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Abstract

The characterization of the metabolic deregulations that distinguish cancer phenotypes,
and which might be effectively targeted by ad-hoc therapeutic strategies, is a key open
challenge. To this end, we here introduce MaREA (Metabolic Reaction Enrichment Anal-
ysis), a computational pipeline that processes cross-sectional RNAseq data to identify the
metabolic reactions that are significantly up-/ down-regulated in different sample sub-
groups. MaREA relies on the definition of a Reaction Activity Score, computed as a func-
tion of the expression level of genes encoding for reaction enzymes, which can also be used
as an effective metrics to cluster samples into distinct metabolic subgroups. MaREA finally
allows to visualize the results in a graphical form directly on metabolic maps. We apply
MaREA to distinct cancer datasets and we show that it can produce useful information
and new experimental hypotheses on metabolic deregulation of cancer cells, also allowing
to stratify patients in metabolic clusters with significantly different survival expectancy.
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1. Introduction

The heterogeneity of cancer genotypes and phenotypes hinders the iden-

tification of targets for effective treatments and is a major cause of tumor

relapse. Therefore, it is common practice to statistically compare the gene

expression of patient cohorts, based on clinical observations and/ or molec-

ular features, in order to understand how the hallmarks of cancer can be

(alternatively) achieved in terms of gene expression regulation. An hallmark

in particular is of interest for cancer treatment: the metabolic reprogramming

of cancer cells [1, 2].

Current research on cancer metabolism typically relies on genome-wide

reconstructions of human metabolic networks [3], such as HMR [4] and Recon

2.2 [5]. These models include most metabolic reactions that may occur in a

generic cell. Different strategies are used to extract relevant sub-models, e.g.,

the active metabolic networks in a given cell or tissue, in order to investigate

its specific molecular features, possibly identifying relevant biomarkers and

therapeutic targets. Current methodologies to this end employ transcrip-

tome, proteome or even metabolome data (as reviewed in [6, 7, 8]). Such

models are typically used in Flux Balance Analysis (FBA), a technique that

exploits linear programming to compute the flux through each reaction under

a steady state assumption, and which requires further constraints on incoming

nutrients and outgoing products (i.e., exchange reactions) [9]. Yet, retrieving

such information might be hard, as the simultaneous presence of metabolic

measurements and transcriptomic data on same patient are rarely available

in public databases, such as, e.g., the The Cancer Genome Atlas (TCGA)

[10]
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We here propose MaREA (Metabolic Reaction Enrichment Analysis) (Figure

1) as an alternative computational approach to investigate cancer metabolism,

when data on metabolic measurements are not available, which explicitly fo-

cuses on transcriptional regulation of metabolic reactions.

MaREA processes RNAseq data, as one can retrieve from publicly avail-

able databases such as TCGA [10]. For each reaction of a given metabolic

network, MaREA computes a Reaction Activity Score (RAS), which describes

the extent of its activity in a given condition, as a function of the expres-

sion level of the genes encoding for the subunits and/ or the isoforms of the

enzyme catalyzing such reaction. This score provides a more refined infor-

mation than the mere list of genes associated to a reaction, without requiring

to set any arbitrary threshold, nor to binarize data (gene present or absent),

as required by other approaches [11]. Besides, MaREA does not perform

FBA simulation, but only employs the RAS as a static representation of the

metabolic behavior of a given sample, which can be then used to compare

different sample sets (e.g., different patient cohorts, or control vs. tumor),

identifying over (or under) expressed reactions.

Our approach markedly differs from that of Gene Set Enrichment Anal-

ysis (GSEA), which aims at characterizing the sets of up- or down-regulated

genes in different phenotypes [12]. The typical outcome of GSEA analy-

sis provides generic indications on the deregulated functions of a cell, or on

specific functional behaviors when focusing on particular gene sets, derived,

for instance, from the Reactome pathway database [13]. Nevertheless, the

enriched sets are mere list of genes involved in comprehensive metabolic path-

ways (as, e.g., DNA replication), failing to provide details on which specific
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metabolic routes of a large pathway are favored in a given condition. In

particular, metabolic functions can be alternatively achieved by metaboliz-

ing different nutrients and/ or by following different catabolic and anabolic

routes, in a complex and largely undeciphered interplay. For this reason,

simply knowing weather a certain function is up or down-regulated might not

be sufficient to shed light on how such function might be achieved in distinct

cancer phenotypes. In this regard, MaREA can provide a much finer reso-

lution to the analysis and the enrichment of metabolic reactions in distinct

experimental conditions.

More recent approaches aim at building sets of genes to be enriched

according to the information included in genome-wide metabolic networks.

Specifically, metabolic reporter analyses try to provide knowledge about vari-

ations in metabolite concentrations, starting from sets of genes classified ac-

cording to the metabolite they associate with [14]. However, such methods

do not provide information about which reactions are up- or down-regulated,

and thus hinders the identification of putative targets for cancer treatment.

MaREA allows to overcome the limitations of current methods, providing

a fine instrument for cancer metabolism investigation based on simple as-

sumptions and easily-accessible transcriptomic data. Similar in spirit to the

recently introduced PARADIGM approach (PAthway Recognition Algorithm

using Data Integration on Genomic Models [15]), MaREA extracts a feature

(the RAS) for each sample. However PARADIGM relies on the integrat-

ing of data from multiple sources and requires curated pathway interactions

among genes, hence both the input data and final objective are significantly

different.
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Importantly, the features extracted by MaREA can be used to stratify

samples in an unsupervised manner (Metabolic Feature Extraction). Such

stratification might provide relevant prognostic indications, as shown in the

case studies in Section 2. Distinct approaches make use, for instance, of

the information on enriched pathways [16] or of that on mutational profiles

[17, 18] to classify cancer samples and subtypes.

Summarizing, MaREA can be used to: i) rank the reactions according to

the variation in their activity observed between different phenotypes and/ or

experimental conditions; ii) enrich the map of human metabolic routes with

the variation observed in the RAS of each reaction, providing a clear visual-

ization of how deregulated paths are interconnected; iii) efficiently stratify

samples according to their metabolic activity, hence providing a new (un-

supervised) clustering tool, with testable clinical relevance, which can be

assessed, e.g., via standard survival analyses.

As a proof of principle, we applied MaREA to data publicly available in

the TCGA database [10]. We computed the RASs by taking into account

either all the Gene-Protein Rules (GPRs) included in the genome wide-model

Recon 2.2 [5] or a manually curated subset of it, corresponding to the model

of central carbon metabolism previously used in [19, 20]. We identified and

visualized the enriched metabolic reactions between normal and cancer biop-

sies obtained from breast cancer patients (TCGA-BRCA dataset [21]). Fur-

thermore, we used the RASs to stratify breast cancer patients in distinct

metabolic clusters, and performed standard survival analysis, which high-

lighted statistically significant prognostic predictions.
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Figure 1: MaREA pipeline. (A) MaREA takes as input a n sample × m genes matrix
T which includes the normalized read count of each gene from a given cross-sectional
RNAseq dataset. (B) MaREA can use different input metabolic reaction networks, e.g.,
the genome-wide Model, or any subset of it. (C) A Reaction Activity Score (RAS) is
defined for any reaction r in the input network and any sample, by distinguishing the case
of reactions involving enzymes composed by different subunits - in this case the RAS is
computed as the minimum of the transcript level of the genes encoding the subunits -, and
that of reaction catalyzed by different enzyme isoforms - in this case the RAS is computed
as the sum of the transcript level of the genes encoding the isoforms. (D) Given two
distinct subsets TA and TB of the original dataset, the RASs of a given reaction in the
two cases are compared and if the p-value of the Kolmogorov-Smirnov test is significant
(< 0.05) and the log2 fold-change is larger than 0.263, that reaction will be enriched in the
final graph as up- or down-regulated. Accordingly, a reaction ranking can be provided.
(E) MaREA can stratify patients by employing the RAS as metrics on standard clustering
methods, e.g., k-means. Survival analyses, such as log-rank test on Kaplan-Meier curves,
can finally provide a prognostic validation of the clusters (notice that the image is intended
for explanatory purpose only and does not reproduce any real case study).
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2. Materials and Methods

Input. MaREA takes as input any RNAseq dataset in the form of a n × m

matrix T , where n is the number of genes and m is the number of samples

of the considered cohort (see Figure 1-A). Each element Ti,j, i = 1, . . . , n,

j = 1, . . . ,m corresponds to the normalized read count of gene i in sample

j such as, for instance, the RPKM (Reads per Kilobase per Million mapped

reads).

MaREA then filters T according to a specific input reaction network N ,

e.g., the genome-wide metabolic network [5] or any possible subset of it (see

Section 2). In particular, we define the set of reactions as R = {r ∈ N}.

Therefore, T is filtered by retaining only the rows corresponding to genes

that are associated to enzymes involved in the reactions included in R (see

Figure 1-B).

Gene-protein rules are logical formulas that describe how gene products

concur to catalyze a given reaction. Such formulas include AND and OR log-

ical operators. AND rules are employed when distinct genes encode different

subunits of the same enzyme, i.e., all the subunits are necessary for the reac-

tion to occur. OR rules describe the scenario in which distinct genes encode

isoforms of the same enzyme, i.e., either isoform is sufficient to catalyze the

reaction.

For example the succinate-Coenzyme A ligase enzyme is formed by the

subunits alpha (gene SUCLG1) and beta gene (SUCLG2) and catalyzes the

reaction Pi+ succinyl-CoA+GDP ↔ CoA+ succinate+GTP . The gene-

enzyme rule for this reaction is therefore: SUCLG1 AND SUCLG2. Con-

versely, ACACA and ACACB are respectively fully functional enzyme for
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the reaction acetyl-coenzyme A ligase carboxylase, thus the rule is ACACA

OR ACACB. Such logical operators can of course be combined to depict

multi-protein catalytic complexes or more complex situations involving both

subunits and isoforms. For instance, ribonucleotide reductase is formed by

two subunits: the catalytic (M1) and the regulatory one. The latter exists

in two isoforms (M2 and M2B). The rule for this enzyme will therefore be

RRM1 AND (RRM2 OR RRM2B).

Reaction Activity Score (RAS). To avoid the definition of arbitrary thresh-

olds on the transcript level, we do not resolve the logical expressions in a

Boolean fashion, but we define a Reaction Activity Score (RAS), for each

sample j = 1, . . . ,m, and each reaction r ∈ R (see Figure 1-C). In order to

compute the RAS we distinguish:

• Reactions with AND operator (i.e., enzyme subunits).

RASr,j = min(Ti,j : i ∈ Ar), (1)

where Ar is the set of genes that encode the subunits of the enzyme

catalyzing reaction r.

• Reactions with OR operator (i.e., enzyme isoforms).

RASr,j =
∑
i∈Or

Ti,j, (2)

where Or is the set of genes that encode isoforms of the enzyme that

catalyzes reaction r.
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In case of composite reactions, we respect the standard precedence of the

two operators. The final output is therefore a |R|×m matrix M , where each

element Mr,j is the RAS computed for reaction r in sample j.

The intuition underneath the introduction of the RAS is that enzyme iso-

forms contribute additively to the overall activity of a given reaction, whereas

enzyme subunits limit its activity, by requiring all the components to be

present for the reaction to occur.

Clearly, we are here adopting a deeply simplified approach to reaction net-

work modeling, by neglecting, for instance, the great heterogeneity of reac-

tion kinetic constants and protein binding affinities, of translation rates, and

any possible post-transcriptional regulation effect that might occur within a

cell. In this regard, an optimal choice would be to weigh all the reactions

according to such quantities, yet direct measurements or robust estimates

are very rarely available, especially for genome-wide models. Therefore, on

first approximation, we here assume that all enzyme isoforms and subunits

contribute uniformly to the reaction activity of a given reaction, as we expect

that this choice does not affect the up-/ down-regulation interplay observed

at the network level.

Reaction enrichment: visualization and ranking. One important outcome of

the RAS introduction is the possibility of identifying and visualizing in an

explicit way the metabolic routes that are up- or down-regulated in different

sample sets and/ or experimental conditions (see Figure 1-D).

Given two distinct RNAseq datasets, or two partitions of the same dataset,

TA and TB, and an input metabolic reaction network N , we first compute

the RAS matrices MA and MB. For each reaction r ∈ N we then perform a
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non-parametric two-sample Kolmogorov-Smirnov (KS) test with a standard

p-value threshold of 0.05, to verify whether the distributions of RASs over

the samples in the two sets are significantly different.

In that case, we compute the log2 fold-change of the average RASr in

the two groups. Because KS-test considers as significantly different distri-

butions with the same mean, but different standard deviation, we consider

as relevant only log2 fold-change larger than 0.263 (i.e., corresponding to a

20% variation of the average RAS). In line with the philosophy of GSEA[12],

we use a relaxed threshold for the fold-change, because even an increase of

20% in genes encoding members of a metabolic pathway may dramatically

alter the flux through the pathway. The significance threshold on the p-value

of the Kolmogorov-Smirnov test, on the other hand, ensures that expression

distributions of the two groups are indeed different and, therefore, that a

20% difference in the average expression level does not occur by chance.

MaREA then uses the significant RAS fold-changes to: i) determine a

ranking of the most relevant up- and down-regulated reactions in the two sets,

ii) map such quantities over the input metabolic network N , by respectively

coloring in red/ blue the up-/ down-regulated reactions, and by setting the

edge thickness as proportional to the RAS fold-change. The reactions that

will either display non-significant p-value or a RAS fold-change below the

threshold will not be included in the ranking and will be marked in gray

color on the metabolic network.

RAS-based sample stratification. Another major advantage of our approach is

that it is possible to employ the RAS as an efficient metric to identify sample

subgroups (or clusters) that share similar metabolic properties (see Figure
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1-E). In particular, we here implemented a k-means clustering [22] which

use the RASs of all reactions r ∈ R to identify sample clusters with distinct

metabolic behaviours. Clusters can be compared by means of the reaction

enrichment procedure described above, by ranking the significantly different

reactions in the distinct clusters and visualizing the RAS fold-changes on the

input network. Above all, clusters can also be tested via standard survival

analysis, such as the log-rank test on Kaplan-Meier curves (when data is

available), hence providing an important orthogonal validation of the clus-

tering results with clinical relevance. In Section 2 we show how clustering on

RASs indeed can produce significant prognostic predictions.
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Figure 2: Breast cancer vs. normal samples.(A) HMRcore map enriched by MaREA: Re-
actions up-regulated in breast cancer sample set are marked in red, reactions up-regulated
in normal sample set are marked in blue. A list of the abbreviations used in the map is pro-
vided in Supplementary Text S1. Thickness of the edges is proportional to the fold-change.
Non-Classified reactions, i.e., reactions without information about the corresponding gene-
enzyme rule, are marked in black. Dashed gray arrows refer to non-significant deregula-
tions according to the Kolmogorov-Smirnov test. Solid gray arrows refer to reactions with
a log2 fold-change below 0.263. (B) A reaction ranking is provided, by listing the 10
reactions with largest log2 fold-change of the RAS (absolute value) in the two conditions.
The reaction formula, the corresponding pathway, the gene rule, the up-/ down-regulation
flag and log2 fold-change are shown in the table.
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Metabolic Network. To compute the RAS of cancer samples in a given TCGA

dataset at the genome-wide scale, we used the GPRs included in the most

up-to-date genome-wide network of human metabolism: Recon 2.2 [5]. In

particular, to visualize MaREA results at the genome-wide level, we modified

the graphical attributes of the model map in xml format obtained from the

Virtual Metabolic Human (VMH) (https://vmh.uni.lu/), which is readable

by the tool Cell Designer [23].

To focus, instead, on central carbon metabolism, we used the metabolic

core model (HMRcore) introduced in [20]. For the sake of completeness, we

included in the model mitochondrial palmitate degradation and gluconeo-

genesis. As the original version of the model does not include information

on GPRs, such rules have been extracted and manually curated from Re-

con 2.2 [5] and included in the HMRcore model. In particular, we verified

the correctness of gene-protein rules taking into account the information re-

trieved from the Human Protein Atlas [24] for the protein tissue location,

from UniProtKB [25] for the enzyme complex composition, and from KEGG

[26] to check gene - enzyme association. Notably, we corrected for some in-

consistencies within Recon 2.2, with particular regard to cytosolic reactions

associated with mitochondrial isoforms or the other way around. The final

version of the HMRcore model includes 231 reactions with rules and 390

metabolic genes that are associate to them. Genes are identified with the

HGNC ID provided by the HUGO Gene Nomenclature Committee [27]. The

SBML of the model is provided in Supplementary file S1.

It should be noted that not every reaction in the metabolic models is

associated with a gene-enzyme rule: for instance some reactions have been
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included to fill the gaps in steady state computations, but we lack knowledge

on the associate genes. In detail, 4742 (231) reactions over 7785 (272) are

associated with a gene-enzyme rule, in the genome-wide (core) model and

thus a RAS can be computed for them.

Dataset. We applied the MaREA pipeline to the breast cancer dataset (TCGA-

BRCA) published in [21], which also includes healthy/ control samples. We

downloaded the dataset via the cBioPortal [28] (case study id: brca tcga pub2015).

This dataset includes the expression profile (RNA Seq V2 RSEM) of biop-

sies taken from 817 patients. For 105 of them, the expression profile of the

normal tissue is also included. Because the TCGA-BRCA dataset identifies

genes with Entrez IDs, we automatically converted them into HGNC IDs.

We found a correspondence for 1654 (379) genes over the 1673 (390) included

in the genome-wide metabolic model. Although we neglected missing genes

in the computation of the RASs, we were still able to compute a RAS for

each reaction associated with a GPR.

3. Results

3.1. Breast Cancer vs. Normal

In order to evaluate the goodness of MaREA results, we first applied it

to a largely characterized case-study: the comparison of cancer and normal

metabolism.

Reaction enrichment. The reactions that have been identified by MaREA

as significantly up or down regulated in cancer - with at least a 20% in-

crease/decrease - and the magnitude of the deregulation are mapped on the
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central carbon metabolic network (HMRcore) in Figure 2, as well as on the

genome-wide metabolic network in Supplementary Figure S1. It can be eas-

ily observed (Figure 2) that the pathway of glycolysis is over expressed in

cancer. Extensive utilization of glucose is indeed a well established trait of

breast and of cancer cells in general [29]. Cancer cells need glucose to feed

the metabolic requirement of enhanced proliferation, with particular regard

to: 1) de novo synthesis of nucleotides for genome replication; 2) synthesis

of amino acids for protein synthesis 3) synthesis of fatty acids to support the

expansion of cellular membranes; 4) ATP generation for energetic require-

ments. Accordingly, MaREA returned as largely up regulated in cancer: 1)

synthesis of nucleotides from Phosphoribosyl-pyrophosphate (PRPP in Fig-

ure 2); 2) metabolism of the non-essential aminoacids serine (Ser), glycine

(Gly), alanine (Ala), asparagine (Asn), aspartate (Asp), arginine (Arg) and

proline (Pro); 3) synthesis of cholestrol (Chol) from citrate (Cit).

As long as ATP production is concerned, the interpretation of the sit-

uation portrayed by MaREA is, as expected, less straightforward. Cancer

cells are believed to rely more on fermentation of glucose to lactate rather

than on oxidation of glucose in the mitochondria (inner box of the map in

Figure 2), despite the presence of oxygen: a phenomenon well-known as the

Warburg Effect [2, 1]. However, in contrast to Warburg’s original hypothesis

that damaged mitochondria are at the root of this phenomenon, the abil-

ity of mitochondria to carry out oxidative phosphorylation is not defective

in most tumors [1]. In line with these studies, if on the one hand lactate

secretion seems to be up regulated in cancer (reaction crossing the external

box in Figure 2), on the other hand the respiratory chain (represented by

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/248724doi: bioRxiv preprint 

https://doi.org/10.1101/248724


the 5 reactions at the bottom of the mitochondrial box, which are catalyzed

by protein Complexes I-V) is not significantly down-regulated in this breast

cancer dataset, exception made for Complex II.

It is worth noticing that oxidation of NADH (Complex I and III-V) may

occur independently from oxidation of FADH2 (Complex II and 3-V) in the

respiratory chain, provided that NADH is not produced by a cyclic activity of

the tricarboxylic acid (TCA) cycle. Remarkably, results in Figure 2 suggest

that the working-mode of the TCA cycle may be abnormal in breast cancer.

In particular, up regulation of NADPH-dependent isocitrate dehydrogenase,

which catalyzes the reductive carboxylation of -ketoglutarate (AKG) to isoc-

itrate, may be linked with the mutations often reported for this enzyme in

breast and other cancer types [30]. It has been suggested that this enzyme

may support reductive glutamine metabolism in cancer and a branched TCA

cycle flux mode [31]. Enhanced utilization of glutamine is indeed another

hallmark of cancer cells [1, 2]. Accordingly, intake of glutamine is reported

to be up regulated by MAREA.

The agreement of the results in Figure 2 with the obvious traits of can-

cer metabolism supports the reliability of our approach, which might shed

light on less established traits. Deregulations of breast cancer metabolism

identified by the approach, which may be worth of note are, among oth-

ers: 1) deregulation of beta-oxidation of palmitate; 2) upregulation of folate

metabolism; 3) deregulation of Phosphoenolpyruvate carboxykinase, which

converts oxaloacetate (OAA) into phosphoenolpyruvate (PEP).

Reaction ranking. After filtering out the reactions whose activity does not

differ between cancer and normal samples, MaREA allows to rank the re-
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maining reactions according to the extent of their up- or down-regulation.

Supplementary Table S1 report, for each reaction included in the genome-

wide model: the log fold change, the reaction formula, the pathway in which

the reaction is involved and a description of its role. As genome-wide models

include several reactions that are associated with the very same GPRs, typi-

cally involving transporters/enzymes with low substrate specificity, in Figure

2 we report the top 10 deregulated reactions with different GPRs.

These reactions include 3 up regulated reactions and 7 down-regulated

ones. Most of theme are associated with a single gene, including, consistently

with the results obtained for the HMRcore model: fatty acids oxidation

and PEP carboxykinase, which are significantly down regulated; lactate (or

substrates pertaining to the same family) transport, which is up-regulated in

cancer. Single-gene top deregulated reactions not included in the HMRcore

model relate to deregulated vitamine A, glycine and alkaloid metabolism

and to upregulated transport of serotonine. Notably, in accordance with this

results, it has been reported [32] that serotonine promotes tumor growth

and survival in breast cancer, and that vitamin A [33] plays a role in cancer

treatment and prevention.

Two top deregulated reactions are associated with a pair of genes linked

by an OR and AND respectively: 1) down regulated antiporter of the aminoacids

alanine, serine, glycine and threonine with glutamine; 2) up regulated Cy-

tochrome P450 2A6, which is involved in the metabolism of many xenobiotics.

The down-regulation observed for the former reaction is in line with recent

studies that have linked the resistance of specific cancer cell lines to amino

acid analogs anticancer drugs to a decreased expression of the corresponding
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transporter [34, 35].

The up-regulation identified for the latter reaction (P450 2A enzyme) is

worth of note, as P450 enzymes may be involved in carcinogens activation in

breast cancer. Environmental carcinogens have been identified in the etiology

of breast cancer. For example, CYP2A6 protein detected in the breast can

activate nitrosamines and food mutagens to their ultimate carcinogens and

thus could play a role in the initiation of breast cancer [36]. Moreover, this

enzyme can metabolize clinically important drugs, such as the tamoxifen [37],

which represents the most widely used hormonal therapy for breast cancer,

and the coumarin [38, 39], whose metabolisms have been proven to produce

some metabolites having estrogenic and cytotoxic activities.

Comparison with GSEA results. The GSEA and MaREA approaches are not

directly comparable, as they present several differences in goals, input data,

parameters, variables and outputs. For instance, MAREA computes an in-

dividual activity score for each sample, whereas GSEA only considers ex-

pression fold-changes between pairs of experimental conditions. In order

to provide an overview of how the information produced by the two com-

plementary approaches may differ, without the ambition of claiming which

approach should be preferred, we disregarded the addition multiple test cor-

rection (FDR) used by GSEA, and we considered the gene-sets that pass

the nominal p-value test, with the same threshold used in MAREA standard

settings (i.e., p=0.05). We did not set any threshold on the minimum size of

gene-sets.

To run GSEA we used two kind of gene sets: 1) curated gene sets based

on REACTOME, as directly provided by the GSEA tool; 2) gene-sets recon-
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structed by us, which correspond to the genes associated to each reaction

in the genome-wide model and which are provided in gmt format (GSEA

compliant) in Supplementary File S2. The former kind of gene-sets repre-

sent a typical application of GSEA to gene-sets involved in broad metabolic

functions; whereas the second type is directly comparable to the sets used

to compute the RAS by our approach. It should be mentioned that the sec-

ond type includes many single gene-sets (size 1), because many reactions are

catalyzed by enzymes associated to a single gene.

The application of GSEA to Reactome gene-sets returned 144 gene sets

significantly enriched in cancer, and 60 gene-sets significantly enriched in nor-

mal, at nominal p-value < 0.05. When ranking the obtained gene-sets accord-

ing to the returned Enrichemnt Score (ES), we observed that, as expected,

the first 10 gene sets enriched in cancer refer to generic metabolic functions

(in particular: cell cycle and mitosis, asparagine glycosylation, DNA replica-

tion and chromosome maintenance, HIV infection and kinesins). The results

highlight how MaREA should be used as a complement to GSEA analysis, in

order to provide a more fine-grained analysis of metabolic deregulations.

On the other hand, the application of GSEA to the more fine-grained

datasets, based on RECON 2.2 reactions, returned a number of reactions

significantly deregulated much lower than that returned by MaREA. MaREA

returned 3339 reactions as significantly up- or down-regulated by at least 20%

(p-value < 0.05); whereas GSEA returned 105 gene sets significantly enriched

in cancer, and 110 gene-sets significantly enriched in normal, at nominal

p-value < 0.05. This discrepancy is mainly due to the presence of gene-

sets including a single-gene, which are reasonably penalized by the GSEA
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approach. By way of example, the single-gene sets associated to serotonin

and vitamin A metabolism, which were ranked in the top 10 deregulated

reactions by MaREA, and which might play a role in cancer according to

literature as described above, do not pass the nominal p-value test in GSEA.

It is worth noticing that also the top-ranked reactions in MaREA that involve

gene in OR (Cytochrome metabolism) or in AND (extracellular transport

of alanine, serine, glycine and threonine) do not pass the significance test in

GSEA.

Taken together, these results indicate that MaREA provides a more com-

plete and refined portray of metabolic deregulations. Moreover, as opposed

to GSEA, MaREA computes an independent score for each sample (the RAS),

which can be used to cluster samples in an unsupervised fashion. We illus-

trate such application of MaREA in the next section.

3.2. Metabolic Subgroups of Breast Cancer

In order to stratify samples by employing the RAS as clustering metrics,

we performed k-means clustering with different input k ∈ {1, 2, . . . , 9} on

the normalized RASs1 of the reactions included in the HMRcore model. We

performed n = 100 bootstrap iterations, with random centroid assignments,

selecting as optimal the clustering run displaying the maximum inter-cluster

distance. We then tested the resulting sample clusters against the survival

probability (as retrieved from clinical data in the original dataset [21]), via

log-rank test on Kaplan-Meier curves.

1To avoid possible biases due the differences in RAS range and distribution across
reactions, we here normalize the RAS value of each sample by dividing by the maximum
RAS for that reaction.
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Figure 3: Breast cancer metabolic clusters. (A) The Kaplan-Meier curves (time unit =
days) and the p-value of the log-rank test with respect to the three metabolic clusters of
TCGA-BRCA samples identified by MaREA are shown (Subgroups 1, 2 and 3). In the
histograms the composition of the three clusters with respect to the standard PAM 50 clas-
sification (Basal-like, Her 2 positive, Luminal A and Luminal B) is provided. The numbers
on the bars indicate the absolute value of samples in each subgroup. (B) Enriched map of
HMRcore with respect to metabolic clusters 1 and 3. A list of the abbreviations used in
the map is provided in Supplementary Text S1. Red arrows refer to reactions upregulated
in Subgroup 3; whereas blue arrows refer to reactions upregulated in Subgroup 1. Black
arrows refer to Not Classified reactions, i.e., reactions without information about the cor-
responding gene-enzyme rule. Dashed gray arrows refer to non significant deregulations
according Kolmogorov-Smirnov test. Solid gray arrows refer to reactions with a log2 fold
change below 0.263.
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Interestingly, we found statistically significant overall survival curves (p <

0.05) for k = 2, k = 3, and k = 9 (significant results with respect to disease-

free and progression-free survival curves were observed as well, results not

shown here).

In Figure 3 we show the most interesting result, obtained with k = 3

(Subgroup 1: 94/817 samples, Subgroup 2: 544/817 samples, Subgroup 3:

179/817 samples). One can see that the curves of the three clusters never

overlap, leading to a highly significant log-rank test (p = 0.013). This result

indicates that the up-/ down-regulation patterns, as encoded by the RAS

values, might indeed be used to split samples in metabolic groups with sig-

nificantly different prognosis. It is also worth noticing that, by looking at

the composition of the three subgroups as computed on the 481 samples with

respect to the well-established PAM 50 classification [40] (on 817 of the whole

dataset), the subgroup with the worst prognosis (Subgroup 3) is largely con-

stituted (i.e., ∼ 70%) by samples belonging to the Basal-like group, which

are completely absent from Subgroup 1 (best prognosis) and present in very

small percentage in Subgroup 2. Subgroup 1 and 2 are, instead, composed

by a more complex mixture of samples from Luminal A, Luminal B and Her2

subtypes in different proportions.

This result would first suggest that there exist a detectable metabolic sig-

nature of Basal-like cancer samples, and this is, to the best of our knowledge,

a novel result, worth of further investigations. Besides, the mixed composi-

tion of Subgroups 1 and 2 may suggest that the differences observed at the

metabolic level indeed translate into distinct survival probabilities, which

standard classification may fail to capture.
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More in detail, by looking at the reactions significantly up-/ down-regulated

with respect to the case Subgroup 1 (best prognosis) vs. Subgroup 3 (worst

prognosis) portrayed in Figure 3 for the core model – and in Supplementary

Figure S2 and Table S2 for the genome-wide model – one can see that many

reactions that are enriched in cancer against normal are also enriched in worst

against best prognosis, including glycolysis, nucleotide synthesis and serine

metabolism. Remarkably some metabolic pathways that are not significantly

deregulated in cancer are significantly up regulated in the worse prognosis

subgroup, with particular regard to palmitate biosynthesis.

4. Conclusions

We have here introduced MaREA, a computational pipeline that processes

trascriptome profiles to produce usable information on metabolic reaction

activities in different sample subgroups or experimental conditions. This is

made possible thanks to the introduction of the Reaction Activity Score,

which is computed as a function of the expression level of genes involved in

reaction catalysis.

Thus, the resulting enriched reactions can provide a metabolic-centered

explanation of the different phenotypic/ functional properties observed in

distinct sample subgroups or cancer subtypes. The interpretation of the

results is then favored thanks to the effective visualization of up-/ down-

regulated reactions directly on the metabolic networks.

The case studies on TCGA cancer datasets proved that MaREA can repro-

duce known properties and traits of metabolic networks in different scenarios,

for instance, by identifying the key metabolic paths that distinguish normal
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from tumor samples, but it can also provide cues to formulate and test new

experimental hypotheses (e.g., relevance of serotonine metabolism in breast

cancer, see Figure 2).

Finally, MaREA allows to effectively identify metabolic clusters of sam-

ples, which display significantly different survival expectancy, as retrieved

from clinical data. By relying on core models, MaREA allows to reduce the

input dataset dimensionality, from thousand genes to the (much) fewer genes

involved in the regulation of a given metabolic network. Therefore, MaREA

might represent a powerful tool to link the metabolic behaviour to partic-

ular prognoses or to tumor aggressiveness, without employing any further

genomic or molecular information.

It goes without saying that MaREA does not provide information on

metabolic fluxes. For a deeper understanding of cancer metabolism, MaREA

results should thus be complemented with metabolic measurements and flux

simulations.

We remark that the final quality of MaREA’s results deeply depends on

the correctness of the gene-protein rules. We provided a curated version of

the core model, but we automatically derived such rules from Recon 2.2 for

the genome-wide analysis, thus our results might be improved via a more

refined manual curation.

Even though we have here showed an application of MaREA to cancer

patients, we remark that the approach can be used to compare any pair

of conditions described by RNA-seq data samples (as, e.g., wild type vs.

mutant organism). In the next future, we plan to release an user-friendly

tool, which may be integrated within the Galaxy platform [41], to leverage
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the application of MaREA to any case study.
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