides high 

performances in predicting the binding of peptides to major histocompatibility complex (MHC) 

class I protein. Second, we provide the necessary Python codes to run the model and also easily 

input large train and test peptide binding benchmark dataset. Third, we provide Snakemake 

based workflow that allows to run all the model and performance analysis over all the different 

test alleles at once in parallel over computer and clusters. We also provide comparison analysis 

of the performances of various models. Finally, in order to help attaining to the best possible DL 

model by a community effort, this work is intended to be a ready to modify base model and 

workflow for the global Deep Learning community with no domain knowledge in MHC-peptide 

binding problem and thus provides all the necessary reference code templates and 

benchmarking data sets for further developments on the presented model architecture. All the 

reproducible Python codes, Snakemake workflow and benchmark data sets and a tutorial are 

available online at https://github.com/altayg/Deep-Learning-MHCI. 

 

Introduction 

 

Cytotoxic T-cell lymphocytes (CTLs) interacts with complexes of peptides and major MHC class I 

(MHCI) molecules presented on the cell surface to detect and destroy the cells that harbor 

intracellular threats [1]. Accurate prediction of bindings between peptides and MHC protein 

helps the design of more potent, peptide-based vaccines and immunotherapies [2]. 

There are many machine learning (ML) methods that were developed to infer the binding 

between peptides and MHC class I protein with high accuracy [2-7] . Among them, NetMHC [1] 

and NetMHCpan [3], which are neural network (NN) based models, are considered as the state 

of the art models to predict binding between peptides and MHC class I molecules [7]. Deep 

Learning [8] is an advanced version of NN, where the word deep mainly refers to the deeper 

number of hidden layers in the model. DL based methods were shown to be outperforming 

classical ML methods where there is very large data available and thus found applications in 

various areas such as image recognition [9], speech recognition [10], predicting the activity of 

potential drug molecules [11], analyzing particle accelerator data [12], reconstructing brain 

circuits [13], and predicting the effects of mutations  in non-coding DNA on gene expression 

and disease [14] and many others [8]. There have been very recently several DL based 

approaches developed to predict binding between peptides and MHC class I molecules, such as 

MHCflurry [7], MHCnuggets [4], HLA-CNN [2] and DeepMHC [6]. In this study, we present a 

convolutional neural network (CNN) based DL approach and demonstrate that, on average, it 
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outperforms state-of-the art algorithm NetMHCpan [3] and also  provides competitive 

performances with some of the other contemporary algorithms that have open source software 

code available to perform comparisons. In order to ease the readability of the manuscript, we 

name our DL model as DL-MHC in the rest of the paper. 

 

Motivation: 

Although there are many available models to predict MHCI binding prediction, there is still no 

consensus on the best performing and optimal model on the problem. Although, most of the 

new models are published by presenting slightly better performances than netMHCpan [3], it is 

still considered as the state-of-the-art [7]. Most of the Deep Learning (DL) based models have 

similar performances to each other. Although, each publication with a new DL model shows a 

slightly better performance than some others, there is no reproducible model that was shown 

to provide better performances in general with comparison to all the other available DL models 

considering most of all the alleles. Each related publication comes with slightly different set of 

alleles and thus, performances are valid for the studied alleles of the presented models. Also, 

the tiny differences in the average performances would not mean that the presented model 

would perform best in general. Especially, when it comes to Deep Learning, randomization has 

a significant role in its performances. At each run, the models might perform slightly different 

on the same dataset. An attempt to set all the randomizations as constant in the model might 

also limit the performance of the models on average as there are many different alleles to 

consider. Among others, these might be some of the reasons that there is still no consensus on 

a best performing DL model for MHCI and peptide binding prediction problem and NetMHC [1] 

and netMHCpan [3] are still considered as gold standards and referenced usually as the state-

of-the-art.  

We consider that the best performing DL model architecture might be attained by a global 

community effort. For example, after an overwhelming interest by the global Machine Learning 

(ML) community on the famous MNIST dataset (yann.lecun.com/exdb/mnist), it is very recently 

reported that a novel model was developed that provides 0% error rate [15]. However, 

applications of protein-peptide binding predictions with DL or ML is being developed only by a 

number of researchers with the domain knowledge. This study also aims engaging the global DL 

community in this very important problem of immune system. By this challenge, we expect that 

very skilled DL developers, with no domain knowledge, will eventually come up with 

dramatically best performing model for the peptide-protein binding prediction problem. In 

order to encourage DL community in general, we specified some potential obstacles and 

provided solutions.  

 

One reason that might prevent the wider DL community not to engage with this important 

problem is that there is no easily run workflow available, such as Snakemake [16], to run a 

newly developed DL model over all the different alleles at once. Entering amino acid sequences 

of peptide data into DL model is another related challenge. In this study, we provide large 

peptide train and test datasets with the necessary Python source code to easily access and use 

them in any new application easily along with the documentation to explain them to any user 

with no background about the problem. We also provide a step-by-step tutorial to easily run all 

the presented DL models and the Snakemake workflow to evaluate the performance of all the 
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different alleles at one run in parallel on a single machine making use of multiple CPUs or 

submit as batch jobs over clusters. 

 

Another reason that might prevent the wider DL community not to engage with the problem 

might be that there are not much open source DL models that use the most popular DL library 

Tensorflow (tensorflow.org). Developed by Google, Tensorflow dominates the field with the 

largest active community, which has around three times as many GitHub forks and more than 

six times as many Stack Overflow questions than the second most popular framework [17]. It 

also returns by far the highest number of resulting pages compared to any other DL library 

when searched by any internet search engine. Tensorflow allows developing any kind of DL 

architecture and not limited with its ready to use modules. Most of the experienced DL 

developers use or know Tensorflow and thus an open source exemplary model along with 

already implemented very large protein-peptide binding dataset would help them easily engage 

with the problem. This way, even though they do not have any domain knowledge, they can 

start modifying the provided running DL model architecture and utilizing their long experience 

in DL model development, they might end up with dramatically higher performance scores than 

the reference exemplary model. In this study, we developed a Tensorflow based DL model, 

named as DL-MHC, which on average provides competitive performances with  the state-of-

the-art model netMHCpan [3]. However, as finding the best model is not the main purpose of 

this study, we do not claim that it performs best considering all the DL models available. As we 

present in the performance results, DL-MHC provides better results than netMHCpan [3]  in 

some of the alleles and similar performances to other DL models and there are not very large 

significant differences among them in general.  

 

A similar study approach to accelerate the development of DL methods within biology by 

providing application examples and ready to apply and adapt code templates was recently 

published in [18]. It provides exemplary DL models and source codes for the prediction of 

subcellular localization, protein secondary structure and the binding of peptides to MHC Class II 

molecules. However, they used somewhat unpopular NN Lasagne library based on Theano DL 

library (www.deeplearning.net/software/theano). In 2017, it was announced that Theano 

developer team will put an end to Theano development after the 1.0 release and thus is 

regarded currently as being almost dead. On the other hand, in this study, we used the most 

popular DL library, Tensorflow, and showed that the provided reference DL model, DL-MHC, is 

providing competitive prediction performance with the state-of-the-art model NetMHCpan in 

the prediction of binding of peptides to MHC Class I molecules. Although there are several DL 

implementations on the problem, to the best of our knowledge, only one of them provide a 

Tensorflow based open source DL model [19], which uses Recurrent Neural Networks (RNN) 

and can be utilized as complimentary with our CNN based DL model by the DL community. Also, 

it does not provide any comparison with other similar models. In this study, but also provide a 

comparison analysis with various model which can be used as a quick performance reference 

table by the developers who might want to compare the performance of their new models 

quickly by the provided model performances on the given large benchmark dataset. This study 

uniquely provides Snakemake based workflow that allow running all the models and 

performance analysis over all the different test alleles at once in parallel over computer or 
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clusters. This would save a significant amount of time for developers and let them focus only on 

the model developments. 

 

As the summary of main contributions of this study, first, we provide a Tensorflow based DL 

model that provides high prediction performances and can be used as a base to easily modify 

and attain to best performing DL model architectures. We also provide very large peptide-

protein binding train and test datasets along with their Python source codes ready for using to 

input them in any new DL model. We provide comparison analysis over various recent models 

with the used benchmark datasets that can be used as a quick reference performance scores 

table for any newly developed DL model. Second, we provide a Snakemake based workflow that 

allow running all the models and performance analysis over all the different test allele datasets 

at once in parallel over computer or clusters. We also provide a step-by-step tutorial for 

running the presented DL model and the Snakemake workflow. We hope these contributions 

will help more engagement of the global DL community with no domain knowledge on the 

binding of peptides to MHC proteins and thus provide an infrastructure to further 

developments. This way, we might help the problem being better aware of wider developers 

and cause getting wider attention to it. 

 

Methods and Materials 

 

Dataset: 

 

The first dataset we used is the benchmark dataset used in the analysis of HLA-CNN [2] and we 

downloaded the dataset from the GitHub repository link given in the paper for the software of 

HLA-CNN. This dataset was filtered, processed and prepared by [5], which includes HLA class I 

binding data curated from four popular publicly available MHC datasets that are SYFPEITHI [20], 

AntiJen [21], MHCBN [22] and IEDB [23]. As described in [2], the peptides that contain unknown 

or indiscernible amino acids, denoted as ‘X’ or ‘B’, are removed from the dataset before the 

training. The test datasets for 15 different alleles were downloaded from IEDB automatic server 

benchmark page (http://tools.iedb.org/auto_bench/mhci/weekly/). In the dataset, binding is 

classified if ic50 measurements are less than 500nm. This training and test dataset is called as 

Dataset 1 in this study in the repository to make the modifications easier in future if new and 

different datasets are wanted using with the workflow. We provide this dataset in our GitHub 

repository of DL-MHC but it is already available in HLA-CNN repository [2]. Using the exact same 

dataset with HLA-CNN study allowed us to directly compare DL-MHC with the comparison 

analysis of HLA-CNN [2]. This way, we make sure that we compare with the exact same results 

produced by the authors of the algorithms that we compare and avoid any potential usage bias 

on this dataset.   
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Encoding Peptide Sequence for Deep Learning Model Input 

 

The best way to explain the procedure is by example. In Table 1, we illustrate how we encode a 

peptide sequence 'KAYKSIVKY' into a matrix of 9 rows and 20 columns. The exemplary peptide 

sequence has 9 amino acids and thus 9-mer in length.  

 

Table 1: Example of encoding the peptide sequence 'KAYKSIVKY' into one-hot encoded data 

matrix.  
K 
A 
Y 
K 
S 
I 
V 
K 
Y 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

The procedure to encode a peptide sequence into a one hot encoded data matrix is as follows. 

We first assign a unique integer number to each one of the 20 possible amino acids. 

All possible amino acids are ACEDGFIHKMLNQPSRTWVY. From left to right we assign their 

indexes as unique numeric representations instead of each amino acid letter. In the same 

order: 

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Namely, the index of A is 0, the 

index of C is 1 and the index of Y is 19. In order to represent A as one-hot encoded vector, we 

generate a one-hot encoded vector of size 20 with all zero values except the first index, as it is 

set to be 1 like this [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]. As seen in the above example from 

Table 1, for a 9-mer length peptide sequence, we repeat the process for each amino acid and 

build a matrix of 9 rows and 20 columns. If the peptide sequence was 11, then we would 

generate a data matrix of 11 rows and 20 columns in a similar way. Similar approach for 

encoding peptide sequence is also used in [19]. In our DL model, the Python function that 

performs this mapping operation is named as Pept_OneHotMap. 

 

Proposed Deep Learning Model, DL-MHC: 

 

We build a Deep Learning model with Convolutional Neural Network [8]. As seen in Figure 1,  

Our module architecture has three parallel connections of different filter sizes, which was 

inspired by the Inception module from GoogleNet [24]. We call our Deep Learning (DL) model 

for MHCI binding prediction as DL-MHC for the rest of the paper. It has 8 of two-dimensional 

(2D) convolutional neural network (CNN) layers in each of the three parallel connections, which 

are then flattened and concatenated before entering into the fully connected dense layer of 

100 nodes. The output is passed through a dropout process with 50% keep rate and enters to 

final layer with 2 nodes for the two possible output labels, binding and not-binding.  

We use AUC (Area Under the ROC (receiver operating characteristic) Curve) as the main 

performance metric because it is mostly the convention to use AUC in the related publications. 

As we selected AUC, following the tradition to measure the performances, we have used 
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Softmax activation function in the output layer. If we had selected Accuracy or Precision as the 

performance metric, we would use Sigmoid function as the final activation function. For the 

optimization of the cost function, Adam optimizer [25] is used. We also employed adaptive 

learning rates as input to the optimizer. The learning rate starts with 0.003 and decreases with 

iterations until 0.0001 at the least minimum. The maximum number of iterations (epocs) are 

set as 2000 for the current analysis of the manuscript. The batch size for the mini batches is set 

to 40. We did not use the max-pooling as it did not help to the performances in our analysis. 

However, with a different DL architecture, this process might be helpful and suggested for 

trying in the future developments. 

 

Early Stopping Criteria: 

We developed a slightly different approach than others as early stopping criteria to the 

problem of interest. To our knowledge, other peptide-protein binding prediction NN based 

models use a single validation dataset. If the performance score (e.g. accuracy) or validation 

loss does not improve after a predefined number of epocs, then the model stops training even 

though it does not loop through the maximum number of epocs defined before training. In DL-

MHC, instead of a single validation dataset, we use three different small validation datasets (20 

samples each) and define a stopping rule based on the improvements of their three accuracy 

scores together. Details of it can be seen in DLMHC.py script available in the repository. If there 

is no improvement in the combined performance of the validation datasets after 300 epocs, 

then the training is terminated. Validation datasets are randomly extracted from the training 

dataset, and this way, we might have more stable results by not relying on a single validation 

dataset for early stopping. Regarding our many trials, it is worth mentioning that this approach 

was observed having a significant role in the higher performance of DL-MHC. Since our study is 

not aiming to find the best DL model but aims paving a smooth way in that endeavor, we did 

not fine tune each component of our DL model. For instance, as an exemplary suggestion for a 

potential further improvement on this early stopping criteria might be selecting balanced 

validation datasets with respect to the ratio of binding or non-binding labels instead of 

randomly selecting them. This and similar improvements are available to try by the interested 

DL developers upon our proposed model and benchmarking. 
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1. 2. 3. 
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(1,1) /  
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Figure 1. Deep Convolutional Neural Network Architecture: The data enters from connections 

1,2 and 3. CNN filters are two-dimensional (2D) convolutional filters. There are three parallel 

connections, 8 layers each, of CNN filters. In each of the 2D convolutional layer of each of the 

three parallel connections, Leaky Relu activation (α=0.2) is used.  

 

 

 

Results  

 

Flatten Flatten Flatten 

[Concatenation] 

Fully connected layer (100 nodes) 
+ Leaky Relu activation (α=0.2) 

Dropout layer (keeps 50%) 

Final layer  
(2 nodes: Binding & Not Binding) 

+ Softmax activation 
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We followed the general practices in most of the publications in this field and thus used AUC 

(Area under the ROC Curve.) and SRCC (Spearman's Rank Correlation Coefficient) as 

performance metrics. We present the performance results in the below tables. 

 

The average performances of some of the popular algorithms in Dataset 1 were presented in 

Table 2. Since Dataset 1 is the same dataset used in [2], we present the same performance 

scores for NetMHCpan, sNebula [5], and HLA-CNN from [2]. We compare those results with our 

proposed DL-MHC model. Regarding AUC, DL-MHC provides the best average performance 

compare to the others. We do not include the scores of HLA-CNN to the performance 

comparison because it was mentioned in [6] that HLA-CNN software code is using the test 

dataset as if it is a validation set during training, which is not a correct approach regarding real 

ML practice. This might help HLA-CNN model to have an incorrect advantage while deciding 

when to stop training and might lead to overestimated prediction performance. In fact, in [6] 

they attempted to correct this point in HLA-CNN model code and in their analysis, the resulting 

AUC performance of the corrected HLA-CNN model software was 2.4% lower than the previous 

one. Therefore, the presented HLA-CNN’s average AUC score 0.855 is approximated to be 0.834 

in Table 2. This makes our proposed DL-MHC model having the highest AUC average score with 

0.853. We could not include the DL model, DeepMHC, of [6] as they did not provide their open 

source code in the their publication. Regarding SRCC, as seen in Table 2, DL-MHC performs 

highest among all the others in Dataset 1 on average.  

 

Table 2: Average performances of various algorithms over 14 test data sets of 9 different alleles 

of Dataset 1. (HLA-CNN model was shown to have lower performances than the scores quoted 

in this table; because its current software uses training data for stopping criteria, which is 

against ML practice.) 

  Dataset 1   
  AUC SRCC 
DL-MHC 0.853 0.559 
NetMHCpan 0.794 0.542 
sNebula 0.749 0.462 
HLA-CNN 0.855 0.551 

 

 

More specifically, as seen in Table 3, DL-MHC provides the best AUC performance on 8 out of 

the 14 test data sets of Dataset 1. As explained above, HLA-CNN is just for reference but is not 

directly compared here. The second-best performer is NetMHCpan with 5 out of 14 test 

datasets. As presented in Table 4, regarding the detailed SRCC scores, DL-MHC provides the 

highest performances in 7 out of 14 test data sets in Dataset 1. Then, the second-best 

performer is NetMHCpan with 5 out of 14 test data sets. Individual test set results assure the 

high performance scores of DL-MHC observed on average.  
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Table 3: Average AUC performances of various algorithms over 14 test data sets of 9 different 

alleles of Dataset 1. (HLA-CNN model was shown to have lower performances than the scores 

quoted in this table; because its current software uses training data for stopping criteria, which 

is against ML practice.)  

Dataset 1 

Peptide 

length NetMHCpan sNebula HLA-CNN DL-MHC 

 IEDB  HLA   AUC AUC AUC AUC 

1029125 B*27:05 9 0.959 0.959 0.918 0.929 

1029061 B*57:01 9 0.943 0.575 0.807 0.727 

1028928 A*02:01 9 0.955 0.909 0.955 0.909 

1028928 B*07:02 9 1 0.9 1 1 

315174 B*27:03 9 0.893 0.607 1 1 

1028790 A*02:01 9 0.574 0.778 0.681 0.691 

1028790 A*02:01 10 0.677 0.704 0.589 0.742 

1028790 B*02:02 9 0.713 0.68 0.804 0.708 

1028790 A*02:03 9 0.696 0.629 0.746 0.755 

1028790 A*02:03 10 0.75 0.697 0.837 0.908 

1028790 A*02:06 9 0.77 0.848 0.819 0.806 

1028790 A*02:06 10 0.768 0.68 0.92 0.864 

1028790 A*68:02 9 0.806 0.713 0.909 0.920 

1028790 A*68:02 10 0.62 0.813 0.991 0.991 

  Average 0.794 0.749 0.855 0.853 
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Table 4: Average SRCC performances of various algorithms over 14 test data sets of 9 different 

alleles of Dataset 1. 

Dataset 1 

Peptide 

length NetMHCpan sNebula HLA-CNN DL-MHC 

IEDB HLA SRCC SRCC SRCC SRCC 

1029125 B*27:05 9 0.751 0.752 0.684 0.700 

1029061 B*57:01 9 0.612 0.169 0.443 0.284 

1028928 A*02:01 9 0.57 0.539 0.57 0.693 

1028928 B*07:02 9 0.648 0.522 0.648 0.852 

315174 B*27:03 9 0.657 0.179 0.837 0.836 

1028790 A*02:01 9 0.615 0.505 0.58 0.280 

1028790 A*02:01 10 0.407 0.432 0.327 0.334 

1028790 B*02:02 9 0.582 0.372 0.426 0.288 

1028790 A*02:03 9 0.539 0.477 0.373 0.522 

1028790 A*02:03 10 0.208 0.419 0.307 0.566 

1028790 A*02:06 9 0.63 0.51 0.578 0.503 

1028790 A*02:06 10 0.572 0.525 0.638 0.602 

1028790 A*68:02 9 0.534 0.482 0.581 0.660 

1028790 A*68:02 10 0.272 0.591 0.722 0.714 

Average 0.542 0.462 0.551 0.559 

 

 

 

 

Conclusion 

We presented a high-performance DL model, DL-MHC, comparisons with some other models, 

Python source code of the model and data input process of the benchmark datasets, a 

Snakemake based workflow to run performance analysis over all the different alleles at once in 

parallel. This study is aimed to provide a base DL model and benchmark datasets with all the 

necessary codes upon which new and better DL models can be conveniently tried and 

developed by the DL community who might not necessarily have the domain knowledge. 

Therefore, with this study, we aim to make it convenient to any DL developer to focus on this 

very important problem of immunology. We hope that this study will increase the amount of 

interest and consequently result better DL models on the problem, which might help attaining a 

new state-of-the-art model that performs dramatically better than current models that are 

approximately providing similar performances on average. 
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