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Abstract  

Enhancer sequences regulate the expression of genes from afar by providing a binding platform for transcription factors, 

often in a tissue-specific or context-specific manner. Despite their importance in health and disease, our understanding 

of these DNA sequences, and their regulatory grammar, is limited. This impairs our ability to identify new enhancers 

along the genome, or to understand the effect of enhancer mutations and their role in genetic diseases. 

We trained deep Convolutional Neural Networks (CNN) to identify enhancer sequences in multiple species. We used 

multiple biological datasets, including simulated sequences, in vivo binding data of single transcription factors and 

genome-wide chromatin maps of active enhancers in 17 mammalian species. Our deep networks obtained high 

classification accuracy by combining two training strategies: First, training on enhancers vs. non-enhancer background 

sequences, we identified short (1-4bp) low-complexity motifs. Second, by replacing the negative training set by 

adversarial k-order random shuffles of enhancer sequences (thus maintaining base composition while shuttering longer 

motifs, including transcription factor binding sites), we identified a set of biologically meaningful motifs, unique to 

enhancers. In addition, classification performance improved when combining positive data from all species together, 

showing a shared mammalian regulatory architecture.  

Our results demonstrate that design of adversarial training data, and transfer of learned parameters between networks 

trained on different species/datasets improve the overall performance and capture biologically meaningful information in 

the parameters of the learned network. 
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1 Introduction   

An Accurate expression of genes is required for proper development and 

functioning of cells, and is largely achieved by regulating transcription. This 

regulation is mostly mediated by sequence-specific binding of proteins 

called transcription factors (TFs) to DNA regions called TF binding sites 

(TFBS). In this manner, a cell can regulate the transcription of many protein-

coding genes (~20K in humans) using a relatively small number of TFs (8% 

of all proteins) (Narlikar et al., 2009). 

Systematic computational and experimental approaches relying on RNA-

sequencing and statistical properties of coding sequences enable automatic 

high-throughput annotation of genes in newly sequenced genomes, and 

protein-coding genes are widely investigated in model organisms and other 

species. In contrast, our understanding of regulatory elements controlling 

these genes is still limited. Current high-throughput experiments such as 

chromatin immunoprecipitation (ChIP-seq) test for in vivo binding across 

the genome, but are noisy, expensive, time-consuming and often available 

in few cell types and conditions. While less than 2% of the human genome 

encodes for proteins, it is estimated that ~5%-10% of genome is functional 

(Lindblad-Toh et al., 2011; Rands et al., 2014), and may contain non-coding 

regulatory elements. Experimental evidence (Wilson et al., 2008) shows that 

genome sequence largely determines the tissues and conditions under which 

such regulatory elements are active, thus motivating the development of 

computational approaches for identifying them using sequence data only (de 

novo), and for providing a better understanding of binding specificities and 

their interactions. To this end, we propose a computational model of deep 

Convolutional Neural Network (CNN) that learns to identify regulatory 

sequences in multiple species.  

The most well-characterized types of regulatory elements are promoters 

and enhancers. While promoters are located near the transcription start site 

of genes, enhancers can regulate gene expression from afar, up to 1Mb away 

from their target gene (Stadhouders et al., 2012). Enhancers can also be 

located within introns or exons of other genes (Pennacchio et al., 2013); 

(Ahituv, 2016), do not necessarily affect the nearest gene, and may affect 

several genes (Mohrs et al., 2001); (Fukaya et al., 2016), in tissue or context-

specific manner (Attanasio et al., 2014; Ong et al., 2011). In addition, most 

loci identified by Genome-Wide Association Studies (GWAS) lie far away 

from genes, and several in-depth experimental analyses have revealed that 

mutations in those regions disrupt enhancer activity (Colbran et al., 2017), 

supporting the view that enhancer mutations underlie many genetic diseases, 

and highlighting the bio-medical importance of enhancer sequences (Engel 

et al., 2016).  

Chromatin marks are commonly used as indicators of an enhancer state, 

defined as the ability for an enhancer to increase expression of target genes, 

and are categorized into inactive, poised and active states. In particular, 

histone H3 lysine 27 is acetylated (H3K27ac) during activation. Thus, 

enhancers can be identified by mapping regions enriched for H3K27ac via 

ChIP-seq experiments (Creyghton et al., 2010).  

Previous studies have shown that gene functionality can be modified by 

changing the enhancer sequence only. For example, the morphological 

disappearance of limbs in snakes is associated with sequence changes 

disrupting the function of a critical limb enhancer almost 1Mb away (Kvon 

et al., 2016). Another example is the impact of changes in the human ZRS 

sequence, which have been carried out in transgenic mice, where the single-

nucleotide changes result in anterior-limb expression in abnormal positions 
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during development, consistent with preaxial digit outgrowth (Masuya et al., 

2007).  

 Methods for identifying Transcription Factor Binding Sites (TFBS) 

within regulatory DNA sequences often use Position Specific Scoring 

Matrices (PSSMs) (Stormo, 2000). These matrices score each offset in the 

input sequence and identify high-scoring occurrences of the motif. PSSMs 

assume independence of positions within the binding site, such that the total 

score (or energy) of the protein-DNA interaction is the sum over the matrix 

columns (Benos et al., 2002). Several studies challenged the validity of this 

assumption, and suggested to consider interdependent effects to better 

explain protein–DNA interactions (Man et al., 2001; Bulyk et al., 2002; 

Barash et al., 2003). TFBSs can also be learned de novo from biological 

sequences, using enrichment of motifs in a set of target biological sequences 

(e.g., promoter or enhancer regions) compared to a background set of 

sequences (e.g., non-enhancers genomic regions). Huggins et al. developed 

a method for discovery of discriminative motifs in two groups of sequences 

(DECOD) (Huggins et al., 2011). Ghandi et al. suggested using gapped k-

mers (gkm-SVM) (Ghandi et al., 2014). In addition, a wide range of 

generative approaches to discovering motifs have been developed, from 

EM-based MEME algorithm (Bailey et al., 2006) to MEME-ChIP 

(Machanick et al., 2011), HOMER (Heinz et al., 2010) and others (Tran et 

al., 2014). Finally, Leslie et al. suggested a new sequence-similarity kernel, 

the spectrum kernel, for use with SVMs in a discriminative approach (Leslie 

et al., 2002).  

We use a discriminative deep learning approach to identify enhancers vs. 

genomic background sequences, using Convolutional Neural Networks 

(CNNs). Deep CNNs have been successfully applied to computer vision, 

speech recognition, natural language processing, audio recognition, and 

lately also to bioinformatics, often achieving state-of-the-art performance in 

classification tasks. Several neural network approaches yielded promising 

results in enhancer prediction. Basset (Kelley et al., 2016) trained CNNs on 

accessible genomic sites mapped in different cell types by DNase-seq. 

DeepEnhancer (Min et al., 2017) trained the deep learning model on the 

FANTOM5 permissive enhancer dataset, and afterward on ENCODE cell 

type-specific enhancer datasets. DECRES (Li et al.,2016) used a 

feedforward neural network to distinguish between different kinds of 

regulatory elements, such as active enhancers and promoters. Alipanahi et 

al. showed that CNN models achieve excellent results on the TFBS 

prediction task and are scalable to a large number of genomic sequences 

(Alipanahi et al., 2015). Lanchantin et al. introduced new convolutional and 

recurrent neural network models that further improved TFBS predictive 

accuracy (Lanchantin et al., 2016). 

Due to the natural role of TFBSs in biological regulatory sequences, most 

architectures use convolutional layers (Ching et al., 2017). While many 

models of TFBS prediction are similar to those used in computer vision and 

NLP, genomic applications of CNNs may benefit from exploiting properties 

specific to DNA sequence data. For example, motifs may appear on either 

forward or reverse strand. Special convolution models use this property to 

share parameters and achieve invariance to the reverse-complement 

operation, thus enabling motif discovery in both strands (Shrikumar et al., 

2017). Multi-layered neural networks can use the intermediate layers to 

build up multiple layers of abstraction (Nielsen, 2015), and are thus 

attractive for modeling complex combinatorial gene regulation. For 

instance, the neurons in the first layer may learn to recognize simple patterns 

in the DNA sequence (similarly to PSSMs), the neurons in the second layer 

could then learn to recognize more complex patterns, such as spatial 

relations between pairs and triplets of motifs (as in gapped k-mer models), 

the third layer could recognize pairs of TFBSs that appear in proximity, and 

so on, thus capturing the complexity of biological regulatory sequences. 

More generally, these multiple layers of abstraction seem likely to give deep 

networks a compelling advantage in learning to solve complex pattern 

recognition problems (Benjio, 2009; Pascanu et al., 2014). 

In this work, we investigate and improve several strategies for training 

CNNs to classify enhancer sequences. By training against adversarial 

negative data (with identical k-mer distribution, for 𝑘 ≤ 4), and by 

combining features learned on different adversarial datasets, our networks 

are able to learn realistic features (such as TFBSs or parts of such), leading 

to improved classification accuracy. In addition, while the number of 

available putative enhancers defined in a specific genome may limit our 

prediction accuracy, we show that combining samples from multiple species 

improve classification performance, and furthermore that learned CNNs can 

be transferred between different species, implying conservation of 

regulatory logic. 

Finally, while traditional deep neural networks yield abstract models that 

are challenging to interpret, our model forces the learnable filters to 

converge into biologically meaningful and interpretable features, including 

the explicit modeling of TF binding sites and their wiring. Indeed, we show 

that our networks often learn filters resembling known motifs from the 

literature, demonstrating that examining the learned network can reveal 

biological insights into enhancer architecture. We show that our CNN-based 

training methods yield successful enhancer prediction for simulated datasets 

and real-life enhancers. Our methods are available in a python software 

package on GitHub.  

2 Results 

In section 2.1 we present the deep convolutional neural networks used 

throughout this paper. Section 2.2 analyzes simulated data of a single 

transcription factor binding. In Section 2.3, we analyze real-life transcription 

factor ChIP-seq data in five vertebrates. Finally, in Section 2.4 we analyze 

putative enhancer data (defined using distal H3K27ac peaks) in 17 

mammals. 

2.1  Deep Convolutional Neural Network for DNA sequences 

We designed a deep neural network to identify regulatory regions 

(enhancers) from sequence. Briefly, each DNA sequence 𝑠𝑖  of length 𝑁 is 

represented in a one-hot encoding matrix 𝑥𝑖 of size 4 × 𝑁, where for each 

position 𝑘 = 1, . . , 𝑁  and nucleotide 𝑗 ∈ {′𝐴′, ′𝐶′, ′𝐺′, ′𝑇′} we have 𝑥𝑖(𝑗, 𝑘) =

1 if 𝑠𝑖(𝑘) = 𝑗 and  𝑥𝑖(𝑗, 𝑘) = 0 otherwise. The matrix 𝑥𝑖 is used as input for 

the neural network. The true label of each sequence 𝑦𝑖 ∈ {0,1} is also 

represented in a one-hot encoding vector (𝑦𝑖 , 𝑦̅𝑖). 

The general framework is illustrated in Figure 1. We train the deep 

network classifier using positive (enhancer) and negative (non-enhancer) 

sequences, possibly from various organisms, where training amounts to 

updating a parameters vector 𝑊 which determines the mapping from input 

𝑥𝑖 to output 𝑦𝑖. We then test the performance of the trained network using 

held-out test data. 

Positive sequences are defined as genomic regions showing in vivo 

binding by a single TF (for one set of sequences), or distal regions enriched 

for H3K27ac (for a second dataset). Negative (non-enhancer) sequences are 

composed of (1) distal genomic regions of length 𝑁, with no H3K27ac 

marks (Figure 1A); or (2) positive enhancer sequences that were randomly 

k-shuffled (Figure 1B), with a specific shuffling parameter k (See Section 

2.3.4 and Methods, Section 3.1.3). 
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 The network architecture: Briefly, our networks are composed of a series 

of convolutional layers. Each such layer has multiple filters, and is followed 

by ReLU and max-pooling steps. Finally, two fully connected layers are 

applied (via linear combinations), and the output layer predicts the (binary) 

label of the input DNA sequence (Figure 1C).  

Convolutional layers: The first layers of the network are responsible for 

identifying sequence features along the input DNA sequence, such as TFBSs 

(or parts of such). To detect such features, during the training process we 

optimize a set of learnable filters (or kernels) that have a small receptive 

field, and extend through the full depth of the input volume. Each filter is 

convolved across the width and height of the input volume, computing the 

dot product between the entries of the filter and the input, and producing a 

1-dimensional activation map of that filter. As a result, the network learns 

filters that are activated upon detecting a specific type of feature at some 

spatial position of the input. 

Reverse-complement: A special convolutional function is applied in the 

first convolution layer of the CNN, to enable motif identification on both 

the forward and reverse strand by the same filter (see Methods). 

ReLU: Following the convolution, a rectified linear unit (ReLU) is 

applied, zeroing-out negative inputs and keeping positive inputs intact. 

Max-pooling: Smoothing is applied by taking the maximal value along 

consecutive non-overlapping windows, thus reducing the dimensionality of 

the feature map by a constant factor. 

These stages are repeated several times, and are followed by two fully 

connected layers, where multiple linear combinations of the feature map 

are taken, and then a ReLU function is applied. To reduce overfitting, the 

second fully connected layer applies a dropout method, keeping each node 

of this layer with probability 𝑝 = 0.85 at each training stage (Srivastava et 

al., 2014).  

Logistic layer: Finally, a logistic function is applied in the final layer of 

the neural network, converting the two output scores into class probabilities 

at the output layer. 

Convolutional neural networks generalize the classic sequence analysis 

methods: scanning a sequence using a PSSM can be viewed as a single 

(known) filter, followed by max-pooling of the entire sequence (yielding the 

single maximum score), which is then compared to a threshold value to 

classify the sequence. 

Model training: We randomly split the input data into training, 

validation, and held-out test data (80%:10%:10%, for both positive and 

negative sets). We used the cross-entropy (logistic) loss – ubiquitous in 

modern deep neural networks – to compare the predicted scores vs. the true 

labels, for optimizing the model parameters. We used TensorFlow, with an 

Adaptive Moment Estimation (Adam) optimizer (Kingma et al., 2015) as a 

stochastic Gradient-based optimization algorithm, with mini-batches of 50 

sequences for 20 epochs or until convergence (Methods).  

Model evaluation: We evaluated our models’ performance on three 

tasks: (1) classifying simulated sequences (with or without planted motifs); 

(2) identifying DNA sequences bound by a single TF; and (3) identifying 

enhancer sequences enriched for bona fide binding sites of multiple TFs (2 

and 3 in real-life biological context). We tested the performance of the 

learned networks in terms of the classification success rate, using the area 

under a ROC curve (AUC measure), and in terms of the biological insights 

distilled from the learned network parameters. To gain such insights, we 

examined the filters of the first convolutional layer (those scanning the DNA 

sequence itself), and compared them to known binding motifs from 

JASPAR (Sandelin et al., 2004) using the HOMER suite (Heinz et al., 2010) 

(see Methods). 

2.2  Simulated Data 

We started with a simple synthetic dataset, where we sampled 10K 

positive and 10K negative 500bp long DNA sequences from a background 

uniform distribution, with probability ¼ for each nucleotide. For positive 

samples, we planted a single “binding site” according to the One Occurrence 

Per Sequence (OOPS) model. Binding sites were sampled from the known 

Position Weight Matrix (PWM) of CEBPa, and planted at position J, 

according to a Normal distribution, 𝐽~𝑁(250, 402) (see Methods). We then 

examined the performance of our network (with the architecture described 

in Figure 1C) on the simulated data. This network was chosen for the main 

task of enhancer classification (see Section 2.4). 

We compared the results of our neural network to those of an oracle 

PSSM model, which uses the true PWM of CEBPa and positional 

distribution of sites. This oracle model has the lowest possible error (also 

known as Bayes' classification error), and serves as a gold standard for the 

classification task. For a competitive straw-man model, we used the PSSM 

Figure 1: A. Standard supervised training. In the basic scenario, positive samples are 

regulatory regions (either bound by a single TF or enhancer sequences), and negative 

samples are non-enhancer background sequences. Networks are trained independently in 

multiple species. B. Adversarial training. The negative samples obtained by random 

shuffles of the positive sequences, thus maintaining their kth-other base composition. 

C. Architecture of deep convolutional neural network (CNN) for enhancer prediction 

from DNA sequence. Networks building blocks include convolutional, rectification, max-

pooling, dropout and dense (fully connected) layers. The final output step uses a logistic 

function to predict that sequence label. 
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model with the top de novo motif identified using HOMER tool (Heinz et 

al., 2010), with or without a positional bias. 

As shown in Figure 2, our CNN (blue; AUC=0.81) outperforms the straw-

man models (AUC=0.74, 0.69 with or without positional bias, respectively). 

The performance of our CNN is reasonably close to that of the oracle model 

(AUC=0.9), and better than an oracle model with no positional bias 

(AUC=0.79). These results suggest that the CNN managed to learn both 

sequence preferences (PWM) and the distribution of planted binding site 

locations. The performance gap with respect to the oracle can be partly 

explained by the limited sample size. As sample size increases to 30K 

samples, our model is within 0.035 from the oracle AUC, indicating that 

with a large enough sample size, our network may achieve near-oracle 

performances. 

2.3     Single TF: CEBPa and HNF4A binding in the liver 

We next tried to identify regulatory regions enriched with a specific type 

of TF binding site using real biological sequences. We defined positive 

samples using peaks called from ChIP-seq for two liver transcription factors: 

CEBPa and HNF4A (Schmidt et al., 2010), (Supp. Info., Table 1). We next 

describe the analysis of CEBPa binding in five vertebrates: Human, Mouse, 

Dog, Opossum, and Chicken. HNF4A yielded qualitatively similar results 

(Supp. Info., Section 2.1). To avoid bias, we extracted an equal number of 

12K positive samples for each species. The network described above (Figure 

1C) performed well when running on this classification the TF data (average 

AUC of 0.93), but it failed to learn meaningful biological motifs in the 

first layer of filters. We therefore tried different network architectures and 

chose a CNN with two convolutional layers (average AUC of 0.92, see 

Figure 3), where the first layer has seven filters of size 4 × 9 × 1 each, and 

the second layer has 50 filters of size 1 × 2 × 7 each.  

2.3.1     TF ChIP-seq peaks vs. genomic background sequences 

We begin by using biological non-enhancer sequences as negative data. 

For each species, we sampled a random set of genomic regions (500 bp 

long), excluding regions with N’s, regions less than 15Kb from genes 

(Zerbino et al., 2018), and H3K27ac bound regions (Villar et al., 2015). The 

latter data was not available for chicken which we excluded from this 

analysis. We trained our CNNs on each species separately, with 12K 

positive and 12K negative samples. The results, shown in Figure 3 on 

diagonal, show successful enhancer prediction in all four species with 

similar AUC, all in the range 0.9-0.92.  

2.3.2 Transfer Learning Between Different Species 

We next asked to what extent can samples from one species improve our 

network performance in other species. Such transferability can have 

practical consequences as it allows us to predict enhancers in species with 

limited experimental data (or none whatsoever). More importantly, it can 

reveal to what extent is regulatory logic shared between species.  

We trained our network using samples from all species together (48K 

positive and 48K negative). For a fairer comparison with the single-species 

results, we also considered a dataset with 3K positive and 3K negative 

samples from each species. 

As shown in Figure 3, networks trained on different species are 

transferable – and allow training on one species and testing in another, thus 

showing the conservation of a regulatory code (at least for CEBPa). 

Moreover, training on data from multiple species together dramatically 

improved the test accuracy vs. single-species training (AUC increased from 

0.9-0.92 to 0.95-0.97; Figure 3, rightmost column), thus reducing the error 

rate by over 50%. 

 

2.3.3 Biological interpretation of the learned filters 

As shown in Figure 3, our CNN performs very well in the classification 

task of TF binding sites vs. non-enhancer negative data. A closer 

examination (Figure 4) shows that it failed to learn the "correct" motif, and 

instead learned low-complexity DNA motifs that discriminate between TF 

peaks and non-enhancer background. Indeed, regulatory sequences were 

shown to contain short repetitive motifs – mostly GC rich - that promote 

their activity (Yáñez-Cuna et al., 2014, Colbran et al., 2017). 

To improve our model's accuracy and to learn more complex, biologically 

meaningful filters, we employed an adversarial approach. Specifically, we 

shuffled the positive sequences to generate negative samples that are 

identical in their kth-order base composition to positive samples, thus forcing 

our network to focus on discriminative motifs longer than k, instead of short 

low-complexity motifs (Figure 1B). 

2.3.4 Training against k-shuffled adversarial sequences 

The negative adversarial examples define a different and possibly 

harder classification problem, compared to our original problem of 

classifying regulatory regions vs. non-enhancers. As we increase k, the 

negative samples become more similar to the positive ones, making the 

classification task harder. 

Figure 3: Multi-species 

learning improves 

CEBPa ChIP-seq 

classification. Each 

column represents a 

trained network (12K 

positive and negative 

samples), and each row 

shows test accuracy (ROC 

AUC) in different species. 

Similar accuracy is 

reported regardless of 

training species. Right-

most column shows 

improved accuracy when 

combining training 

samples from all species 

(48K positive/negative 

samples).   

 

Figure 2: A. ROC curve of different models, trained 

and tested on simulated CEBPa ChIP-seq data. 

CNN performance (blue) is compared to PSSM models 

with known PWM (cyan/yellow) or following de novo 

motif discovery (green/red); with or without explicit 

modeling of binding site positional information (using 

a Normal distribution). Yellow line marks oracle 

performance. 
B. Learned filters match planted CEBPa motif. We compared all 20 1st-layer filters learned 

by the CNN to known JASPAR motifs (using HOMER similarity score), and ranked them by 

their similarity to the closest JASPAR motif. The top four CNN filters match the known 

CEBPa motif (including half-motif and variants).  
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Choosing k: To determine k, we trained our CNN to discriminate between 

genomic (non-enhancer) sequences (here serving as positive examples) and 

their k-shuffled form (negative examples) for different values of 𝑘. As 

shown in Figure 5, we observed a dramatic deterioration in AUC up to 𝑘 =

4. After which, the positive sequences are almost indistinguishable from 

their k-shuffles (AUC≤0.55). After choosing 𝑘 (using non-enhancer 

sequences), we use the same k for comparing positive sequences and their 

kth-order shuffles, thus focusing on features that are unique to the ChIP-seq 

peaks and are not due to general genomic composition. At 𝑘 = 4, ChIP-seq 

peaks are still easily separated than their k-shuffles (AUC=0.9, compared to 

0.55 of the non-enhancers vs. their k-shuffles). 

Adversarial samples improve interpretation: When training on TF ChIP-

seq peaks vs. their k-shuffles (𝑘 = 4), some of the convolutional filters in 

the first layer of the network converged into a motif similar to the known 

PWMs. Each filter was compared to all JASPAR PWMs and the top filter 

per species is reported, together with the known CEBPa motif from JASPAR 

(Figure 4). In all species, CEBPa was identified as the top motif, with high 

HOMER similarity score (>0.88) (Heinz et al., 2010), compared to (<0.72) 

similarity for the network previously trained (Section 2.3.1) vs. non-

enhancer sequences. To conclude, by replacing the negative set with random 

k-order shuffles of regulatory sequences, we explicitly learn biologically 

meaningful motifs.  

2.4     Classification of Enhancer Sequences 

We next turned to our main problem of identifying enhancers. For this 

purpose, we trained our CNNs on active enhancer sequences defined as 

active enhancer marks (H3K27ac) in liver across 17 mammalian species 

from Villar et al., 2015 (see Methods and Supp. Table 2). We extracted 14K 

positive and negative samples for each species. 

 

Figure 5: Average classification accuracy (shown as mean AUC) at various k values. 

Shown are (1) comparison of negative non-enhancer sequences vs. their k-shuffles (green); 

CEBPa ChIP-seq peaks vs. their k-shuffles (red); and active enhancers (marked by H3K27ac) 

vs. their k-shuffles (blue). All models were trained and tested on samples from all species 

together. Y-axis marks the test ROC AUC, average over all species. Identification of shuffled 

non-enhancer sequences becomes hard at k=4 (AUC=0.55). Conversely, ChIP-seq sequences 

are still separable from their shuffles (using sequence features longer than k, AUC=0.9). 

Intriguingly, enhancer sequences seem to contain a combination of short and long features, 

leading to a gradual decrease in accuracy as k is increased.  

2.4.1 Enhancers vs. biological negative data 

We first trained our CNNs to discriminate between enhancers and 

biological non-enhancer sequences, using 14K positive and 14K negative 

examples in each species. 

We tried different hyper-parameters and CNN architectures when 

working with the enhancer data against non-enhancers, adjusting the number 

of convolutional layers, number of filters in each convolutional layer and 

size of each filter, number of fully connected layers and size of each layer, 

etc. This makes sense since enhancers may involve multiple types of TF 

binding sites compared to the single-TF case. For example, when running 

the previous network used for the single TF on the enhancer data, it yielded 

bad results (AUC=0.58). We finally chose the network detailed in Figure 1C 

for the enhancer classification, containing three convolutional layers, first 

one with 20 filters of size 4 × 9 × 1 each, second with 30 filters of size 1 ×

5 × 20 each, and third with 40 filters of size 1 × 3 × 30 each. This network 

performed well on the enhancer vs. non-enhancer classification task, as 

shown in Figure 7. 

As in the case of a single TF, training of enhancer sequences vs. bona fide 

non-enhancer sequences yields low-complexity DNA motifs, rather than 

longer functional binding sites. Our trained model captures the background 

base composition (e.g., dinucleotide distribution) discriminating enhancers 

from the biological non-enhancer background.  

Supp. Figure 3 shows classification accuracy for cross-species training. 

In similar to the single TF case, the learned network models are transferable 

between species. Test accuracy on each species of the best network - the one 

trained on 238K positive enhancer sequences and 238K negative non-

enhancer biological sequences from all species together, is lower (average 

AUC=0.86 vs. 0.95) compared to the case of a single TF, in agreement with 

our expectation of complex combinatorial regulatory logic involving 

multiple TFs controlling enhancers, making their identification harder 

compared to identifying singe-TF binding sites. We next employed 

adversarial training, proven successful for the single TF problem, to improve 

our performance for the problem of identifying enhancers.  

2.4.2 Histone Modifications vs. k-shuffled negative data 

We trained our network to discriminate between the positive enhancer 

sequences (H3K27ac peaks) and their negative random shuffles with 

varying k-order Markov model. We also examined whether here too, the 

 
Figure 4: CNN results on TF ChIP-seq peaks vs. background (non-enhancer) sequences, 

after training vs. naive (left) or adversarial (right) samples. A. Average AUC for held-out 

test data (ChIP-seq vs. non-enhancer sequences) for networks trained on different species.  

B. Top motifs learned by the CNN model trained against non-enhancer background samples. 

All CNN filters were compared to all JASPAR motifs (using the HOMER score), and the top 

hits are shown. C. Same as (A), for CNNs trained against adversarial (k-shuffled) samples. D. 

Same as (B), for CNN trained against adversarial (k-shuffled) samples. Here, all filters 

identified the true CEBPa motif (bottom) as the highest scoring PWM. Despite the 

marginally better classification of CNNs trained against non-enhancer background 

samples (A-B), these CNNs failed to learn biologically significant motifs, suggesting that 

a combination of adversarial and transfer learning should be applied. Only low 

complexity motifs were learned by filters of the first training model (A), and they did not 

resemble the CEBPa motif.  
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network will learn biologically meaningful filters, especially in the first 

convolutional layer, corresponding to liver TF binding motifs. Since we do 

not know in advance all the possible binding motifs defining liver enhancers, 

we searched the learned filters against known motifs, and recorded their 

similarity scores (Heinz et al., 2010) and information content. For this step, 

all motifs in JASPAR are used for comparison. 

Overall, the similarity and information content were lower, compared to the 

case of single TF, but higher compared to the non-adversarial networks.  

2.4.3 Transfer Learning Between Different Species  

Like the single TF case, we examined the transferability of samples 

between species. To this end, we trained our model on samples from all 

species together (238K positive and 238K negative), and on a subset of 

samples from all species, containing a portion of the samples of each species 

(total of 14K positive and 14K negative). 

Similarly to the single TF case, networks trained on different species are 

exchangeable, and training on data from multiple species together yielded 

better results compared to training on each species individually (see Supp. 

Figure 3). Moreover, transferability here reflected phylogeny, as Opossum 

and Tasmanian devil, the only two marsupial mammals in our dataset, had 

significantly lower classification test accuracy, compared to the fifteen 

eutherian mammals.  

2.4.4 Improving Classification with Adversarial Training 

Using the insights gained during training with different background sets, 

we devised two strategies in which the adversarial approach is used to 

improve our classification performance at the original task of discriminating 

enhancer vs. non-enhancer sequences, described next. 

2.4.4.1 Expanded negative data 

In the first approach, we expanded the negative training data, to consist 

of two types of negative sets: The first part contains k-shuffled enhancer 

sequences, with different values of k, and the second part contains biological 

non-enhancer sequences. We tried different partitions of these negative sets, 

and then chose the best partition. For the first part, we enumerated over all 

29 possible subsets of 𝑘 = {1, … ,9}. For the second part, we created 3 

different sets by duplicating the biological negative data 𝑛 = 1,2 or 3 times. 

We trained vs. all 29 × 3 combinations using 10 runs, discarded all 

combinations yielding AUC<0.6 in their best run, and used 50 runs for the 

remaining combinations.  The negative set achieving the best results is 

shown in Figure 6A, with biological negative data duplicated twice (𝑛 = 2), 

thus comprising 40% of the negative samples, and k-shuffling taken for 𝑘 =

2,3,4, each comprising 20% of negative samples. The positive samples have 

been duplicated 5 times, in order to have a balanced training set with equal 

number of positive and negative examples.  

2.4.4.2 CNN with ‘planted’ filters 

In this approach, we used the filters learned by the adversarial training, 

rather than the adversarial examples themselves. We initialized some of the 

CNN's parameters by 'planting' filters learned by the adversarial trained 

networks, trained on enhancers vs. k-shuffles for 𝑘 = 2,3,4, as opposed to 

random parameter initialization. Specifically, the filter parameters in all 3 

convolutional layers are now initialized according to filter parameters 

learned earlier by one of the three adversarial trained networks (for 𝑘 =

{2,3,4}) and the fourth part of parameters were randomly initialized. All 

parameters in fully connected layers were also randomly initialized. 

This training strategy is illustrated in Figure 6B. As shown in Figure 7, 

these two methods indeed improved the CNN performance in the enhancer 

vs. non-enhancer classification task, with average AUC increasing from 

0.80 to 0.86. While negative data expansion is a simpler and more general 

approach, smart initialization by filter planting achieved slightly better 

performance (AUC=0.86 vs. AUC=0.845). 

 
Figure 7: Transfer and Adversarial learning contribute to better enhancer 

classification. Shown are classification results of enhancer vs. background (non-

enhancer) sequences, after training at different scenarios, including: (1) enhancers vs. 

non-enhancer sequences (blue), (2) enhancers vs. k-shuffled enhancer sequences (red), 

(3) networks trained on enhancers vs. expanded negative data (non-enhancers and k-

shuffled data), and (4)  networks trained on enhancers vs k-shuffled data, with filters then 

“planted” into new larger models. All models were tested on enhancer (H3K27ac) vs. 

background (non-enhancer) sequences. We also tried to use a larger CNN (with the same 

number of parameters as the CNN with planted filters), where all parameters are randomly 

initialized This network did not improve the result of the original CNN trained on 

enhancer vs. non-enhancer sequences (the larger randomly initialized network gives an 

AUC of 0.79, while the original smaller randomly initialized network gives an AUC of 

0.80). 

 
Figure 6: Improved network. A.  Diagram of CNN trained on expanded negative 

data, 40% containing biological negative data and 60% containing k-shuffled 

enhancer sequences with 𝑘 = {2,3,4}. B. Diagram of CNN with ‘planted’ filters. 

60% of the convolutional layers’ parameters were initialized according to previous 

networks’ parameters – networks that were trained against k-shuffle of the positive 

enhancer sequences, with 𝑘 = {2,3,4}. The rest of the convolutional layers’ 

parameters (40%) and the fully connected parameters were randomly initialized. 
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3 Methods   

3.1     Deep Convolutional Neural Network Model 

Our deep convolutional neural network represents a mapping 𝑦𝑖̂ =

Pr(𝑦𝑖 = 1) = 𝑓(𝑠𝑖; 𝑊) from the sequence 𝑠𝑖 (or its one-hot encoding 

representation 𝑥𝑖) into class probabilities. We denote by 𝑊 the learnable 

parameters of the network, including all weights and biases. We used the 

TensorFlow Python library (ver. 1.1.0) to design, train and test the CNN 

model, and scikit-learn for generating ROC curves and AUC measure.  

Reverse complement convolutions: To account for reverse complement 

occurrences of each filter, we added a special convolutional function in the 

first layer of the CNN (Shrikumar et al., 2017). At every position in the input 

sequence, we applied each filter in both orientations, and chose the 

maximum one as output for the next layer. This was done by reversing the 

first two dimensions (rows, columns) of each filter, equivalent to rotating 

the matrix that represents the filter by 180 degrees. Consecutive layers are 

therefore invariant to the strand in which a neuron was activated. 

Logistic transformation: The two output neurons of the network 𝑧0, 𝑧1 
(Figure 1) are converted into positive class probability by applying the 

logistic function 𝜎(𝑧) = 1

1+𝑒𝑧1−𝑧0 . 

3.1.1 Training the CNN Model 

Cross-entropy loss function: Consider 𝑁 labeled training samples 

{(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  with 𝑥𝑖 ∈ ℝ4×𝐿 the sequence one-hot representation and 𝑦𝑖 ∈

{0,1} the label for sample 𝑖.  The cross-entropy loss of a network 

parameterized by 𝑊 for a sample (𝑥𝑖 , 𝑦𝑖) is denoted by 𝑙(𝑊; 𝑋, 𝑦𝑖), and is 

given by: 

(1) 𝑙(𝑊; 𝑥𝑖 , 𝑦𝑖) = −[𝑦𝑖 ln 𝑦𝑖̂ + (1 − 𝑦𝑖) ln(1 − 𝑦𝑖̂)] 
 

where 𝑦𝑖̂ ≡ 𝑓(𝑥𝒊; 𝑊) is the predicted value of the model. We optimize 𝑊 

by minimizing the loss function over all samples: 𝐿(𝑊; 𝑋, 𝑦) =
1

𝑁
∑ 𝑙(𝑊; 𝑥𝑖 , 𝑦𝑖)𝑁

𝑖=1 . 

3.1.2 Parameter optimization  

The network parameters 𝑊 (weights and biases) are trained using the 

Adaptive Moment Estimation (Adam), a stochastic Gradient-based 

optimizer (Kingma et al., 2015). Briefly, this algorithm uses a momentum-

based gradient approach to iteratively update 𝑊. 

The update rule is based on a subset of training examples – mini-batch. At 

each iteration 𝑡 we choose a mini-batch 𝐵𝑡 ⊂ {1, . . , 𝑁} of size 𝑏, and  define 

the loss of this iteration as:  

 

(2) 𝐿𝑡(𝑊; 𝑋, 𝑦) = 1

𝑏
∑ 𝑙(𝑊; 𝑥𝑖 , 𝑦𝑖)𝑗𝜖𝐵𝑡

 

 

Adam uses the stochastic gradient over the mini-batch ∇𝐿𝑡(𝑊𝑡; 𝑋, 𝑦) to 

estimate the first two moments of the gradient (parameter-wise) at the 

current parameterization 𝑊𝑡 .  Adam then uses these estimates to normalize 

the gradient by dividing its norm by its mini-batch estimated standard 

deviation, giving the update rule at iteration t: (assuming tolerance 

parameter 𝜖 = 0) 𝑊𝑡+1 = 𝑊𝑡 − 𝛼 𝑀̂𝑡

√𝑅̂𝑡

. See Supp. Info for a full description.  

We used Adam's default hyper-parameters: the learning rate 𝛼 = 0.001, the 

1st moment decay rate 𝛽1 = 0.9, the 2nd moment decay rate 𝛽2 = 0.999, and 

the tolerance parameter 𝜖 = 10−8. We used mini-batches of size 𝑏 = 50. In 

each training epoch we go through all the training samples, using 
𝑁

𝑏
 non-

overlapping mini-batches, and shuffle them at the end of each epoch. In each 

run, we performed up to 20 learning epochs (
2𝑁

5
 iterations) – we allowed 

early stopping by calculating the train and validation accuracy every 2 

iterations (100 samples), and stopped if the mini-batch loss was extremely 

low (𝐿𝑡(𝑊; 𝑋, 𝑦) < 0.0002). We performed 50 runs of training (with 

random initializations of the network parameters 𝑊), and saved the model 

with maximal validation accuracy over all runs.  

Comparison of motif matrices: We examined the filters of the first 

convolutional layer that scan the DNA sequence itself, and compared it to 

known motifs from the JASPAR database (Sandelin et al., 2004) using 

HOMER v4.6 (Heinz et al., 2010). Briefly, HOMER similarity reflects the 

Pearson correlation between a query PWM and the best JASPAR match 

(after trying all possible alignments, including reverse-complements).  

3.1.3 Adversarial Negative Data 

Generating k-shuffled background sequences: Background sequences 

were generated using a k-order shuffle of (positive) enhancer sequences 

using varying k values (Kandel et al., 1996; Jiang et al., 2008). Specifically, 

we iteratively identified a k bp-long motif (k-mer) that occurs several times 

within each sequence, and randomly shuffled the sub-sequences between 

them (Figure 8). This procedure generates a random shuffle of the original 

sequence, while maintaining the exact number of occurrences for each k-

mer within each sequence. Algorithmically, this can be done by constructing 

a de Bruijn multigraph in which the vertices {𝐯𝐢} represent the k-mers 

appearing in the original sequence s, and edges correspond to (k+1)-mers in 

the sequence, thus connecting two (k-mer) nodes, with an overlap of k-1 

bases. Random k-order shuffles of the original sequences can be then 

obtained by finding an Eulerian path in this graph. We used the uShuffle 

tool implementing this algorithm (Jiang et al., 2008).  

3.1.4 Simulated Data 

We simulated data using a simple One Occurrence Per Sequence (OOPS) 

model: each positive sample contains a single occurrence of the binding site, 

sampled (base by base) from multinomial distributions according to a given 

Position Weight Matrix (PWM). The short sub-sequence is planted in a 

random background sequence, with bases sampled i.i.d. from a uniform 

distribution. The location of the planted sub-sequences is normally 

distributed around the center of the long sequence (𝜇 = 250, 𝜎2 = 402), 

resembling real data from noisy ChIP-seq experiments (Ma et al., 2014). 

Negative samples were sampled similarly, with no planted binding sites 

added. We downloaded JASPAR PWMs for two known motifs of liver-

specific transcription factors: CEBPa (MA0102.2) and HNF4A (MA0114.1) 

(Sandelin et al., 2004). We then added pseudo-counts of 0.01 to avoid matrix 

entries having a value of 0 and re-normalized the PWMs. For each of the 

two PWMs, we created a synthetic data with 10K positive samples and 10K 

negative samples. 

3.2     Single TF Data in Livers of Five Vertebrates 

We next turned to test our method in real biological settings, where the goal 

is to identify regulatory regions enriched for a specific type of transcription 

factor binding site. We analyzed the genome-wide binding of two liver-

specific transcription factors: (1) CEBPa in five vertebrates: human, mouse, 

 
Figure 8: k-order shuffling represents alternative Eulerian paths in the k-order de 

Bruijn multigraph. A. An original genomic sequence for demonstration. B. The 

corresponding de Bruijn multigraph of order 3. C. A new possible shuffled sequence, with 

the same triplet counts as in the original sequence.  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2018. ; https://doi.org/10.1101/264200doi: bioRxiv preprint 

https://doi.org/10.1101/264200
http://creativecommons.org/licenses/by-nc/4.0/


D. Cohn et al. 

8 
 

dog, opossum and chicken, and (2) HNF4A in human, mouse, and dog 

(Schmidt et al., 2010). For both TFs, we used peaks called from Chromatin-

immunoprecipitation sequencing (ChIP-seq) data to define bound loci in 

each species (Supp. Table1). We defined a 500bp window centered at each 

peak, and used the bedtools package (Quinlan et al., 2010) to extract the 

corresponding DNA sequences as our positive TF samples.  

Here we describe the CEBPa analysis. A similar analysis for HNF4A is 

shown in the Supp. Info. In order to have the same amount of samples from 

each species, we extracted the positive samples corresponding to 12K peaks 

for each species.   

We trained our CNN on each species separately (12K positive and 12K 

negative samples), on all species excluding Chicken (48K positive and 48K 

negative samples), and on a random subset of samples from all species, 

containing one fourth of the samples of each species (total of 12K positive 

and 12K negative samples).  

3.3    Enhancer Sequences: H3K27ac Peaks in Livers of 17 Mammals 

We next turned to predict enhancer sequences that contain bona fide 

binding sites for multiple TFs, in real biological context. We used data from 

Villar et al., who tracked the evolution of promoters and active enhancers 

across the livers of 20 mammalian species (Villar et al., 2015). Of those, we 

excluded three species due to lack of genome sequence or poor annotations 

(Supp. Table2). To avoid bias due to differences in the number of called 

peaks, we extracted 14K peaks as positive samples for each species. 

We then trained our CNN on each species separately (14K positive and 

14K negative samples), on all species together (17 × 14 = 238𝐾 positive 

and 238𝐾 negative samples), and on a random subset of samples from all 

species (total of 14K positive and 14K negative).  

3.4     PSSM model 

The PSSM straw-man model attempts to separate the positive and 

negative samples by giving each sample a score, based on the best match to 

an input PWM.   

Briefly, for a sequence 𝑠 of length 𝑁 and a PWM 𝑃(𝑀) of length 𝐿, we 

assume the OOPS model, where a specific single location is chosen at 

random for the motif, according to a prior 𝒫(𝐿). We also have a uniform 

background model 𝑃(𝐵). In this model, we compute the Maximum Log-

Likelihood Ratio (MLLR) statistic over all possible positions (see Supp. 

Info.): 

 

(3) MLLR(𝑠, 𝑃(𝑀), 𝒫(𝐿)) = max
𝑗=1,…,𝑁−𝐿+1 

{∑ log (𝑃(𝑀)
(𝑖,𝑠(𝑗+𝑖−1) ))

𝐿
𝑖=1 +

 log((𝑁 − 𝐿 + 1)𝒫(𝐿)
𝑗) + 𝐿𝑙𝑜𝑔(4)}. 

 

We then compare it to a fixed threshold. For a model with no positional bias, 

the score above simplifies to the standard PSSM scoring. In addition to the 

known PWMs, we also used the highest scoring de novo motif, as identified 

using HOMER's findMotifs function (Heinz et al., 2010). 

4 Discussion  

By incorporating both biological non-enhancer sequences and k-order 

adversarial shuffles of enhancer sequences, we captured and used both low 

complexity features (representing background base composition), as well as 

longer features (such as DNA binding motifs for regulatory proteins). As we 

showed, combining these two strategies improved our ability to discriminate 

between enhancers and non-enhancers from DNA sequence data only, thus 

advancing our understanding of the underlying regulatory grammar.  

Naïve application of deep-learning methods to DNA sequence in 

biological settings may achieve satisfactory classification performance. 

However, it is hard to biologically interpret the resulting parameters of 

trained network. As a consequence, these models do not advance our 

understanding of the underlying biological grammar of DNA motifs and the 

molecular mechanisms involved.  

In contrast, training deep neural networks on carefully designed 

adversarial data, forces the network to learn a meaningful data 

representation, thus harnessing the computational power of deep learning 

into biological insights. 

Specifically, we developed two such strategies: first, training against 

negative heterogonous dataset comprising a mixture of negative samples 

and adversarial k-shuffled positive samples. Second, by a sequential 

approach where network filtered learned using one dataset were planted into 

a network trained on another dataset.  

We have shown the utility of transferring learned filters between different 

species. Future work may improve transferability between various species 

by utilizes their evolutionary relationships. In addition, the transfer-learning 

methodology has far reaching implication beyond the scope of this problem. 

For example, we can use enhancers from one cell/tissue-type to improve 

enhancer prediction on another cell/tissue-type. 

Our work opens the door for new possibilities in interpreting deep 

networks applied in genomic context. We have shown that filters learned at 

the first convolutional layer have a clear biological interpretation as short 

motifs and known TF binding sites. By carefully examining additional 

layers we propose to interpret more complex, higher-order regulatory 

interactions between various mechanisms of gene regulation.  
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