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Abstract

The well-documented, species-rich, and diverse group of ants (Formicidae) are important1

ecological bioindicators for species richness, ecosystem health, and biodiversity, but ant2

species identification is complex and requires specific knowledge. In the past few years,3

insect identification from images has seen increasing interest and success, with processing4

speed improving and costs lowering. Here we propose deep learning (in the form of a5

convolutional neural network (CNN)) to classify ants at species level using AntWeb6

images. We used an Inception-ResNet-V2-based CNN to classify ant images, and three7

shot types with 10,204 images for 97 species, in addition to a multi-view approach, for8

training and testing the CNN while also testing a worker-only set and an AntWeb9

protocol-deviant test set. Top 1 accuracy reached 62% - 81%, top 3 accuracy 80% - 92%,10

and genus accuracy 79% - 95% on species classification for different shot type approaches.11

The head shot type outperformed other shot type approaches. Genus accuracy was broadly12

similar to top 3 accuracy. Removing reproductives from the test data improved accuracy13

only slightly. Accuracy on AntWeb protocol-deviant data was very low. In addition, we14

make recommendations for future work concerning image threshold, distribution, and15

quality, multi-view approaches, metadata, and on protocols; potentially leading to higher16

accuracy with less computational effort.17
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The family of ants (Formicidae) is a large and diverse group within the insect order,21

occasionally exceeding other insect groups in local diversity by far. Representing the bulk22

of global biodiversity (Mora et al. 2011), ants are globally found (except on Antarctica)23

and play important roles in a lot of ecosystems (Hölldobler et al. 1990). As ants are found24

to be good bioindicators, ecological and biodiversity data on them may be used to assess25

the state of ecosystems (Andersen 1997; Andersen et al. 2002), which is important for26

species conservation. Furthermore, insects are good surrogates for predicting species27

richness patterns in vertebrates because of their significant biomass (Andersen 1997;28

Moritz et al. 2001), even while using the morphospecies concept (Oliver et al. 1996; Pik29

et al. 1999). To understand the ecological role and biological diversity of ants, it is30

important to comprehend their morphology, and delimit and discriminate among species.31

Even working with morphospecies, a species concept is still required for identification to32

reach a level of precision sufficient to answer a research question. This is what is called33

Taxonomic Sufficiency (Ellis 1985), which must be at a certain balance or level for a34

research goal (Groc et al. 2010). Therefore, it is important to get a good understanding of35

ant taxonomy, but many difficulties arise with the complicated identification of ants to36

species level or to taxonomic sufficiency.37

Ant taxonomy38

Classifying and identifying ant species is complex work and requires specific39

knowledge. While there is extensive work on this (e.g. Bolton (1994), Fisher et al. (2007),40

and Fisher et al. (2016)), it is still in many instances reserved to specialists. To identify ant41

species, taxonomists use distinct characters (e.g. antennae, hairs, carinae, thorax shape,42

body shininess) that differ between subfamilies, genera, and species. However, the detailed43
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ANT IMAGE CLASSIFICATION USING DEEP LEARNING 3

knowledge on morphological characters can sometimes make species identification difficult.44

Some ant species appear to be sibling species or very cryptic, and different castes45

complicate things further. However, with a long history on myrmecological research, ants46

are one of the best documented groups of insects and in recent years ant systematics have47

seen substantial progress (Ward 2007).48

Computer vision49

In an effort to improve taxonomic identification, insect identification from images50

has been a subject of computer vision research in the past few years. As some early papers51

have shown (D. E. Guyer et al. 1986; Edwards et al. 1995; PJD Weeks et al. 1997;52

PJ Weeks et al. 1999; Gaston et al. 2004), a promising start has been made on automated53

insect identification, but there is still a long road to reaching human accuracy. Systems like54

a Bayes classifier (D. E. Guyer et al. 1986) or DAISY ((PJ Weeks et al. 1999) mostly55

utilized structures, morphometrics, and outlines. Together with conventional classifying56

methods (such as a principal component analysis (PCA) (P Weeks et al. 1997)) images57

data could be classified. Other, slightly more complex systems use simple forms of machine58

learning (ML) (Kang et al. 2012), such as a support vector machine (SVM) ((Yang et al.59

2015) or K-nearest neighbors (Watson et al. 2004). An identification system for insects at60

the order level (including ants within the order of Hymenoptera) designed by Wang et al.61

(2012b), used seven geometrical features (e.g. body width) and reached 97% accuracy.62

Unfortunately, there are no classification studies that include ants, outside of the work of63

Wang et al. (2012b) on insect order level, but for other insect groups, promising results64

have been reported. Butterflies families (Lepidoptera) have been identified using shape,65

color and texture features, exploiting the so-called CBIR algorithm (Wang et al. 2012a).66

Insect identification to species level is harder, as some studies have shown. Javanese67

butterflies (Lepidoptera: Nymphalidae, Pieridae, Papilionidae, and Riodinidae) could be68

discriminated using the BGR-SURF algorithm with 77% accuracy (Vetter 2016). Honey69
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bees (Hymenoptera: Apidae) could be classified with good results (>90%), using wing70

morphometrics with multivariate statistics (Francoy et al. 2008). Gerard et al. (2015) could71

discriminate haploid and diploid bumblebees (Hymenoptera: Apidae) based on differences72

in wing shape (e.g. wing venation patterns) with great success (95%). Seven owlfly species73

(Neuroptera: Ascalaphidae) were classified using an SVM on wing outlines (99%) (Yang74

et al. 2015). Five wasp species (Hymenoptera: Ichneumonidae) could be classified using75

PCA on wing venation data (94%) (P Weeks et al. 1997). Wen et al. (2012) classified eight76

insect species (Tephritidae and Tortricidae) using 54 global morphological features with77

86.6% accuracy. And Kang et al. (2012) fed wing morphometrics for seven butterfly species78

(Lepidoptera: Nymphalidae and Papilionidae) in a simple neural network to classify,79

resulting in >86% accuracy. However, a significant disadvantage in these systems is the80

need for metric morphological features exploitation, which still require human expertise,81

supervision, and input.82

Deep learning83

Deep learning (DL) may therefore be a promising taxonomic identification tool, as84

it does not require human supervision. DL allows a machine to learn representations of85

features by itself, instead of conventional methods where features need manual86

introduction to the machine (Bengio et al. 2012; LeCun et al. 2015). In the past few years,87

DL has attracted attention in research and its methods and algorithms have greatly88

improved, which is why its success will likely grow in the future (LeCun et al. 2015). A89

successful DL algorithm is the convolutional neural network (CNN), mostly used for image90

classification and preferably trained using GPUs. These computationally-intensive91

networks are designed to process (convolve) 2D data (images), using typical neural layers92

as convolutional and pooling layers (Krizhevsky et al. 2012; LeCun et al. 2015) and can93

even work with multi-view approaches (Zhao et al. 2017). A simple eight layer deep CNN94

has strongly outperformed conventional algorithms that needed introduced features (Held95
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et al. 2015). It is also common practice that deep neural networks outperform shallow96

neural networks (Chatfield et al. 2014). In recent years, CNN technology has advanced97

greatly (LeCun et al. 2015; Mishkin et al. 2017; Wäldchen et al. 2018), and many98

biological relevant studies have shown promising results (as can be read in the next99

Section: Related deep learning studies).100

Related deep learning studies CNNs have been used in plant identification (Lee101

et al. 2015; Lee et al. 2016; Dyrmann et al. 2016; Barré et al. 2017; Sun et al. 2017), plant102

disease detection (Mohanty et al. 2016) and identification of underwater fish images (Qin103

et al. 2016), all with high accuracy (71% – 99%). Applied examples with high accuracy104

include classification of different qualities of wood for industrial purposes (79%) (Affonso105

et al. 2017), identifying mercury stained plant specimens from non-stained (90%)106

(Schuettpelz et al. 2017), and identification of specimens using multiple herbariums (70% –107

80%) (Carranza-Rojas et al. 2017). Especially studies like the last two are important for108

natural history collections, because such applications can benefit research, speed up109

identification and lower costs.110

Contributions111

Here, we explore an alternative approach to taxonomic identification of ants based112

on computer vision and deep learning, using images from AntWeb (AntWeb.org 2017[a]).113

AntWeb is the world’s largest and leading online open database for ecological, taxonomic,114

and natural history information on ants. AntWeb keeps records and high quality images of115

specimens from all over the world, usually maintained by expert taxonomist curators. Ant116

mounting and photographing of specimens usually follows the AntWeb protocol117

(AntWeb.org 2018), which specifies standards for a dorsal, head and profile view.118

Considering that automating identification could greatly speed up taxonomic work and119

improve identification accuracy (PJD Weeks et al. 1997; Gaston et al. 2004), this work120
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6 BOER & VOS

could assist in solving collection impediments. In this research, we make a start with121

automatic classification of ant species using images and present which shot type will122

classify ants the best, together with a multi-view approach. In the end we will discuss the123

results from different data sets and write recommendations for future work in an effort to124

improve taxonomic work and increase classification accuracy.125

Materials and Methods126

First presented are the data sets, the process involving quality of data and, creating127

test sets. We used different shot types to find which type classifies best. In a different128

approach the three shot types are combined to one image for multi-view training. More test129

data for all shot types is a worker-only set and an AntWeb protocol-deviant set. Secondly,130

image augmentation is described and explained. Thirdly, the proposed model with its131

architectural decisions is discussed, and lastly the model related preprocessing actions.132

Data material133

We collected all images and metadata from AntWeb (AntWeb.org 2017[a]), where134

images follow specific protocols for mounting and photographing with dorsal, head and135

profile views(AntWeb.org 2018). The intention was to work with 100 species, but the list136

was truncated at the 97 most imaged. This ensured the data included all species with 68 or137

more images, leaving out all species with 67 images or fewer. On May 15, 2018, catalog138

number, genus and species name, shot type, and image for imaged specimens of the 97139

species were harvested from AntWeb, through its API version 2 (AntWeb.org 2017[b]).140

This first data set with a total of 3,437 specimens and 10,211 images is here referred to as141

top97species Qmed def. The distribution of images per species for the dorsal shot type142

(3,405 images), head (3,385) and profile (3,421) can be seen in Figure 1 on page 27 and143

Table 1 on page 34. We partitioned the images randomly in non-overlapping sets:144

approximately 70%, 20%, and 10% for training, validation, and testing, respectively (see145
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ANT IMAGE CLASSIFICATION USING DEEP LEARNING 7

Table 1 on page 34). The 70%-20%-10% was used in every consecutive dataset involving146

training. We downloaded images in medium quality, accountable for 233 pixels in width and147

ranging from 59 pixels to 428 pixels in height (for sample images see Figure 2 on page 28).148

Cleaning the data This initial data set still contained specimens that miss a gaster149

and/or head or are close ups of body parts (e.g. thorax, gaster, or mandibles). A small150

group of other specimens showed damage by fungi or were affected by glue, dirt or other151

substances. These images were removed from the dataset, as these images are not152

representing complete ant specimens and could affect the accuracy of the model. A total of153

94 images (46 specimens) were omitted from training, validation and testing (dorsal: 43,154

head: 7, profile: 44), resulting in 10,117 images for 3,407 specimens for a new dataset155

named top97species Qmed def clean. Most of the images of detached heads could still be156

used, as the heads were glued on pinned paper points and looked just like non-detached157

head images.158

Multi-view data set In order to create a multi-view dataset we only included159

specimens in top97species Qmed def clean with all three shot types. A total of 95160

specimens (151 images) had two or fewer shot types and, thus could not be used. This list161

was combined with the bad specimen list for a total of 115 specimens (as there was some162

overlap with the one/two shot specimens and bad specimens). We removed these 115163

specimens from the initial dataset so 3,322 specimens remained, all with three images per164

specimen per shot type, in a dataset named top97species Qmed def clean multi (see Table165

1 on page 34). The most imaged Camponotus maculatus (Fabricius, 1782) had 223166

three-shot specimens and the least imaged species Camponotus christi (Forel, 1886) only167

18. Before stitching, we scaled all images to the same width, using the width of the widest168

image. If after scaling an image had fewer pixels in height than the largest image, black169

pixels were added to the bottom of this image to complement the height of the largest170

image (example in Figure 3 on page 29). We did not consider the black pixels as a problem171
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8 BOER & VOS

for classification, because almost all stitched images had black pixel padding. The model172

will therefore learn that these black pixels are not representing discriminating features173

between species. Now, the images were combined in a horizontally stacked174

dorsal-head-profile image, followed by normalizing pixel values to [−1, 1] and resizing175

width and height to 299× 299 pixels.176

Worker only test set We labeled all specimens with their correct caste manually,177

as AntWebs API version 2 did not support the use of castes (support for this will be in178

version 3 (AntWeb.org 2017[c])). We considered alate, dealate and ergatoid queens,179

(ergatoid) males and intercastes as non-workers (i.e. reproductives), with no intercastes in180

the data set. Over 80% of top97species Qmed def clean appeared to be workers (Figure1b181

on page 27). Consequently, 651 specimens (1,831 images) were marked as reproductives,182

with potential exclusion from a test set copy of top97species Qmed def clean. A total of 63,183

52 and 58 images, for dorsal, head, profile respectively, were removed from this copy to184

create a test set named top97species Qmed def clean wtest. The number of images in185

top97species Qmed def clean wtest set are 264, 279 and 278 for dorsal, head and profile,186

respectively (see Table 1 on page 34). Unfortunately, for a few species all test images were187

from reproductive specimens, resulting in no test images for that species. The dorsal set188

had five species with no test data, head only one and profile three.189

St. Eustatius 2015 collection In a 2015 expedition to St. Eustatius, researchers of190

Naturalis Biodiversity Center collected an extensive amount of flora and fauna (Andel191

et al. 2016). During this expedition, researchers also collected a considerable number of ant192

samples, now stored at Naturalis Biodiversity Center, in Leiden, the Netherlands. Most of193

these species all had one or more specimens imaged, and the majority of this collection was194

identified by expert ant taxonomists. From this collection, we extracted images of species195

shared with top97species Qmed def in a new data set we refer to as statia2015 rmnh. This196

test data set of seven species with 28 images per shot type (see Table 1 on page 34) is used197
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to assess whether the model can be applied to AntWeb protocol-deviant collections,198

indicating if an application will be of practical use to natural history museums and199

collections with existing image banks.200

Data augmentation201

The issue of a small data set (<1 million training images) can be tackled by using202

image augmentation, a very common method used in DL (Krizhevsky et al. 2012). In order203

to artificially increase the training set, we applied label-preserving image augmentation204

randomly to training images during the forward pass in the training phase. Images were205

randomly rotated between −20◦ and 20◦, vertically and horizontally shifted between 0%206

and 20% of the total height and width, horizontally sheared for maximally 20◦, zoomed in207

for maximally 20% and horizontally flipped. It did not make sense to do heavier or other208

transformations, e.g. vertical flipping as ant images will never be upside down. With data209

augmentation, model performance is boosted because the model becomes more robust to210

inconsistencies in ant mounting and to within-species variation. Data augmentation can211

decrease the error rate between training and test accuracy, and therefore reduce overfitting212

(Wong et al. 2016). For data augmentation examples see Figure 4 on page 30.213

Deep learning framework and model214

We did all of the programming in Python, mostly utilizing the open source deep215

learning framework Keras (Chollet 2015), with the TensorFlow framework as backend216

(Abadi et al. 2016). We ran all experiments on a Windows 10 (64 bit) computer with a217

3.50 GHz Intel Xeon E5-1650 v3 CPU and an Nvidia GeForce GTX Titan X (12GB). The218

network we used was Inception-ResNet-V2 (Szegedy et al. 2016) because of its efficient219

memory usage and computational speed. We added four top layers for this classification220

problem to create a modified version of Inception-ResNet-V2 (Fig 5 on page 31), in order:221

1. Global average pooling layer to minimize overfitting and reduce model parameters222
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10 BOER & VOS

(Lin et al. 2013).223

2. Dropout layer with 50% dropout probability to minimize overfitting (Srivastava et al.224

2014).225

3. Fully connected layer with the ReLU function as activation (Glorot et al. 2011).226

4. Fully connected softmax layer to average prediction scores to a distribution over 97227

classes (Krizhevsky et al. 2012).228

As transfer learning is found to be a favorable method during training (Yosinski229

et al. 2014), we initialized with pre-trained weights (for inception models trained by230

Keras-team (MIT license) using the ImageNet data set (Deng et al. 2009)). We found231

transfer learning and fine-tuning from ImageNet to be consistently beneficial in training the232

ant classification models (no layers were frozen) as it greatly decreased training time. To233

update the parameters we used the Nadam optimizer (Dozat 2016), which is a modification234

of the Adam optimizer (Kingma et al. 2014) using Nesterov momentum. Nesterov235

momentum is usually superior to vanilla momentum (Ruder 2016), which is used in Adam.236

We initialized Nadam with standard Keras settings (e.g. decay = 0.004), except one: the237

learning rate was set to 0.001 and allowed to change if model improvement stagnated.238

Preprocessing239

Before training, we normalized pixel values to [−1, 1] to meet the requirements of240

Inception-ResNet-V2 with a TensorFlow backend. Furthermore, we resized images to241

299× 299 pixels in width and height with the ”nearest” interpolation method from the242

python Pillow library. We kept the images in RGB as for some specimens color could be243

important, giving them 3 pixels in depth. In the end, input was formed as244

n× 299× 299× 3 with n as batch number.245
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Results246

We configured the model to train for a maximum of 200 epochs if not stopped early.247

The batch size was 32 and the iterations per epoch were defined as the number of images248

divided by batch size, making sure the model processes all training data each epoch. We249

programmed the model to stop training if the model did not improve for 50 continuing250

epochs (due to early stopping) to prevent overfitting. Model improvement is defined as a251

decline in the loss function for the validation set. We programmed learning rate to decrease252

with a factor of approximately 0.1 if the model did not improve for 25 continuing epochs.253

During training, weights were saved for the best model and at the final epoch. Lastly,254

training, validation and test accuracy and top 3 accuracy were saved after training. Top-n255

accuracies, (commonly used with n = 1, 3, 5, 10), are accuracies that show if any of the n256

highest probability answers match the true label. The above settings were applied to all257

experiments.258

Shot type training259

In all shot type experiments, validation top 1 and top 3 accuracy rapidly increased260

the first few epochs and after around 50− 75 epochs the models converged to an accuracy261

plateau (Figure 6 on page 32). During training, the learning rate was reduced by factor 10262

at epoch 47 for dorsal, epoch 66 and 99 for head, epoch 54 and 102 for profile, and epoch263

50 and 80 for multi-view. At these accuracy plateaus, the models practically stopped264

improving, so early stopping ceased training at epoch 100, 122, 125, and 104 epochs for265

dorsal, head, profile, and stitched, respectively. Training usually completed in three and a266

half hours to four and a half hours, depending on the experiment.267

Unclean data test results Test accuracy on top97species Qmed def reached 65.17%,268

78.82%, and 66.17% for dorsal, head, and profile views, respectively (Table 2 on page 35).269

Top 3 accuracy reached 82.88%, 91.27%, and 86.31% for dorsal, head, and profile view,270
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respectively. Genus accuracy reached 82.58%, 93.98%, and 86.94% for dorsal, head, and271

profile view, respectively. Top 1, top 3 and genus accuracies were obtained directly after272

training where the model was in its validation accuracy plateau. Therefore, these273

accuracies do not represent the best model, of which the accuracies are shown later.274

Clean data test results Test accuracy on top97species Qmed def clean reached275

63.61%, 78.55%, and 68.75% for dorsal, head and, profile views, respectively (Table 2 on276

page 35). Top 3 accuracy reached 81.65%, 91.24%, and 86.31% for dorsal, head, and profile277

view, respectively. Genus accuracy reached 82.87%, 92.45%, and 87.20% for dorsal, head,278

and profile view, respectively. Top 1, top 3 and genus accuracies were obtained directly279

after training where the model was in its validation accuracy plateau. Therefore, these280

accuracies do not represent the best model, of which the accuracies are shown in the281

section below.282

During training on top97species Qmed def clean, the model with the lowest283

validation loss function was saved at the lowest loss. This model was viewed as the best284

model, as the error between training and validation was at its lowest, instead of picking the285

model based on the validation accuracy. The lowest loss model will represent a more robust286

model than the previous models with higher validation loss, despite having slightly higher287

validation accuracy. Using the lowest loss model on the test data of288

top97species Qmed def clean, accuracy reached 61.77%, 78.25%, and 67.26% for dorsal,289

head, and profile view, respectively (Table 2 on page 35). Top 3 accuracy reached 80.12%,290

89.73%, and 86.31% for dorsal, head, and profile view, respectively. Genus accuracy291

reached 79.52%, 93.66%, and 86.90% for dorsal, head, and profile view, respectively.292

Breaking down the top 1 prediction for the lowest loss models shows that most of293

the predictions were correct. To visualize the classification successes and errors we294

constructed confusion matrices using the true and predicted labels (Figure 7 on page 33).295

A bright yellow diagonal line indicates that most of the species were classified correctly.296
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Multi-view test results An accuracy of 64.31% was reached on the297

top97species Qmed def clean multi test set (Table 2 on page 35). Top 3 accuracy reached298

83.69% and genus accuracy 85.85%. Stitched validation accuracy increased the most299

uniform of all shot type approaches, before reaching a plateau after roughly 50 epochs300

(Figure 6 on page 32).301

Worker only data results302

Accuracy for top97species Qmed def clean wtest reached 64.39%, 81.00%, and303

69.42% for dorsal, head, and profile views, respectively (Table 2 on page 35). Top 3304

accuracy reached 82.58%, 92.47%, and 87.50% for dorsal, head, and profile view,305

respectively. Genus accuracy reached 84.47%, 96.42%, and 90.68% for dorsal, head, and306

profile view, respectively. Head genus accuracy was the highest accuracy found in all307

experiments.308

We see that the accuracies go up, but the test set also becomes smaller. To compare309

this, we took worker accuracy and calculated reproductive accuracy. The head shot type310

reproductives reached an accuracy of 65.40%, while for workers accuracy reached 81.00%, a311

difference of 15.60% (Table 3 on page 36). This difference is much larger than for the other312

shot types; dorsal: 4.04% and profile: 4.88%.313

RMNH collection test results314

Accuracy for statia2015 rmnh reached 17.86%, 14.29%, and 7.14% for dorsal, head,315

and profile views, respectively (Table 2 on page 35). Top 3 accuracy reached 60.71%,316

21.43%, and 25.00% for dorsal, head, and profile view, respectively. Genus accuracy317

reached 21.43%, 25.00%, and 14.29% for dorsal, head, and profile view, respectively. This is318

the only case where genus accuracy is substantially lower than the top 3 accuracy. Profile319

top 1 accuracy was the lowest accuracy found in all experiments.320
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Discussion321

We present an image-based ant classification method with 61.77% – 81.00%322

accuracy for different shot types. We processed the input for training in different ways and323

with test data including a worker-only and an AntWeb protocol-deviant test set.324

Consistently throughout our experiments, shot type accuracies were found to rank from325

low to high accuracy in the same order: dorsal → profile → head. The head shot type326

predominantly outperformed dorsal, profile, and stitched in accuracy by about ten327

percentage points most of the time, perhaps due to the fact that this shot type is more328

protocol stable. An additional explanation may be that discriminating characters are more329

concentrated in the head in some ant groups. The combined, stitched image view did not330

greatly increase accuracy, as the head shot type outperformed the stitched view by 6.04% –331

7.58%. A not so much curious result, as the combination of multiple views in one image is332

the most naive way of approaching a multi-view learning problem (Zhao et al. 2017). Other333

approaches on a multi-view problem (discussed in Section: Recommendations for future334

work) would most probably have higher accuracies. Genus accuracy reached 79.52% –335

96.42%, which is approximately as accurate as the top 3 accuracy (80.12% – 92.47%),336

sometimes slightly above it. It is, however, important to note that the CNN has no337

understanding of what a genus is, because it selects the label genus species from among a338

flat list. Top 3 accuracy is preferred over genus accuracy as this will show only three339

options, of which one is correct, where a genus accuracy could still have over 20 potential340

species.341

Looking at the confusion matrices (Figure 7 on page 33) outliers can best be342

explained as specimens that are morphological-wise very comparable. This is especially the343

case in Camponotus, Crematogaster or Pheidole, which have a lot of species in the dataset344

(14, 8, and 17, respectively). In contrast, just eight other genera have two to six genera in345

the dataset and the rest only one. And because the species in the confusion matrices are346

alphabetically sorted on genus, false predictions near the yellow diagonal line are most of347
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the time found within the correct genus for these three big genera. Therefore we speculate348

that inter-genus features are better distinguished than intra-genus features.349

Because the majority of specimens are workers, there is most probably a bias in350

learning the workers from a species. We therefore speculate that the model has acquired an351

improved understanding and representation of workers. However, accuracy for workers did352

increase only slightly, when reproductives were removed from the test set. We see a slight353

increase in dorsal and profile worker accuracy over reproductives accuracy, but the increase354

is small. The only noticeable and interesting increase is for the head shot type, where355

workers were classified 15.60% more accurate (Table 3 on page 36). We still see a slight356

increase in dorsal and profile worker accuracy over reproductives accuracy, but the increase357

is small. It seems that discriminating workers from reproductives is best performed using358

the head. This could have something to do with ocelli, only present on heads of359

reproductives, causing trouble.360

The image number threshold for the species in this data set was 68 images, which is361

approximately 23 images per shot type. That accounts for 16 images in the training set,362

which nonetheless achieved good accuracy. This means that the threshold could potentially363

be lower, and thus more species (with fewer than 68 images) could be incorporated.364

However, more species (classes) will also complicate training and test accuracy.365

One of the biggest improvements in accuracy can be made by increasing the data366

and thus reducing variance (training error) and overfitting. The current data shows a much367

skewed, long tailed, distribution with the first two species containing over 10% of the total368

number of images. Furthermore, only C. maculatus and Pheidole megacephala (Fabricius,369

1793) had over 100 stitched images out of 3,322 in total. Also important when expanding370

the image set is adding male and queen specimens so the classifier has improved learning of371

these castes. Despite the fact that Bolton (2003) provided the first big overview for male372

ant taxonomy, at this moment 22% of extant species still have their male castes unknown,373

because males are usually only found incidentally. As males have been found to be374
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important factors in a colony and not just sperm vessels (Shik et al. 2012), it is important375

to include these underrepresented specimens in automatic ant identification.376

Results are not shown, but species in a species complex (i.e. species with377

subspecies) did not complicate training and did not cause accuracy problems. This was378

measured using the F1-score, calculated as the harmonic mean of precision and recall.379

With an increasing number of species in a complex, the F1-score did not increase or380

decrease significantly; variation in data could not be explained by the linear relation.381

Of interesting note is the labeling of this data set, as this was not managed by the382

author. Identifications and labels were directly taken from AntWeb, assuming that they383

were correct. However, there is always a chance that identifications are less accurate and384

certain as expected (e.g. Boer (2016)), despite being a by-expert-labeled data set. Reality385

is that ant identification is more complex work than labeling a cat and dog dataset for386

example.387

Despite some obstacles and points for improvement, we have shown that processing388

data in different ways influences test results in different ways. In this article we389

demonstrated that it is possible to classify ant species from images with decent accuracy.390

Recommendations for future work391

To the best of our knowledge, this is the first time ants were classified to species392

level using computer vision, which also means that there is a lot to improve. In this section393

we will discuss some possible improvements for future research in the form of394

recommendations.395

To start, focus should lie on creating benchmark data set that is easy to enlarge396

and improve. To do that, first it is important to find the image threshold for the model to397

learn a species, which could differ per genera and species. Finding this number would shift398

the focus to photographing species below the threshold in reaching the threshold. To also399

increase the data set in the near future, specimens from natural history museums ant400
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collections should be photographed, as it would be less time and cost expensive than401

collecting new specimens. These existing specimens are most likely already following402

AntWeb mounting standards. Hopefully this could also solve the skewed image distribution403

and add more three shot type specimens. In the end, this data set could serve as404

benchmark data for automated insect identification, and then research focus can shift to405

accuracy-improving efforts.406

One of these efforts could be the incorporation of a hierarchical system, where the407

model classifies on different taxonomic levels as Pereira et al. (2016) did with orchids408

(Asparagales: Orchidaceae). In an effort to do this, one could do this in a series of multiple409

CNNs (e.g. first subfamily, then genus, then species), but also in three parallel CNNs,410

learning simultaneously. However, for this we first need to work on a (phylogenetic) tree411

and molecular data, which is a different study itself. Moreover, there is also the option to412

classify on caste, before classifying species, using a caste-trained CNN, and then make use413

of specialized workers, males and queen trained CNNs.414

An other option is to incorporate metadata; e.g. biogeographic region, caste,415

country, collection locality coordinates, or even body size (using the included scale bar on416

images). Metadata could be very important, especially for species that are endemic to a417

specific region. Metadata could provide underlying knowledge of the characteristics. Most418

of this information is already present on AntWeb and ready for use.419

In order to improve the multi-view approach, multiple solutions have been tried420

(Zhao et al. 2017). A first option is to try is using just one CNN with all images as input421

and with the addition of catalog number as a label will. The next option could be to train422

three shot type CNNs parallel and combine the output. The output can be processed as423

the average of three shot type predictions, or by using the highest prediction. It is also424

possible to overlay the three images and take the average pixel values in order to create an425

average single input image of a specimen.426

Furthermore, as results have shown, it is very important to have the same mounting427
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18 BOER & VOS

procedure and photographing protocol to get a uniform set of images. Difference in dried428

and alcohol material is most likely very important, but other details like type of glue,429

background, and zoom could potentially be important and will have to be standardized.430

Also to get high-detail images, the use of good image stacking software and high-resolution431

cameras is very important. Therefore, the recommendation is to follow the, already widely432

used, AntWeb protocol (AntWeb.org 2018).433

In the end, research like this could assist taxonomists, natural history museums,434

and researchers to achieve higher taxonomic completeness, better collections and therefore435

improve research. But for general use the code should further be developed in an easy to436

use application. A functioning application with high accuracy could reduce costs, time, and437

energy during everyday identification work (Gaston et al. 2004). However, bear in mind438

that an application like this is not aimed for use in the field and there is still skill required439

in collecting, mounting and photographing specimens. Nonetheless, we would like to argue440

that automated species identification from images using a CNN has high potential.441

Research in this subject should be continued, and even though DL still has some obstacles442

to overcome (Marcus 2018), it has already advanced a lot (Guo et al. 2016; Wäldchen et al.443

2018).444
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Figure 1. a) Histogram showing the ranked distribution for the 97 most imaged species per shot type (dorsal in
red, head in green and profile in blue) for top97species Qmed def. Species are ranked for the combined shot type
image count. Combined image counts ranges from 671 images for Camponotus maculatus (Fabricius, 1782) to 54
images for Camponotus christi (Forel, 1886). b) Histogram showing the image distribution for the different castes in
top97species Qmed def.
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28 FIGURES

Figure 2. Sample images from top97species Qmed def showing the diversity in species, shot types, mounting,
background, and specimen quality. The images have not been preprocessed. Images were downloaded from AntWeb.
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FIGURES 29

Figure 3. Sample image of a stitched image of the dorsal, head and, profile shot type for a Wasmannia
auropunctata (Roger, 1863) worker (casent0171093). This image has not been preprocessed. Photo by Eli M. Sarnat
/ URL: https://www.AntWeb.org/specimenImages.do?name=casent0171093. Image Copyright AntWeb 2002 -
2018. Licensing: Creative Commons Attribution License.
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30 FIGURES

Figure 4. Example of random data augmentation on a medium quality head view image of a worker of Eciton
burchellii (Westwood, 1842) (casent0009221). These images have been preprocessed and resized before
augmentation. Original photo by / URL:
https://www.AntWeb.org/bigPicture.do?name=casent0009221&shot=h&number=1. Image Copyright AntWeb
2002 - 2018. Licensing: Creative Commons Attribution License.
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FIGURES 31

Figure 5. A modified version of Inception-ResNet-V2 (Szegedy et al. 2016) was used as the classifying model. It is
built using 3 main building blocks (block A, B and C), each with its own repeating layers. On top of the shown
network, four top layers were added, in order: global average pooling layer, dropout, fully connected layer with
ReLU, and a fully connected softmax layer. Image is adjusted from:
https://ai.googleblog.com/2016/08/improving-inception-and-image.html.
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Figure 6. Evolution of the validation accuracy for top97species Qmed def clean for different shot types during
training (in red: top 1 accuracy, in blue: top 3 accuracy). Where the line ends, training was ceased due to early
stopping. From left to right: dorsal, head, profile and stitched shot type.
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FIGURES 33
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Figure 7. Confusion matrices showing the true label (x-axis) and predicted label (y-axis) for the dorsal (a), head
(b), profile (c) and stitched (d) test sets. Each row and column represents a species. Classification accuracies are
0.6177 (a), 0.7825 (b), 0.6726 (c) and 0.6677 (d) (see also Table 2 on page 35). Most confusion was found within
large genera like Camponotus or Pheidole. Confusion matrices were made using the model with the lowest
validation loss trained on top97species Qmed def clean. Prediction accuracy is indicated by color; from 1.0 – correct
(yellow) to 0.0 – incorrect (blue). Numbers in the cells are normalized to [0, 1] to show the prediction accuracy;
zeroes are not shown (best viewed on computer).
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34 TABLES

Table 1. Image distribution for different data sets for training, validation and test sets for
70%, 20% and 10%, respectively. top97species Qmed def clean wtest and statia2015 rmnh
have no training and validation images, because they are test data sets.

Shot type def def clean def clean multi def clean wtest statia2015 rmnh

Specimens 3,437 3,407 3,322 2,843a 28

Total Dorsal 3,405 3,362 - 264 28
Head 3,385 3,378 - 279 28
Profile 3,421 3,377 - 278 28
Stitched - - 3,322 - -

Training Dorsal 2,381 2,354 - 0 0
Head 2,364 2,358 - 0 0
Profile 2,392 2,362 - 0 0
Stitched - - 2,322 - -

Validation Dorsal 691 681 - 0 0
Head 689 689 - 0 0
Profile 692 679 - 0 0
Stitched - - 675 - -

Test Dorsal 333 327 - 264 28
Head 332 331 - 279 28
Profile 337 336 - 278 28
Stitched - - 325 - -

a 2,843 specimens were marked as valid worker specimens and, therefore, were possible specimens
for the worker only test set.
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FIGURES 35

Table 2. Test accuracies for different data sets and all shot types. Top 1, top 3 and genus
accuracy results are shown.

Accuracy Shot type def def clean Best model def clean multi def clean wtest Statia2015 rmnh

Top 1 Dorsal 65.17% 63.61% 61.77% - 64.39% 17.86%
Head 78.82% 78.55% 78.25% - 81.00% 14.29%
Profile 66.17% 68.75% 67.25% - 69.42% 7.14%
Stitched - - - 64.31% - -

Top 3 Dorsal 82.88% 81.65% 80.12% - 82.58% 60.71%
Head 91.27% 91.24% 89.73% - 92.47% 21.43%
Profile 86.31% 86.31% 86.31% - 87.50% 25.00%
Stitched - - - 83.69% - -

Genus Dorsal 82.58% 82.87% 79.52% - 84.47% 21.43%
Head 93.98% 92.45% 93.66% - 96.42% 25.00%
Profile 86.94% 87.20% 86.90% - 90.68% 14.29%
Stitched - - - 85.85% - -
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36 TABLES

Table 3. Correct and incorrect predictions, and top 1 test accuracies for workers and repro-
ductives on top97species Qmed def clean. Reproductive count and accuracy is calculated from
the differences in correct and incorrect predictions between top97species Qmed def clean and
top97species Qmed def clean wtest. Worker accuracy is taken from Table 2 on page 35.

Shot type Workers Reproductives

Correct
predictions

Incorrect
predictions

Accuracy
Correct

predictions
Incorrect

predictions
Accuracy

Dorsal 170 94 64.39% 38 25 60.34%
Head 226 53 81.00% 34 18 65.40%
Profile 193 85 69.42% 38 20 65.54%
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