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One sentence summary: A unified multitask deep learning model can be used to identify 

multidrug resistant Mycobacterium tuberculosis using sequencing data. 

 

Abstract The diagnosis of multidrug resistant and extensively drug resistant tuberculosis is a 

global health priority. Whole genome sequencing of clinical Mycobacterium tuberculosis isolates 

promises to circumvent the long wait times and limited scope of conventional phenotypic drug 

susceptibility but gaps remain for predicting phenotype accurately from genotypic data. Using 

targeted or whole genome sequencing and conventional drug resistance phenotyping data from 

3,601 Mycobacterium tuberculosis strains, 1,228 of which were multidrug resistant, we 

implemented the first multitask deep learning framework to predict phenotypic drug resistance to 

10 anti-tubercular drugs. The proposed wide and deep neural network (WDNN) achieved 

improved predictive performance compared to regularized logistic regression and random forest: 

the average sensitivities and specificities, respectively, were 92.7% and 92.7% for first-line drugs 

and 82.0% and 92.8% for second-line drugs during cross-validation. On an independent 

validation set, the multitask WDNN showed significant performance gains over baseline models, 

with average sensitivities and specificities, respectively, of 84.5% and 93.6% for first-line drugs 

and 64.0% and 95.7% for second-line drugs. In addition to being able to learn from samples that 

have only been partially phenotyped, our proposed multitask architecture shares information 

across different anti-tubercular drugs and genes to provide a more accurate phenotypic 

prediction. We use t-distributed Stochastic Neighbor Embedding (t-SNE) visualization and 

feature importance analyses to examine inter-drug similarities. Deep learning has a clear role in 

improving drug resistance predictive performance over traditional methods and holds promise in 

bringing sequencing technologies closer to the bedside.  
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Introduction 

Tuberculosis (TB) is among the top 10 causes of mortality worldwide with an estimated 

10.4 million new incidents of TB in 2015 (1). The growing use of antibiotics in healthcare has 

led to increased prevalence of drug resistant bacterial strains (2), and the World Health 

Organization (WHO) estimates that 4.1% of new Mycobacterium tuberculosis (MTB) clinical 

isolates are multidrug-resistant (MDR) (i.e. resistant to rifampicin [RIF] and isoniazid [INH]). 

Furthermore, approximately 9.5% of MDR cases are extensively drug-resistant (XDR) (i.e. 

resistant to one second-line injectable drug, such as amikacin [AMK], kanamycin [KAN], or 

capreomycin [CAP], and one fluoroquinolone, such as moxifloxacin [MOXI], or ofloxacin 

[OFLX]) (1). The WHO estimates that 48% of MDR-TB and 72% of XDR-TB patients have 

unfavorable treatment outcomes, citing the lack of MDR-TB detection and treatment as a global 

health crisis (1). 

Diagnosing drug resistance remains a barrier to providing appropriate TB treatment. Due 

to insufficient resources for building diagnostic laboratories, fewer than half of the countries with 

a high MDR-TB burden have modern diagnostic capabilities (3). Even in the best equipped 

laboratories, conventional culture and culture based drug susceptibility testing (DST) constitutes 

a considerable biohazard and requires weeks to months before results are reported due to 

Mycobacterium tuberculosis’s slow growth in vitro (1). Molecular diagnostics are now an 

increasingly common alternative to conventional cultures. The WHO has endorsed three such 

molecular tests: the GeneXpert MTB/RIF a rapid RT-PCR based diagnostic test assay that 

detects RIF resistance, the Hain line probe assay (LPA) that tests for both RIF and INH 

resistance, and the Hain MDRTBsl an LPA that tests for resistance to second-line injectable 

drugs and fluoroquinolones (1). The LPAs recently approved by the WHO have seen moderate 

sensitivities, such as a range from 63.7% to 94.4% for second-line injectable drugs and 

fluoroquinolones (4–6). However, current diagnostic approaches face challenges. First, these 

methods have limited sensitivity because they rely on a few genetic loci, ranging between 1-6 

loci per test (6, 7). Second, they do not detect most rare gene variants of the targeted loci, 

especially insertion and deletions and variants in promoter regions (8). Third, current molecular 

tests only detect resistance to five anti-tubercular drugs rather than the full panel. Fourth, they do 

not account for variables such as genetic background and gene-gene interactions despite good 

evidence for this for several drugs including rifampicin, ethambutol and fluoroquinolone from 

allelic exchange experiments (9–11). The limited scope of these tests suggests the need for a 

comprehensive drug susceptibility test. 

An alternative to targeted mutation detection methods is whole genome sequencing, 

which captures both common and rare mutations involved in drug resistance. Past studies 

utilizing whole genome sequencing have shown a wide range of performance, with sensitivities 

for first-line drugs ranging from 54% to 98% (8, 12, 13). Second-line injectable drugs and 

fluoroquinolones had lower sensitivities, most of which were between 30% and 96% (8, 12, 13). 

We hypothesize that the limited predictive performance of anti-tubercular drugs outside of first-

line drugs could be improved using a large dataset enriched for resistance to second-line drugs 

and a more complex model. 

Deep learning models have become a powerful tool for many classification tasks. Modern 

deep neural networks have achieved state-of-the-art performance in image recognition (14), 

speech recognition (15), and natural language processing (16). Researchers in medicine have 

begun to translate these approaches for use in personalized clinical care. Deep ‘convolutional’ 

neural networks have been used to in identifying diabetic retinopathy (17) and classifying skin 
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cancers (18). Deep learning applications in computational biology and bioinformatics have also 

been successful, such as in predicting RNA-binding protein sites (19), inferring target gene 

expression from landmark genes (20), and identifying biomarkers for predicting human 

chronological age (21). The flexibility of deep learning architectures has allowed for a range of 

successful applications in clinical tasks, biomedicine, molecular genomics, and other fields. 

We demonstrate here an improved predictive tool to evaluate drug resistance for 10 anti-

tubercular drugs using a novel multitask ‘wide and deep’ neural network (WDNN) framework 

(22). In contrast to previously reported single task models, our multitask framework that predicts 

the full resistance profile simultaneously allows the anti-tubercular drugs to share resistance 

pathway information from the phenotypes of other drugs and incorporates prior knowledge that 

drug resistance can be caused by both direct genotype-phenotype relationships as well as 

epistatic effects (9–11). We use the deep learning architectural features to evaluate the relative 

influence of genomic markers, provide insights into the biological basis for our model, and gain 

a deeper understanding of the relationships amongst the 10 anti-tubercular drugs. 

 

Results 

Data Processing 

The pooled data from the WHO network of supranational reference laboratories and the 

ReSeqTB knowledgebase (8, 23) used in training the initial model included 3,601 MTB isolates. 

All of the anti-tubercular drugs had a higher proportion of susceptible isolates compared to 

resistant isolates, ranging from 53.0% to 88.1% susceptible for the different drugs. Ofloxacin 

was tested in the smallest number of isolates at a total of 739. All other drugs were tested in at 

least 1,204 isolates, with rifampicin tested in 3,542 isolates and isoniazid in 3,564 isolates 

(Supplementary Table S1). 

The independent validation set contained 792 MTB isolates, with 198 to 736 of these 

isolates tested for each of the 10 drugs (Supplementary Table S2). Because ciprofloxacin had 

limited phenotypic availability in the independent validation set and predictive performance 

could not be validated, we did not include performance for ciprofloxacin resistance. 

We found 6,342 different insertions, deletions, and single nucleotide polymorphisms 

(SNPs) in 30 promoter, intergenic, and coding regions of the MTB isolates’ genomes. Of these 

variants, 156 were present in at least 30 of the 3,601 isolates and were used as predictors. Of the 

3,445 variants found in fewer than 30 isolates, we aggregated the variants into 141 derived 

categories (see Methods) and used 56 derived categories, those present in at least 30 isolates, as 

predictors. The final model used 222 total predictors in training and subsequent analyses. 

 

Evaluation of MTB isolate diversity 

Sequence data from 33 genetic lineage markers (Supplementary Table S3) were available 

in all 3,601 isolates and were used to assess isolate diversity (12). Overall, the isolates showed 

considerable diversity with a low pairwise genetic distance ranging from 0 to 3.87. The isolates 

fell into five well-defined genetic clusters. The isolate clusters, shown in Figure 1 and colored as 

indicated, contained 632 (Euro-American LAM sub-lineages; purple), 1,501 (other Euro-

American sub-lineages; orange), 331 (Indo-Oceanic, Mycobacterium africanum, and other 

animal lineages; blue), 643 (Central Asian; yellow), and 494 (East Asian; green) isolates, 

respectively. Overlying the lineage clusters and t-SNE coordinates (Supplementary Figure S1) 

confirmed that the multitask WDNN phenotyping was not biased by lineage related variation. 
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Comparison of model predictive performance 

A comparison of model sum of sensitivity and specificity performances across the 10 

anti-tubercular drugs is shown in Figure 2. The multitask WDNN, a single task WDNN (trained 

for each drug individually), random forest, and regularized logistic regression were trained on 

the full set of predictors, whereas the multilayer perceptron (MLP) was trained only using 

predictors in genes known to be determinants of resistance for each drug. Using five-fold cross 

validation, the average sensitivities and specificities, respectively, for rifampicin and isoniazid 

were 97.1% and 95.9% (multitask WDNN), 95.6% and 95.4% (random forest), 96.7% and 

95.7% (regularized logistic regression), 96.3% and 94.3% (preselected mutations MLP), and 

97.2% and 95.2% (single task WDNN). The model performance trends were similar for the other 

eight anti-tubercular drugs. The average sensitivities and specificities, respectively, of the 

multitask WDNN for the different drugs were 89.8% and 90.6% (other first-line drugs: PZA, 

EMB, STR), 84.5% and 93.9 (second-line injectable drugs: CAP, AMK, KAN), and 78.2% and 

91.1% (fluoroquinolones: OFLX and MOXI). 

Using an independent validation set, the models showed similar trends in performance as 

in cross-validation. The average sensitivities and specificities, respectively, for rifampicin and  

Figure 1: Agglomerative clustering of MTB isolates by genetic similarity. We used known lineage-defining mutations to calculate 

isolate-isolate Euclidean distances, which is shown in the heat map. Using these distances of the lineage-defining mutation vectors 

between isolates, we applied Ward’s method of hierarchical clustering to construct the dendrogram and determine the five lineage 

clusters. 
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isoniazid were 93.7% and 95.6% (multitask WDNN), 80.5% and 98.9% (random forest), 87.7% 

and 99.0% (regularized logistic regression), 90.9% and 93.8% (preselected mutations MLP), and 

91.7% and 95.0% (single task WDNN). For the different subgroups of drugs, the multitask 

WDNN had average sensitivity and specificity performance of 78.4% and 92.3% (other first-line 

drugs), 57.9% and 95.9% (second-line injectable drugs), and 73.2% and 95.4% 

(fluoroquinolones). 

Compared to the other models, the multitask WDNN achieved a higher sum of specificity 

and sensitivity for 9 of the 10 drugs (random forest), 9 of the 10 drugs (regularized logistic 

regression), 8 of the 10 drugs (preselected mutations MLP), and 7 of the 10 drugs (single task 

WDNN) during cross-validation. On the independent validation set, the multitask WDNN 

achieved a higher sum of specificity and sensitivity for 8 of the 10 drugs (random forest), 9 of 

the 10 drugs (regularized logistic regression), 9 of the 10 drugs (preselected mutations MLP), 

and 7 of the 10 drugs (single task WDNN). Details about individual sensitivity and specificity 

performance for the models are provided in Supplementary Tables S4 and S5. 
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Figure 2: Tuberculosis drug resistance predictive performance of the multitask WDNN and baseline models. A bar plot of 

sensitivity + specificity performance across all four models during cross-validation (top) and on the independent validation set 

(bottom). The multitask WDNN, single task WDNN, random forest, and logistic regression models were trained on the full set of 

predictors, while the single task MLP was trained on preselected mutations. Thresholds were chosen for each model on the training 

data to maximize sensitivity + specificity with the condition that specificity is at least 90%. Individual sensitivity and specificity 

performance for all five models is available in the supplementary materials. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/275628doi: bioRxiv preprint 

https://doi.org/10.1101/275628
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

MTB isolate visualization using t-SNE 

A popular way to visualize the various high-dimensional components of a deep learning 

model is the t-distribution stochastic neighborhood embedding (t-SNE) method, which is a 

nonlinear dimensionality reduction technique (24). To visualize the multitask WDNN’s 

integration of genetic features into a prediction, we applied t-SNE to the multitask WDNN 

predictions. Figure 3 shows the two-dimensional t-SNE projection colored by the MTB isolate 

resistance phenotype by drug. This demonstrated clear separation by the model between resistant 

and sensitive isolates, consistent with our measurements of high model sensitivity and 

specificity. The t-SNE plots also demonstrates the multitask WDNN’s ability to classify 

resistance across multiple drugs, separating them into nested groups of pan-susceptible isolates, 

followed by mono-INH resistant isolates, multidrug resistant isolates, pre-XDR isolates, and 

XDR isolates, which is consistent with the order of administration of the drugs clinically as well 

as the usual order of MTB drug resistance acquisition (25). The second-line injectable drugs, 

AMI, CAP, and KAN, also show similarly-classified clusters, highlighting the well-known 

moderate level of cross resistance between them. We also observe this among the 

fluoroquinolones despite the fact that fewer isolates were tested for resistance to these agents 

(26). 

 

Importance of MTB genetic variants to drug resistance 

All 222 predictors were tested for importance to resistance to each of the 10 drugs 

through a permutation test as described in the methods section. The first-line anti-tubercular 

t−SNE visualization for the WDNN's representation of drug resistance status

Rifampicin Isoniazid Pyrazinamide Ethambutol

Streptomycin Capreomycin Amikacin Moxifloxacin

Ofloxacin Kanamycin

Resistant Sensitive Unknown

Figure 3: t-SNE visualization for the final output layer of the multitask WDNN. The final layer predictions, originally in 11 

dimensions, were projected onto two dimensions. Each point is an MTB isolate, colored according to its resistance status with 

respect to the corresponding drug. 
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drugs had the largest numbers of significant ‘resistance predictors’: rifampicin (143 predictors), 

isoniazid (144 predictors), pyrazinamide (132 predictors), ethambutol (140 predictors), and 

streptomycin (140 predictors). 

Figure 4 illustrates the number of significant predictors per drug and the predictor 

intersections among different drug subsets. There were 37 drug subsets that shared at least one 

resistance predictor. The largest subset was of 10 anti-tubercular drugs that shared 69 resistance 

predictors. Subsets of drugs that included a second line injectable drug and shared at least two 

predictors consistently included both INH and RIF. This is consistent with previous findings that 

MTB isolates acquire resistance to first-line drugs before second-line drugs (25) and indicates 

that the multitask model was able to capture these relationships. The subset of fluoroquinolones 

shared 3 resistance-correlated predictors not found in other first-line or second-line drugs, which 

is expected given that fluoroquinolones have a mechanism of action that differs from those of 

first-line and second-line drugs (27). 

 

Discussion 

A few prior studies have utilized algorithmic or machine learning methods using MTB 

genomic data to account for the complex relationship between genotype and drug resistance (8, 

12, 13, 28). We demonstrate here that the multitask WDNN approach outperforms our previously 

Figure 4: Intersection of predictors correlated with resistance by anti-tubercular drug subgroups. We permuted the resistance 

labels and calculated the distribution of the difference, P(isolate is resistant | mutation is present) – P(isolate is resistant | 

mutation is absent). We show the number of mutations per subgroup of drugs ordered from most to least mutations per subgroup. 

Number of significant predictors per drug is also shown. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/275628doi: bioRxiv preprint 

https://doi.org/10.1101/275628
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

reported random forest model (8). Compared to one study that used a direct association (DA) 

algorithm, the multitask model presented here offers improvement in sensitivity and specificity 

for the majority of drugs when prediction is attempted on all isolates, including those with rarer 

and not previously observed variants (12). One study used single-task machine learning, 

demonstrating the validity of this approach for identifying MDR and XDR-TB, but were limited 

by the use of a dataset with a low number of MDR isolates (81) and even lower numbers of 

isolates resistant to drugs other than RIF and INH (ranging from 19 to 59), raising concerns 

about generalizability (13). 

Our model has several novel features which are important to its success. The multitask 

structure allows drugs which have less phenotypic data to borrow information about resistance 

pathways from drugs that have higher numbers of phenotyped isolates. Additionally, the wide 

and deep structure allows us to include prior information about the genetic etiology of MDR and 

XDR, as it is known that both individual markers and gene-gene interactions confer resistance 

(9–11). The wide portion of the network allows the effect of individual mutations (e.g. marginal 

effects) to be easily learned, while the deep portion of the network allows for arbitrarily complex 

epistatic effects to influence the predictions. Our deep learning model is the first multitask tool to 

our knowledge that predicts resistance for 10 anti-tubercular drugs simultaneously with state-of-

the-art performance. 

Multitask architectures in deep learning have not been used widely in pharmaceutical and 

drug-related industries due to many barriers, including the difficulty of implementing a high-

quality deep multitask network (29). However, past multitask deep learning algorithms have seen 

success over traditional single task baseline models, such as in applications to drug discovery 

and studying gene regulatory networks (29–31). In addition, multitask neural networks have been 

shown to have larger performance gains over single task models when using smaller datasets (32, 

33). We directly compared performance of the multitask and single task wide and deep neural 

networks, showing improvements in sensitivity and specificity using the multitask architecture. 

The increased predictive performance of the multitask WDNN over the single task 

preselected mutations MLP may arise from a number of possible explanations. First, phenotypic 

resistance data that was highly available in our dataset for certain drugs (i.e. RIF, INH, PZA, and 

EMB) served as a direct indicator for resistance to second-line injectables and fluoroquinolones. 

This explanation is unlikely, as our t-SNE analysis shows clustering patterns specific to second-

line injectable drugs and fluoroquinolones, and the validated model specificity for these drugs 

was robust. Second, mutations that do not necessarily confer resistance to particular drugs may 

be indicative of other genomic predictors, thereby serving as a reliable predictor for resistance. 

Because of the large intersection of mutations (Figure 4) for all anti-tubercular drugs, it is likely 

that this explanation plays a role in the performance differences. The correlative effect of 

mutations can be treated as a positive feature in the multitask architecture due to the difficulty of 

acquiring comprehensive genomic data. On the other hand, the potential lack of causation also 

requires care when using the predictive model, which could account for the increased 

performance of the preselected mutations MLP over the multitask WDNN in detecting ofloxacin 

resistance. Third, there may exist mutations that are not yet known to confer resistance to 

particular anti-tubercular drugs but were captured by the multitask WDNN thereby improving 

performance.  

Understanding the improved performance of our wide and deep neural network is a 

difficult task due to the architectural complexity and lack of visualization tools in deep learning 

(34, 35). Our t-SNE visualization demonstrated the multitask model’s ability to capture the 
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biologically and clinically expected order of resistance acquisition and cross resistance providing 

further evidence to support the use of this prediction architecture (25, 26, 36). The multitask 

WDNN’s drug resistance classifications for all isolate–drug pairs allowed us to visualize isolate 

clustering through t-SNE even where phenotypic data for isolate–drug pairs were not available. 

Our evaluation of predictor importance found significant groupings in drug subsets that 

we would expect based on prior knowledge of the drug mechanisms. We had a significant 

intersection subset including only first-line and second-line injectable drugs, one subset with 

only first-line drugs, and one subset including only fluoroquinolones. The high number of 

distinct subgroups of drugs reflects the complex decision process of the multitask WDNN but 

gives evidence for a predictive approach consistent with previously reported understanding of 

drug resistance acquisition. Overall, developments in deep learning visualization tools and 

techniques are needed for understanding drug resistance acquisition and ultimately allow for 

improved deep learning models with improved predictive performance. 

 The translation of our deep learning approach is also function of advancements in whole 

genome sequencing and accessibility to more MTB isolate data. Improvements in whole-genome 

sequencing technologies have significantly reduced costs (37), allowing for more routine whole 

genome sequencing in MTB isolates (38). The prediction time for MTB drug resistance depends 

primarily on the sequencing turnaround time, which is significantly shorter than phenotypic 

susceptibility testing (39). In addition, as more routine sequencing increases the amount of MTB 

isolate data, our deep learning model can be rapidly updated as the datasets become accessible. 

We expect that as more data are incorporated, the sensitivity and specificity gap in second-line 

injectable drugs and fluoroquinolones will become smaller. 

We acknowledge some limitations of our study. First, one source of bias could be errors 

during phenotyping, as susceptibility testing for some drugs has been shown to have low 

reproducibility and high variance (40). However, we used strains with phenotypic data measured 

at national or supranational TB reference laboratories following strict quality control or carefully 

curated from research and reference laboratories (8, 23). Beyond technical or laboratory 

limitations in testing, certain resistance mutations, especially for ethambutol and second-line 

drugs, may result in minimum inhibitory concentrations (MIC) very close to the clinical testing 

concentration, which may result in lower sensitivity and specificity (41) when predicting a binary 

resistance phenotype. The use of MIC data for building future learning models may help 

circumvent this. Second, we only included mutations that occurred in >0.8% (30 of 3,601 

isolates) individually or when aggregated with other rare variants in the same gene or intergenic 

region. Although we may have missed some important predictors, this threshold amounted to 

only ignoring variants that are very rare in a diverse sample of MTB genomes with good 

representation from the 4 major genetic lineages. Third, we did not include third-line anti-

tubercular drugs such as cycloserine or para-aminosalicylic acid due to the lack of phenotypic 

data. 

In summary, we presented a new deep learning architecture to identify the resistance of 

MTB isolates to 10 anti-tubercular drugs. The wide and deep neural network achieved state-of-

the-art performance on a large, aggregated TB dataset, demonstrating the efficacy of deep 

learning as a diagnostic tool for MTB drug resistance. The WDNN represented the first multitask 

model to our knowledge that incorporated a high number of genotypic predictors known to be 

important to determining resistance for one or more included drugs. Further work identifying the 

key processes of deep learning will not only allow for improved predictive performance but may 
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also give us a greater understanding of the biological mechanisms underlying drug resistance in 

MTB isolates. 

 

Materials and Methods 

Overview of the Study Design 

MTB targeted sequence and antibiotic resistance data from a sample enriched in first and 

second-line antibiotic resistance (8) was pooled with public whole genome sequence and 

resistance data for training of the prediction model. Model validation was performed on an 

independent set of public whole genome sequences for which phenotypic resistance data was 

available. The validation dataset was a convenience dataset not preselected based on antibiotic 

resistance or strain lineage and diversity distribution. We evaluated MTB isolate diversity 

through hierarchical clustering and using lineage-defining mutations in the drug resistance loci, 

as assessed by Walker et al. (12). In order to predict drug resistance for each isolate, we built a 

unified wide and deep neural network to predict phenotypic status for all drugs simultaneously. 

We compared our model to baseline machine learning models (random forest and regularized 

logistic regression). We built a single-task MLP trained on mutations known to be resistance-

determining for each drug to evaluate the impact of training on the full genome sequence. We 

visualized the multitask WDNN’s final phenotypic representation in 2-dimensional t-SNE plots, 

and evaluated the importance of genetic variants to resistance through permutation testing.  

 

Data Description 

Sequence data: The training dataset consisted of 1,379 MTB isolates that underwent sequencing 

using molecular inversion probes that targeted 28 preselected antibiotic resistance genes and 

promoter regions, with 100 bases flanking both ends of each region (8). This sequence data was 

pooled with 2,222 additional MTB whole genome sequences curated by the ReSeqTB 

knowledgebase, which maintains a public data sharing platform (www.reseqtb.org) curating 

genotypic and phenotypic data of WHO-endorsed in vitro diagnostic assays for MTB (23). The 

validation dataset of 792 MTB isolates was obtained by pooling additional data from ReSeqTB, 

without overlap with the training set, and other MTB whole genome sequences and phenotype 

data curated manually from the following references (28, 42–44). 

Antibiotic resistance phenotype data: All isolates included underwent culture based antibiotic 

susceptibility testing to two or more drugs at WHO approved critical concentrations and met 

other quality control criteria as detailed in (8). The pooled phenotype data included resistance 

status for eleven drugs: first-line drugs (rifampicin, isoniazid, pyrazinamide, ethambutol, and 

streptomycin); second-line injectable drugs (capreomycin, amikacin, and kanamycin); and 

fluoroquinolones (ciprofloxacin, moxifloxacin, and ofloxacin). Phenotypic data was classified as 

resistant, susceptible, or not available. 

 

Variant calling 

We used a custom bioinformatics pipeline to clean and filter the raw sequencing reads. 

We aligned filtered reads to the reference MTB isolate H37Rv and included in the analysis 

variants called by Stampy 1.0.23 (45) and Platypus 0.5.2 (46) using default parameters. Genome 

coverage was assessed using SAMtools 0.1.18 (47) and read mapping taxonomy was assessed 

using Kraken (48). Strains with a coverage of less than 95% at 10x or more in the regions of 

interest (Supplementary Table S6), or that had a mapping percentage of less than 90% to 

Mycobacterium tuberculosis complex were excluded. Further, regions of the remaining genome 
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not covered by 10 regions or more in at least 95% of the isolates were filtered out from the 

analysis. In the remaining regions, variants were further filtered if they had a quality of <15, 

purity of <0.4 or did not meet the PASS filter designation by Platypus.  

 

Building the predictor set of features  

Because 1,379 of the 3,601 of the MTB isolates in the training set underwent targeted 

sequencing only, we restricted the resistance predictors to variants in the regions targeted in 

these isolates (Supplementary Table S6). Since the eis and rpsA genes and promoters were 

recently determined to be associated with kanamycin and pyrazinamide resistance respectively 

(49, 50), we added mutations in the eis and rpsA regions into our set of predictors. For those 

isolates with missing genotype data, we used a status of 0.5 for the missing mutations.  

The predictors included in the neural network consisted of two groups. In the first group, 

each mutation was considered a predictor and its status was binary (either present or absent). For 

the second group, we created ‘aggregate’ categories by grouping the rarer mutations (present in 

<30 isolates) by gene locus (coding, intergenic and putative promoter regions). For each coding 

region, we split the variants by type into three groups: single nucleotide substitution (SNP), 

frameshift insertion/deletion or non-frameshift insertion/deletion. For each non-coding region, 

we split the variants by type into two groups: insertions/deletion or single nucleotide 

substitution). We used individual and ‘aggregate’ predictors found in at least 30 MTB isolates to 

make our final set of predictors. 

 

Evaluation of MTB isolate diversity 

 We identified lineage-defining variants as assessed in a 2015 study by Walker et al. (12). 

The genetic-lineage similarity between each pair of isolates was computed as the Euclidean 

distance between the two corresponding lineage-defining mutation vectors. We applied Ward’s 

method of hierarchical clustering on the resultant distance matrix (51) to group the isolates and 

displayed the isolate-isolate Euclidean distance matrix based on the lineage-defining variants in a 

heat map. We used hclust in the R stats 3.4.2 package to perform hierarchical clustering. Each 

group was mapped back to the recognized MTB lineage classification by matching the expected 

pattern of SNPs in Walker et al. (12). 

 

Multitask and Single Task Wide and Deep Neural Network Model 

Wide and deep neural networks (WDNN) marry two successful models, logistic 

regression and deep multilayer perceptrons (MLP), to leverage the strengths of each approach. In 

WDNNs, a ‘wide’ logistic regression model is trained in tandem with a ‘deep’ MLP and the two 

models are merged in a final classification layer, allowing the network to learn useful rules 

directly from the raw data and higher level nonlinear features. For genomic data, the logistic 

regression portion of network can be thought of as modeling the additive portion genotype-

phenotype relationship, while the MLP models the nonlinear or epistatic portion. We 

implemented a wide and deep neural network (22) with two hidden layers with ReLU activations 

(52), dropout (53), and L1 regularization (Figure 5). The network was trained via stochastic 

gradient descent using the Adam optimizer.  

Traditionally, dropout occurs only during training while no dropout occurs during test 

time (53). However, recent advancements have shed light on dropout from a Bayesian 
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perspective, and have shown that averaging predictions from multiple dropout masks can reduce 

variance and improve predictive performance (54). This is often referred to as “Monte Carlo 

(MC) dropout”. Our wide and deep neural network (WDNN) included dropout during both 

training and test time, and our final predictions were an average of 100 MC dropout samples. L1 

regularization was applied on the wide model (which is equivalent to the well-known ‘LASSO’ 

model) (55), the hidden layer of the deep model, and the output sigmoid layer. 

The multitask WDNN was trained simultaneously on resistance status for all 11 drugs, 

including ciprofloxacin. Each of the 11 nodes in the final layer represented one drug and 

outputted the probability that the MTB isolate was resistant to the corresponding drug. We 

constructed a single task WDNN with the same architecture as the multitask model except for the 

structure of the output layer, which predicts for one drug. 

The multitask WDNN utilized a loss function that is a variant of traditional binary cross 

entropy. Our dataset had missing resistance status for some drugs in the MTB isolates, so we 

implemented a loss function that did not penalize the model for its prediction on drug-isolate 

pairs for which we did not have phenotypic data. Due to imbalance between the susceptible and 

resistant classes within each drug, we adjusted our loss function to upweight the sparser class 

according to the susceptible-resistant ratio within each drug. Thus, the final loss function was a 

class-weight binary cross entropy that masked outputs where the resistance status was missing. 

 

Baseline Models 

In addition to the multitask and single task wide and deep neural networks, we 

implemented three other classification models – a single task random forest, a single task 

regularized logistic regression, and a single task multilayer perceptron (MLP with MC dropout) 

Sigmoid activation

ReLU activation

INH   RIF   EMB   PZA   STR   AMK   KAN   CAP   CIP   OFLX   MOXI

Hidden Layers

• • • 512 nodes • • •

• • • 512 nodes • • •

• • • • • • • • • • • • • • 734 nodes • • • • • • • • • • • • • •

Input Units

• • • 222 nodes • • •

• • • 11 nodes • • •

Concatenation Layer

Output Units

Key

Figure 5: A schematic of the wide and deep neural network architecture. Data flows from bottom to top through the wide 

(left) and deep (right) paths of the neural network. Nonlinear transformations, where applied, are depicted on the 

corresponding nodes. Each of the 11 nodes in the output layer represents resistance status predictions in all MTB isolates for 

one of the 11 anti-tubercular drugs.  
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with preselected predictors based on prior biological knowledge of drug resistance mechanisms 

(8). The single task MLP was used as a baseline to identify drugs for which model performance 

benefited from predictors not already known to affect the drug resistance.  

 

Training and Model Evaluation 

The multitask WDNN, single task WDNN, random forest, and regularized logistic 

regression classifiers were trained on predictors in the dataset present in at least 30 MTB isolates. 

The single task MLP was trained on mutations based on preselected genes, as described above. A 

single task MLPs was trained accordingly for each drug with different subsets of predictors. 

We used five-fold cross validation to train the models and evaluate performance. The 

single task WDNN, single task MLP, random forest, and regularized logistic regression models 

were stratified by class label to address imbalances between resistance and susceptible classes, as 

they were all single task classifiers. Model performance was validated through an independent 

validation set. 

We reported specificity and sensitivity for the all the models. The probability threshold 

was chosen to maximize the sum of specificity and sensitivity with the condition that specificity 

is at least 90% on the training data and applied to the validation data. The 90% specificity 

threshold stems from the value assessment that over-diagnosis of antibiotic resistance is more 

harmful than under-diagnosis due the treatment toxicity and side effects, e.g. renal failure and 

hearing loss, for the drugs used in antibiotic resistant cases. During five-fold cross-validation, the 

mean and standard error of specificity and sensitivity were reported based on validation set 

results across the five folds. 

 

MTB isolate visualization using t-SNE 

We examined the final output layer of the multitask WDNN using t-distributed Stochastic 

Neighbor Embedding (t-SNE), a method for visualizing data with high dimensionality (24). The 

final layer weights, originally in 11 dimensions, were extracted from the multitask WDNN and 

projected onto two dimensions. Each point represented one MTB isolate and was colored based 

on its phenotypic status for each drug. 

 

Importance of MTB genetic variants to drug resistance 

We examined predictor importance to resistance by analyzing the prediction outputs of 

the multitask WDNN and the presence or absence of mutations through a permutation test. We 

permuted the resistance labels and calculated the distribution of following difference: 

 
𝑃(𝑖𝑠𝑜𝑙𝑎𝑡𝑒 𝑖𝑠 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 | 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) − 𝑃(𝑖𝑠𝑜𝑙𝑎𝑡𝑒 𝑖𝑠 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 | 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎𝑏𝑠𝑒𝑛𝑡)  

 

where P(isolate is resistant | mutation is present) is the WDNN’s outputted probability of 

resistance for a given mutation. We then compared the actual differences with the permuted 

differences. The sampling distribution included 100,000 randomized permutations per mutation 

and the actual differences were evaluated at a significance level of α = 0.05 corrected for 

multiple comparisons. We conducted the permutation test for each predictor (mutations or 

derived categories) that was present in at least 30 MTB isolates. We focused on the mutations 

and derived mutation categories that were correlated with resistance to anti-tubercular drugs. 

 

Implementation Details 
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Our multitask and single task wide and deep neural network implementations used the 

Keras 1.2.0 library in Python 2.7 with a TensorFlow 0.10.0 backend. The random forest and 

regularized logistic regression classifiers were implemented with Python Scikit-Learn 0.18.1. 

The isolate diversity analysis was implemented using the R stats 3.4.2 package, the t-SNE 

analysis used the Rtsne 0.13 package in R, and the permutation tests were implemented in 

Python 2.7. All models were trained on a NVIDIA GeForce GTX Titan X graphics processing 

unit (GPU). Hyperparameters are available in Supplementary Table S7.  

 

Statistical Analyses 

 Predictive performance during cross-validation was reported in mean and standard error 

of the validation dataset over the five folds of training (Figure 2). Determination of resistance-

correlated mutations during permutation tests used a significance level of α = 0.05 corrected for 

multiple comparisons.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/275628doi: bioRxiv preprint 

https://doi.org/10.1101/275628
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

References 

1. WHO, Global Tuberculosis Report 2016, CDC 2016, 214 (2016). 

2. P. Bradley, N. C. Gordon, T. M. Walker, L. Dunn, S. Heys, B. Huang, S. Earle, L. J. 

Pankhurst, L. Anson, M. De Cesare, P. Piazza, A. A. Votintseva, T. Golubchik, D. J. Wilson, D. 

H. Wyllie, R. Diel, S. Niemann, S. Feuerriegel, T. A. Kohl, N. Ismail, S. V. Omar, E. G. Smith, 

D. Buck, G. McVean, A. S. Walker, T. E. A. Peto, D. W. Crook, Z. Iqbal, Rapid antibiotic-

resistance predictions from genome sequence data for Staphylococcus aureus and 

Mycobacterium tuberculosis, Nat. Commun. 6 (2015), doi:10.1038/ncomms10063. 

3. WHO, Multidrug and extensively drug-resistant TB (M/XDR-TB) 2010 Global Report on 

Surveillance and Response, (2010) (available at 

http://apps.who.int/iris/bitstream/10665/44286/1/9789241599191_eng.pdf?ua=1&ua=1). 

4. Q. Liu, G. L. Li, C. Chen, J. M. Wang, L. Martinez, W. Lu, L. M. Zhu, Diagnostic 

performance of the genotype MTBDRplus and MTBDRs/assays to identify tuberculosis drug 

resistance in eastern China, Chin. Med. J. (Engl). 130, 1521–1528 (2017). 

5. G. Theron, J. Peter, M. Richardson, M. Barnard, S. Donegan, R. Warren, K. R. Steingart, K. 

Dheda, The diagnostic accuracy of the GenoType((R)) MTBDRsl assay for the detection of 

resistance to second-line anti-tuberculosis drugs, Cochrane Database Syst Rev 10, Cd010705 

(2014). 

6. E. Tagliani, A. M. Cabibbe, P. Miotto, E. Borroni, J. C. Toro, M. Mansjö, S. Hoffner, D. 

Hillemann, A. Zalutskaya, A. Skrahina, D. M. Cirillo, Diagnostic performance of the new 

version (v2.0) of GenoType MTBDRsl assay for detection of resistance to fluoroquinolones and 

second-line injectable drugs: A multicenter study, J. Clin. Microbiol. 53, 2961–2969 (2015). 

7. D. I. Ling, A. A. Zwerling, M. Pai, GenoType MTBDR assays for the diagnosis of multidrug-

resistant tuberculosis: A meta-analysis, Eur. Respir. J. 32, 1165–1174 (2008). 

8. M. R. Farhat, R. Sultana, O. Iartchouk, S. Bozeman, J. Galagan, P. Sisk, C. Stolte, H. 

Nebenzahl-Guimaraes, K. Jacobson, A. Sloutsky, D. Kaur, J. Posey, B. N. Kreiswirth, N. 

Kurepina, L. Rigouts, E. M. Streicher, T. C. Victor, R. M. Warren, D. Van Soolingen, M. 

Murray, Genetic determinants of drug resistance in mycobacterium tuberculosis and their 

diagnostic value, Am. J. Respir. Crit. Care Med. 194, 621–630 (2016). 

9. M. R. Farhat, K. R. Jacobson, M. F. Franke, D. Kaur, A. Sloutsky, C. D. Mitnick, M. Murray, 

Gyrase Mutations Are Associated with Variable Levels of Fluoroquinolone Resistance in 

Mycobacterium tuberculosis, J. Clin. Microbiol. 54, 727–733 (2016). 

10. H. Safi, S. Lingaraju, A. Amin, S. Kim, M. Jones, M. Holmes, M. McNeil, S. N. Peterson, D. 

Chatterjee, R. Fleischmann, D. Alland, Evolution of high-level ethambutol-resistant tuberculosis 

through interacting mutations in decaprenylphosphoryl-β-D-Arabinose biosynthetic and 

utilization pathway genes, Nat. Genet. 45, 1190–1197 (2013). 

11. H. Nebenzahl-Guimaraes, K. R. Jacobson, M. R. Farhat, M. B. Murray, Systematic review of 

allelic exchange experiments aimed at identifying mutations that confer drug resistance in 

Mycobacterium tuberculosisJ. Antimicrob. Chemother. 69, 331–342 (2014). 

12. T. M. Walker, T. A. Kohl, S. V. Omar, J. Hedge, C. Del Ojo Elias, P. Bradley, Z. Iqbal, S. 

Feuerriegel, K. E. Niehaus, D. J. Wilson, D. A. Clifton, G. Kapatai, C. L. C. Ip, R. Bowden, F. 

A. Drobniewski, C. Allix-Béguec, C. Gaudin, J. Parkhill, R. Diel, P. Supply, D. W. Crook, E. G. 

Smith, A. S. Walker, N. Ismail, S. Niemann, T. E. A. Peto, J. Davies, C. Crichton, M. Acharya, 

L. Madrid-Marquez, D. Eyre, D. Wyllie, T. Golubchik, M. Munang, Whole-genome sequencing 

for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: A retrospective 

cohort study, Lancet Infect. Dis. 15, 1193–1202 (2015). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/275628doi: bioRxiv preprint 

https://doi.org/10.1101/275628
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

13. Y. Yang, K. E. Niehaus, T. M. Walker, Z. Iqbal, A. S. Walker, D. J. Wilson, T. E. Peto, D. 

W. Crook, E. G. Smith, T. Zhu, D. A. Clifton, Machine Learning for Classifying Tuberculosis 

Drug-Resistance from DNA Sequencing Data, Bioinformatics, Advance online publication. 

(2017). 

14. A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet Classification with Deep Convolutional 

Neural Networks, Adv. Neural Inf. Process. Syst., 1–9 (2012). 

15. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. 

Nguyen, T. N. Sainath, B. Kingsbury, Deep Neural Networks for Acoustic Modeling in Speech 

Recognition, IEEE Signal Process. Mag., 82–97 (2012). 

16. R. Socher, C. Lin, Parsing natural scenes and natural language with recursive neural 

networks, ICML, 129–136 (2011). 

17. V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. 

Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P. C. Nelson, J. L. Mega, 

D. R. Webster, Development and Validation of a Deep Learning Algorithm for Detection of 

Diabetic Retinopathy in Retinal Fundus Photographs., JAMA 304, 649–656 (2016). 

18. A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, S. Thrun, 

Dermatologist-level classification of skin cancer with deep neural networks, Nature 542, 115–

118 (2017). 

19. S. Zhang, J. Zhou, H. Hu, H. Gong, L. Chen, C. Cheng, J. Zeng, A deep learning framework 

for modeling structural features of RNA-binding protein targets, Nucleic Acids Res. 44, 1–14 

(2015). 

20. Y. Chen, Y. Li, R. Narayan, A. Subramanian, X. Xie, Gene expression inference with deep 

learning, Bioinformatics 32, 1832–1839 (2016). 

21. E. Putin, P. Mamoshina, A. Aliper, M. Korzinkin, A. Moskalev, A. Kolosov, A. Ostrovskiy, 

C. Cantor, J. Vijg, A. Zhavoronkov, Deep biomarkers of human aging: Application of deep 

neural networks to biomarker development, Aging (Albany. NY). 8, 1021–1033 (2016). 

22. H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. 

Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, H. Shah, Wide & Deep 

Learning for Recommender Systems, arXiv Prepr., 1–4 (2016). 

23. A. M. Starks, E. Aviles, D. M. Cirillo, C. M. Denkinger, D. L. Dolinger, C. Emerson, J. 

Gallarda, D. Hanna, P. S. Kim, R. Liwski, P. Miotto, M. Schito, M. Zignol, Collaborative Effort 

for a Centralized Worldwide Tuberculosis Relational Sequencing Data Platform, Clin. Infect. 

Dis. 61, S141–S146 (2015). 

24. L. J. P. Van Der Maaten, G. E. Hinton, Visualizing high-dimensional data using t-sne, J. 

Mach. Learn. Res. 9, 2579–2605 (2008). 

25. A. L. Manson, K. A. Cohen, T. Abeel, C. A. Desjardins, D. T. Armstrong, C. E. Barry, J. 

Brand, TBResist Global Genome Consortium, S. B. Chapman, S.-N. Cho, A. Gabrielian, J. 

Gomez, A. M. Jodals, M. Joloba, P. Jureen, J. S. Lee, L. Malinga, M. Maiga, D. Nordenberg, E. 

Noroc, E. Romancenco, A. Salazar, W. Ssengooba, A. A. Velayati, K. Winglee, A. Zalutskaya, 

L. E. Via, G. H. Cassell, S. E. Dorman, J. Ellner, P. Farnia, J. E. Galagan, A. Rosenthal, V. 

Crudu, D. Homorodean, P.-R. Hsueh, S. Narayanan, A. S. Pym, A. Skrahina, S. Swaminathan, 

M. Van der Walt, D. Alland, W. R. Bishai, T. Cohen, S. Hoffner, B. W. Birren, A. M. Earl, 

Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into 

the emergence and spread of multidrug resistance., Nat. Genet. 49, 395–402 (2017). 

26. M. R. Farhat, C. D. Mitnick, M. F. Franke, D. Kaur, A. Sloutsky, M. Murray, K. R. 

Jacobson, Concordance of Mycobacterium tuberculosis fluoroquinolone resistance testing: 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/275628doi: bioRxiv preprint 

https://doi.org/10.1101/275628
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

implications for treatment, Int J Tuberc Lung Dis 19, 339–341 (2015). 

27. K. J. Aldred, T. R. Blower, R. J. Kerns, J. M. Berger, N. Osheroff, Fluoroquinolone 

interactions with Mycobacterium tuberculosis gyrase: Enhancing drug activity against wild-type 

and resistant gyrase, Proc. Natl. Acad. Sci. 113, E839–E846 (2016). 

28. H. Zhang, D. Li, L. Zhao, J. Fleming, N. Lin, T. Wang, Z. Liu, C. Li, N. Galwey, J. Deng, Y. 

Zhou, Y. Zhu, Y. Gao, T. Wang, S. Wang, Y. Huang, M. Wang, Q. Zhong, L. Zhou, T. Chen, J. 

Zhou, R. Yang, G. Zhu, H. Hang, J. Zhang, F. Li, K. Wan, J. Wang, X. E. Zhang, L. Bi, Genome 

sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and 

intergenic regions associated with drug resistance, Nat. Genet. 45, 1255–1260 (2013). 

29. B. Ramsundar, B. Liu, Z. Wu, A. Verras, M. Tudor, R. P. Sheridan, V. S. Pande, Is Multitask 

Deep Learning Practical for Pharma?, J. Chem. Inf. Model. 57, 2068–2076 (2017). 

30. S. Kearnes, B. Goldman, V. Pande, Modeling Industrial ADMET Data with Multitask 

Networks, arXiv (2016), doi:1606.08793v1.pdf. 

31. Q. Qin, J. Feng, Imputation for transcription factor binding predictions based on deep 

learning, PLoS Comput. Biol. 13 (2017), doi:10.1371/journal.pcbi.1005403. 

32. J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, V. Svetnik, Deep neural nets as a method for 

quantitative structure-activity relationships, J. Chem. Inf. Model. 55, 263–274 (2015). 

33. G. Dahl, N. Jaitly, R. Salakhutdinov, Multi-task Neural Networks for QSAR Predictions, 

arXiv Prepr. arXiv1406.1231, 1–21 (2014). 

34. M. D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Networks 

arXiv:1311.2901v3 [cs.CV] 28 Nov 2013, Comput. Vision–ECCV 2014 8689, 818–833 (2014). 

35. J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson, Understanding Neural Networks 

Through Deep Visualization, ICML - Deep Learn. Work. 2015, 12 (2015). 

36. A. Kolyva, P. Karakousis, Old and new TB drugs: Mechanisms of action and resistance, 

InTechOpen, 210–232 (2012). 

37. X. Didelot, R. Bowden, D. J. Wilson, T. E. A. Peto, D. W. Crook, Transforming clinical 

microbiology with bacterial genome sequencing, Nat. Rev. Genet. 13, 601–612 (2012). 

38. C. U. Köser, J. M. Bryant, J. Becq, M. E. Török, M. J. Ellington, M. A. Marti-Renom, A. J. 

Carmichael, J. Parkhill, G. P. Smith, S. J. Peacock, Whole-genome sequencing for rapid 

susceptibility testing of M. tuberculosis., N. Engl. J. Med. 369, 290–2 (2013). 

39. A. A. Votintseva, P. Bradley, L. Pankhurst, C. Del Ojo Elias, M. Loose, K. Nilgiriwala, A. 

Chatterjee, E. G. Smith, N. Sanderson, T. M. Walker, M. R. Morgan, D. H. Wyllie, A. S. 

Walker, T. E. A. Peto, D. W. Crook, Z. Iqbal, Same-day diagnostic and surveillance data for 

tuberculosis via whole-genome sequencing of direct respiratory samples, J. Clin. Microbiol. 55, 

1285–1298 (2017). 

40. World Health Organization (WHO), A roadmap for ensuring quality tuberculosis diagnostics 

services within national laboratory strategicplans. (2010). 

41. K. Ängeby, P. Juréen, G. Kahlmeter, S. E. Hoffner, T. Schön, Challenging a dogma: 

antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis., Bull. World 

Health Organ. 90, 693–8 (2012). 

42. T. D. Lieberman, D. Wilson, R. Misra, L. L. Xiong, P. Moodley, T. Cohen, R. Kishony, 

Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated 

Mycobacterium tuberculosis, Nat. Med. 22, 1470–1474 (2016). 

43. A. Chatterjee, K. Nilgiriwala, D. Saranath, C. Rodrigues, N. Mistry, Whole genome 

sequencing of clinical strains of Mycobacterium tuberculosis from Mumbai, India: A potential 

tool for determining drug-resistance and strain lineage, Tuberculosis 107, 63–72 (2017). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/275628doi: bioRxiv preprint 

https://doi.org/10.1101/275628
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

44. J. L. Gardy, J. C. Johnston, S. J. H. Sui, V. J. Cook, L. Shah, E. Brodkin, S. Rempel, R. 

Moore, Y. Zhao, R. Holt, R. Varhol, I. Birol, M. Lem, M. K. Sharma, K. Elwood, S. J. M. Jones, 

F. S. L. Brinkman, R. C. Brunham, P. Tang, Whole-Genome Sequencing and Social-Network 

Analysis of a Tuberculosis Outbreak, N. Engl. J. Med. 364, 730–739 (2011). 

45. G. Lunter, M. Goodson, Stampy: A statistical algorithm for sensitive and fast mapping of 

Illumina sequence reads, Genome Res. 21, 936–939 (2011). 

46. A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S. R. F. Twigg, A. O. M. Wilkie, G. Mcvean, G. 

Lunter, Integrating mapping-, assembly- and haplotype-based approaches for calling variants in 

clinical sequencing applications, Nat. Genet. 46, 912–918 (2014). 

47. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. 

Durbin, The Sequence Alignment/Map format and SAMtools, Bioinformatics 25, 2078–2079 

(2009). 

48. D. E. Wood, S. L. Salzberg, Kraken: Ultrafast metagenomic sequence classification using 

exact alignments, Genome Biol. 15 (2014), doi:10.1186/gb-2014-15-3-r46. 

49. M. B. Gikalo, E. Y. Nosova, L. Y. Krylova, A. M. Moroz, The role of eis mutations in the 

development of kanamycin resistance in Mycobacterium tuberculosis isolates from the moscow 

region, J. Antimicrob. Chemother. 67, 2107–2109 (2012). 

50. W. Shi, X. Zhang, X. Jiang, H. Yuan, J. S. Lee, C. E. Barry, H. Wang, W. Zhang, Y. Zhang, 

Pyrazinamide Inhibits Trans-Translation in Mycobacterium tuberculosis, Science (80-. ). 333, 

1630–1632 (2011). 

51. F. Murtagh, P. Legendre, Ward’s Hierarchical Agglomerative Clustering Method: Which 

Algorithms Implement Ward’s Criterion?, J. Classif. 31, 274–295 (2014). 

52. X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, AISTATS ’11 Proc. 

14th Int. Conf. Artif. Intell. Stat. 15, 315–323 (2011). 

53. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A Simple 

Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res. 15, 1929–1958 (2014). 

54. Y. Gal, Z. Ghahramani, Dropout as a Bayesian Approximation : Representing Model 

Uncertainty in Deep Learning, ICML 48, 1–10 (2015). 

55. R. Tibshirani, Regression Selection and Shrinkage via the Lasso, J. R. Stat. Soc. B 58, 267–

288 (1996). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/275628doi: bioRxiv preprint 

https://doi.org/10.1101/275628
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Materials 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/275628doi: bioRxiv preprint 

https://doi.org/10.1101/275628
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 
Figure S1: t-SNE visualization colored by lineage clustering. t-SNE plot with the same coordinates as in Figure 3. Each isolate is colored based on the six 

lineage clusters determined in Figure 1, illustrating the diversity of MTB isolates within the multitask WDNN’s resistance-susceptibility clustering. 

 

t−SNE visualization colored by lineage clustering
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Drug Susceptible Isolates Resistant Isolates 

RIF 2257 1285 

INH 2011 1553 

PZA 2445 702 

EMB 2551 975 

STR 1155 1025 

CAP 799 589 

AMK 1174 235 

MOXI 1118 268 

OFLX 651 88 

KAN 1060 272 

 
Table S1: Phenotype of 3,601 Mycobacterium tuberculosis isolates in training and cross-validation. Phenotype availability for the 10 anti-tubercular drugs.  
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Drug Susceptible Isolates Resistant Isolates 

RIF 453 282 

INH 384 330 

PZA 434 133 

EMB 576 160 

STR 433 152 

CAP 420 32 

AMK 273 19 

MOXI 178 20 

OFLX 363 92 

KAN 396 53 

 
Table S2: Phenotype of 792 Mycobacterium tuberculosis isolates in held-out validation set. Phenotype availability for the 10 anti-tubercular drugs in an 

independent validation set.  
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Lineage-defining mutations to 

determine isolate diversity 

inhA_V78A 

ndh_R284W 

ndh_V18A 

katG_R463L 

pncA_H57D 

iniA_H481Q 

embC_V104M 

embC_T270I 

embC_N394D 

embC_R567H 

embC_R738Q 

embC_V981L 

embA_V206M 

embA_T608N 

embA_P913S 

embB_Q139H 

embB_E378A 

gid_A119T 

gid_S100F 

gid_E92D 

gid_L16R 

gyrB_M330I 

gyrB_A442S 

gyrB_C48T 

gyrA_E21Q 

gyrA_T80A 

gyrA_S95T 

gyrA_G247S 

gyrA_A384V 

gyrA_G668D 
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rrs_C492T 

ahpC_G-88A 

rpoB_C-61T 

 
Table S3: Lineage-defining mutations to determine isolate diversity. A table of 33 mutations used to determine isolate diversity by genetic covariance and 

hierarchical clustering. 
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 MLP (Select 

Mutations) 
Multitask WDNN Random Forest Logistic Regression Single task WDNN 

Drugs Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

RIF 97.2 ± 0.5 93.1 ± 0.2 97.7 ± 0.6 96.2 ± 0.5 95.9 ± 0.6 94.2 ± 0.3 97.1 ± 1.0 96.1 ± 0.4 98.3 ± 0.5 95.1 ± 0.5 

INH 95.4 ± 0.5 95.5 ± 0.5 96.5 ± 0.4 95.6 ± 0.4 95.3 ± 0.3 96.7 ± 0.3 96.3 ± 0.4 95.4 ± 0.5 96.1 ± 0.5 95.3 ± 0.4 

PZA 87.7 ± 1.3 91.2 ± 0.7 91.3 ± 1.2 93.4 ± 0.6 91.0 ± 0.7 90.4 ± 0.7 93.4 ± 1.0 89.9 ± 0.9 90.3 ± 1.3 92.2 ± 0.4 

EMB 89.4 ± 1.0 90.9 ± 0.3 90.9 ± 0.9 93.3 ± 0.5 94.9 ± 0.2 88.4 ± 0.4 94.4 ± 0.2 91.7 ± 0.3 92.8 ± 0.8 91.5 ± 0.3 

STR 88.2 ± 0.9 84.2 ± 1.7 87.1 ± 1.3 85.2 ± 0.8 86.5 ± 1.2 84.1 ± 1.5 82.7 ± 0.5 88.4 ± 0.7 91.3 ± 0.8 81.7 ± 0.9 

CAP 60.1 ± 1.4 86.4 ± 1.2 91.8 ± 2.1 89.7 ± 1.4 91.5 ± 1.4 89.5 ± 1.4 88.6 ± 1.1 88.0 ± 0.6 94.5 ± 1.1 86.2 ± 0.8 

AMK 86.8 ± 2.6 95.1 ± 0.5 85.6 ± 1.5 97.3 ± 0.7 88.4 ± 2.7 94.7 ± 1.0 85.8 ± 3.0 96.9 ± 0.8 89.9 ± 2.0 91.6 ± 1.3 

MOXI 58.6 ± 3.3 89.4 ± 0.8 77.3 ± 1.6 89.5 ± 1.4 74.9 ± 1.1 90.3 ± 0.5 74.8 ± 2.1 90.1 ± 0.6 76.0 ± 3.1 89.8 ± 0.9 

OFLX 84.2 ± 1.7 89.9 ± 1.4 79.1 ± 4.5 92.8 ± 0.5 81.7 ± 5.3 95.2 ± 0.4 73.4 ± 2.5 93.0 ± 0.9 82.0 ± 2.0 90.8 ± 1.1 

KAN 71.4 ± 2.4 93.0 ± 1.8 76.2 ± 0.9 94.6 ± 0.8 73.6 ± 3.6 91.1 ± 1.3 75.7 ± 2.6 90.0 ± 1.2 77.2 ± 2.8 88.2 ± 1.4 
 

Table S4: Tuberculosis drug resistance prediction performance of the multitask WDNN and baseline models from cross-validation. A table of predictive 

performance across all four models during cross-validation. The multitask WDNN, single task WDNN, random forest, and logistic regression models 

were trained on the full set of predictors, while the single task MLP was trained on preselected mutations. 
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 MLP (Select 

Mutations) 
Multitask WDNN Random Forest Logistic Regression Single task WDNN 

Drugs Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

RIF 97.5 90.5 96.1 96.7 85.5 97.8 91.8 98.0 96.1 94.9 

INH 84.2 97.1 91.2 94.5 75.5 100.0 83.6 100.0 87.3 95.1 

PZA 61.7 96.1 63.9 94.7 54.9 96.5 61.7 96.1 65.4 91.7 

EMB 90.6 80.4 83.1 88.0 62.5 94.6 70.0 92.0 84.4 86.8 

STR 82.9 96.5 88.2 94.2 42.8 97.9 77.6 97.5 88.8 92.8 

CAP 59.4 79.3 53.1 94.5 31.3 99.0 40.6 98.6 56.3 93.3 

AMK 52.6 97.8 52.6 98.9 52.6 100.0 63.2 91.6 57.9 93.4 

MOXI 15.0 95.5 80.0 93.3 70.0 96.6 55.0 94.9 85.0 92.7 

OFLX 79.3 91.5 66.3 97.5 53.3 98.1 59.8 97.5 57.6 93.4 

KAN 47.2 89.9 67.9 94.2 71.7 98.2 50.9 99.0 62.3 91.4 
 

Table S5: Tuberculosis drug resistance prediction performance of the multitask WDNN and baseline models on the independent validation set. A table 

of predictive performance across all four models on the independent validation set. The multitask WDNN, single task WDNN, random forest, and logistic 

regression models were trained on the full set of predictors, while the single task MLP was trained on preselected mutations. 
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Gene Description Drug resistance 

association 

ID 

(H37Rv) 

Strand Start End Length 

promoter ahpC  Isoniazid - + 2726088 2726192 105 

ahpC alkyl hydroperoxide reductase C protein Isoniazid Rv2428 + 2726193 2726780 588 

alr alanine racemase Cycloserine Rv3423c - 3840194 3841420 1227 

ddl D-alanine-D-alanine ligase ddlA Cycloserine Rv2981c - 3336796 3337917 1122 

embA membrane indolylacetylinositol 

arabinosyltransferase A 

Ethambutol Rv3794 + 4243233 4246517 3285 

embB membrane indolylacetylinositol 

arabinosyltransferase B 

Ethambutol, Isoniazid, 

Rifampicin 

Rv3795 + 4246514 4249810 3297 

embC membrane indolylacetylinositol 

arabinosyltransferase C 

Ethambutol Rv3793 + 4239863 4243147 3285 

ethA monooxygenase Ethionamide Rv3854c - 4326004 4327473 1470 

gidB glucose-inhibited division protein B Streptomycin Rv3919c - 4407528 4408202 675 

gyrA DNA gyrase subunit A Fluoroquinolones Rv0006 + 7302 9818 2517 

gyrB DNA gyrase subunit B Fluoroquinolones Rv0005 + 5123 7267 2145 

inhA NADH-dependent enoyl-[acyl-carrier-

protein] reductase 

Ethionamide, Isoniazid Rv1484 + 1674202 1675011 810 

iniA isoniazid inductible gene protein A Ethambutol, Isoniazid Rv0342 + 410838 412760 1923 

iniB isoniazid inductible gene protein B Ethambutol, Isoniazid Rv0341 + 409362 410801 1440 

iniC isoniazid inductible gene protein C Ethambutol, Isoniazid Rv0343 + 412757 414238 1482 

kasA (fabF1) 3-oxoacyl-[acyl-carrier protein] synthase 

1 

Isoniazid Rv2245 + 2518115 2519365 1251 

katG catalase-peroxidase-peroxynitritase T Isoniazid Rv1908c - 2153889 2156111 2223 

promoter mabA  Isoniazid - + 1673300 1673439 140 

mabA (fabG1) 3-oxoacyl-[acyl-carrier protein] reductase 

(mycolic acid biosynthesis protein A) 

Ethionamide, Isoniazid Rv1483 + 1673440 1674183 744 

ndh NADH dehydrogenase Isoniazid Rv1854c - 2101651 2103042 1392 

oxyR’ oxidative-stress regulatory gene 

(pseudogene) 

Isoniazid? Rv2427Ac - 2725571 2726087 517 

pncA pyrazinamidase/nicotinamidase Pyrazinamide Rv2043c - 2288681 2289241 561 
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rpoB DNA-directed RNA polymerase beta 

chain 

Rifampicin Rv0667 + 759807 763325 3519 

rpsL 30S ribosomal protein S12 Streptomycin Rv0682 + 781560 781934 375 

rrl ribosomal RNA 23S Aminoglycosides Rvnr02 + 1473658 1476795 3138 

rrs ribosomal RNA 16S Aminoglycosides Rvnr01 + 1471846 1473382 1537 

thyA thymidylate synthase Para-aminosalicylic acid Rv2764c - 3073680 3074471 792 

tlyA cytotoxin|haemolysin Capreomycin Rv1694 + 1917940 1918746 807 

Promoter eis*  Kanamycin - - 2715332 2715471 139 

eis* N-acetyltransferase Kanamycin Rv2416c - 2714124 2715332 1208 

rpsA* 30S ribosomal protein S1 Pyrazinamide Rv1630 + 1833542 1834987 1445 

Promoter rpsA*  Pyrazinamide - + 1833379 1833541 162 
 

Table S6: List of genomic regions used for resistance prediction. Regions marked with (*) were not sequenced in 1,379 isolates, but are known to be 

associated with resistance to kanamycin and pyrazinamide. Thus, these strains were assigned a status of 0.5 for variants within these four regions. This 

allowed the model to learn the contribution of these regions in the remaining 2,222 isolates to antibiotic resistance. 
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Multitask WDNN and Single task WDNN 
Hyperparameter Value 

L1 regularization 10^-6 

Hidden units per layer 512 

Number of hidden layers 2 

Dropout 0.6 

Learning rate 𝑒−7 

Optimizer Adam 

Random Forest 
Hyperparameter Value 

Number of trees 1000 

Percentage of predictors to consider for best split 20% 

Percentage of samples to split a node 0.2% 

Regularized Logistic Regression 
Hyperparameter Value 

L1 regularization Best penalty factor between 10^-5 and 10^5 

Multilayer Perceptron (MLP) 
Hyperparameter Value 

Hidden units per layer 512 

Number of hidden layers 3 

Dropout 0.5 

Learning rate 0.001 

Optimizer Adam 

 
Table S7: Hyperparameters for the multitask and single task WDNN, baseline models, and the MLP. A table of hyperparameters for each model. The L1 

regularization factor for logistic regression was determined using cross-validation to maximize the area-under-the-ROC-curve (AUC) within the 80% 

training data for each fold. 
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