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Abstract. Deep learning has thoroughly changed the field of image
analysis yielding impressive results whenever enough annotated data can
be gathered. While partial annotation can be very fast, manual segmen-
tation of biological structures is tedious and error-prone. Additionally,
high-level shape concepts such as topology or boundary smoothness are
hard if not impossible to encode in Feedforward Neural Networks. Here
we present a modular strategy for the accurate segmentation of neu-
ral cell bodies from light-sheet microscopy combining deep learning and
topology-preserving geometric deformable models. We show that the net-
work can be trained efficiently from simple cell centroid annotations, and
that the final segmentation provides accurate detection and smooth seg-
mentations, without introducing cell splitting or merging.
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1 Introduction

Systematic studies of the cortical cytoarchitecture are indispensable to under-
stand the functional organization of the human brain. Classical works based
on qualitative description of cell counts and shapes in physical 2D sections of
the human cortex revealed functional areas in the brain[3,6,17]. These brain
parcellations are currently updated and refined using automated image analysis
[21]. Even 3D imaging of post mortem brain tissue at microstructural resolu-
tion are within reach using recent light sheet fluorescence microscopy (LSFM)
[9,5] and tissue clearing protocols [4]. Combined with advanced image analysis
these techniques open the door for studying cortical cellular organisation in the
human brain with unsurpassed precision. Such studies are crucial to validate in
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vivo MRI-based cortical architecture mapping[18] to understand the relation-
ship between structure and function in the human brain. To reach this goal we
need reliable computational analysis with minimal manual annotations, facing
the following challenges:

— Clearing of aged, unperfused human tissue is imperfect and optical distor-
tions due to scattering and refraction remain. This leads to varying back-
ground intensities across the image and shadow artifacts.

— The penetration of antibody stains is uneven across the sample. The tis-
sue degenerates with longer post-mortem times. These effects increase the
already high variability of neural shape and appearance in the cortical sam-
ples.

— Cell density varies locally, leading to false segmentation of cells into clusters.

Machine Learning methods improved the analysis of microscopy data [16, 1,
8]. Deep Learning, in particular Convolutional Neural Networks (CNNs), can
address challenging problems in biomedical imaging because they learn multi-
level internal representations of the data [12,15]. These, typically supervised,
methods require a lot of annotated data: For cell segmentation pixel-accurate
masks have to be supplied [14]. Manually annotating data for training is often
prohibitive in biomedical applications where data are specialized, scarce and
expert knowledge is required. Abstract concepts at the object level (Gestalt
principles such as continuation, closure [10], or object topology) are hard to learn
with CNNs. Additional annotation of the border region between adjacent cells is
needed to reduce false merging of neighboring cells [14]. Human vision exploits
high level concepts using top-down processing [10] which is not represented in
feedforward architectures.

Active Contour methods have been designed to embody high level concepts of
object shapes. They can guarantee the smoothness of contours and a consistent
topology [2, 7]: features that improve cell segmentation in challenging conditions
and prevents splitting and merging of contours during segmentation. But active
contour methods require an initialization with the number and approximate
position of objects in the image. Robust initial localization of cells is hard to
define a priori and should be learned from data. This is where Deep Learning
has a clear advantage: Convolutional neural networks can be trained to robustly
predict cell positions in images using only sparse centroid annotations [19].

In this work we combine the complementary strengths of CNNs and topology-
aware active contours into a robust workflow to detect and segment cells that
delivers high quality results and requires only minimal annotations (sparse an-
notations of approximate cell centers are enough)®. Here, we demonstrate the
feasibility of this idea in a proof of concept study using 2D slices from a 3D
microscopy image volume obtained of cleared post mortem human brain blocks,
but the required methods can be extended to 3D as well.

5 A related approach combining deep learning and active contours has been proposed
by[11] to segment vertebral bodies in MR spine images.
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2 Methodology

2.1 Sample Preparation

Blocks from a human post mortem brain (temporal lobe cortex, male, 54 yr.,
post-mortem interval 96h) have been provided by the Brain Banking Centre
Leipzig of the German Brain-Net. The entire procedure of case recruitment,
acquisition of the patient’s personal data, the protocols and the informed consent
forms, performing the autopsy, and handling the autoptic material have been
approved by the local ethics committee. For details on tissue preparation and
clearing see [13].

Fig. 1. Image data. Three samples images from the stack at different imaging depths
(left to right: Omm, 1mm, 2mm; scale bar 100 pum).

2.2 Image Data

A commercial light-sheet fluorescence microscope (LaVision BioTec, Bielefeld,
Germany) was used to image the cleared specimen. The microscope was equipped
with 10x CLARITY-objective (Olympus XLPLN10XSVMP, numerical aperture
(NA) 0.6, working distance (WD) 8 mm; Zeiss Clr Plan-Apochromat, NA 0.5,
WD 3.7 mm) and operated with 630 nm excitation wavelength and band-pass 680
nm emission filter. Samples were stained with a fluorescent monoclonal antibody
against human neuronal protein HuC/HuD (a specific marker for neuronal cells).
The acquisition covered a 1.1 mm x 1.3 mm x 2.5 mm volume resulting in a stack
of 2601 16 bit TIFF images (2560 x 2160 pixels, 0.51 pum lateral resolution) using
a 1 um step size.

For the 2D analysis workflow we took 19 slices at regular intervals from the
entire stack. We used 15 images for training and validation and kept 4 images as a
test set. The images for the test set were used for final assessment of segmentation
performance only. A single image typically contains around 300 cells (Fig. 1).
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2.3 Cell Segmentation Workflow

Our modular approach is based on version A of the Fully Convolutional Regres-
sion Network architecture (FCRN-A)[19] to robustly predict cell positions and
a topology-preserving multi-contour segmentation [2] to control smoothness and
topology of the segmentation. The basic concept of our approach (Fig. 2) is as

follows:
image
data
. MGDM—— C’ O. o .
. o) ‘
. initialization O
@ FCRN ——
o centroid prediction final segmentation
o
o

training annotation

Fig. 2. Schematic overview of method. We train a FCRN network on manually la-
beled cell centroids. The predicted cell positions are used as initialization and topology
prior for the multi-object contour segmentation.

— Training step: Pairs of images (annotated centroids and raw data) are fed
into FCRN. The network is trained to predict a Gaussian distribution around
the expected cell centroid.

— Prediction step: FCRN predicts probability maps of cell positions from
the raw image. These centroid probabilities are filtered for local maxima to
initialize the active contour segmentation that segments the cells from the
raw images.

Cell Detection We adapted the FCRN-A architecture from [19]. We trained
the network on randomly sampled image sections of size 512x512 pixels and the
annotated centroids. We discarded sections which did not contain any annotated
cells to improve convergence. Further, we applied data augmentation to the
training samples in form of image rotation up to 90° and image translations
in x and y direction of up to 20% of the image size. For optimization we used
stochastic gradient descent with a batch size of 32, and an adaptive learning rate
(ADADELTA) [20].
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Multi-object Geometric Deformable Model Once cell centroids have been
detected, the final segmentation is handled by a Multi-object Geometric De-
formable Model (MGDM) which ensures fast segmentation of an arbitrarily
large number of cells while enforcing topological constraints [2]. The deformable
model is driven by curvature regularization and balloon forces derived from the
microscopy image intensities as follows.

For each detected cell, we first find the maximum intensity M, inside the
initial centroid probability map. We set the balloon forces to decrease linearly
with the distance to M.,:

M, —|I(x) — M,|
Th— 0

F.(z) =

where I(x) is the image intensity. Because fluorescence intensity varies between
cells, this calibration ensures that each cell is within its detection range. For
the background, we first estimate the mean image intensity Mp to separate
background from cells and derive a similar balloon force:

_ 2MB—I((E)
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(2)
To avoid unstable evolution from too large forces, F, and Fp are all bounded
in [+1, —1]. Balloon and curvature forces are combined in the MGDM evolution
equation:
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For this study we fixed the weights for curvature regularization to w, = 0.6, and
the balloon forces to w., g = 0.3. The evolution was run for 200 iterations.

Validation of Results An expert created reference cell masks on the test
images. The masks were independently checked and corrected by a second expert.
To assess cell detection accuracy, we computed precision p = recall

TPLFP

r = TF&%, and the combined F-score=2 ]’)’i:; TP are true positive, F'P false
positive, and F'N false negative detections. Since false splitting and fusion of
cell masks are not explicit in these measures, we report those rates separately as
the ratio of splits and fusions to the total number of reference cells. To validate
the agreement between annotated masks and segmentation we computed the
Jaccard index between each reference cell mask A and the best-fitting mask B

of the result: J(A, B) = %.

We used the fastER segmentation [8] as a reference baseline because it pro-
duces state-of-the art results on par with deep learning methods such as [14] and

can be trained with few annotations”.

" Note that fastER is limited to 2D images only.
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Fig. 3. Segmentation result. Two images from the test set showing outlines of seg-
mented cell masks, subregions were magnified for better visibility (scale bar 100 um).

3 Results

Examples of final segmentation masks on the test set are shown in Fig.3. The
segmentation performed well across regions with varying cell appearance and
density. The cell localization step produced a few fusion and splitting errors,
particularly in regions where small, dim cells were concentrated (Fig.3 b”).

Quantitative results were aggregated over all four test images and summa-
rized in Table 3. The proposed method improved cell detection and particularly
segmentation accuracy. For a more detailed picture the distribution of the Jac-
card index over all 992 masks is shown in Fig. 3a.

method ‘precision recall F-score merge rate split rate  JI(median)
ours 0.891 0.943 0.917 0.011 0.002 0.713
FastER 0.834 0.917 0.874 0.007 0.007 0.521

Table 1. Comparison of segmentation across test set. Best results shown in bold.

As we were interested in how segmentation impacts downstream analysis,
we compared the estimated cell size distribution® in Fig. 3b. While our results
slightly overestimate cell sizes, the distribution was much closer to the reference
data than fastER.

4 Conclusions

As a proof of concept we present a modular strategy to segment neural cells com-
bining deep learning and a topology-preserving geometric deformable model. Our
method improves cell detection and robustly segments cell bodies in light-sheet

8 Cell size is an important feature to classify cell types and define cortical layers.
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Fig. 4. Quantitative comparison of segmentation. Distribution of (a) segmenta-
tion accuracy across test set and (b) extracted cell sizes against reference.

microscopy images of cleared post mortem human brain tissue. Good results
were obtained despite varying background and cell intensities. Our method only
requires sparse annotation for training and can be easily adapted to improved
clearing, staining and imaging protocols. Most importantly, the methods can be
extended to the full 3D image data, where the advantage of using only sparse
annotations is crucial for large-scale histological analysis of desired quality.

As a next step we will concentrate on further optimizing the regression net-
work to better handle differences in cell appearance and to further improve
detection.

Our results highlight a general point: Classical approaches based on mathe-
matical models and Machine Learning are often complementary and a combined
strategy can benefit from learning sensitive parts directly from data (e.g. ini-
tialization, features) while exploiting the high-level information supplied by the
model.
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