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Abstract: Inferring missing links or predicting future ones based on the currently observed 
network is known as the link prediction problem, which has tremendous real-world applications. 
Indeed, a successful link prediction method will substantially reduce the experimental effort 
required to establish the topology of a network (such as the protein-protein interaction network 
or the drug-target interaction network). It will also accelerate mutually beneficial interactions 
(such as potential friendship on social media) that would have taken much longer to form 
serendipitously. Numerous methods have been proposed to solve this classical problem. Yet, 
existing methods are typically designed for undirected networks, and their performances differ 
greatly for networks from different domains. Here, by representing the adjacency matrices of 
networks as binary images and leveraging the power of deep generative models in computer 
vision, we developed a new link prediction method, which works for general directed or 
undirected complex networks. We applied this method to various real networks, finding that 
overall it shows superior performance against existing methods. 

 
Networks have become an invaluable tool for describing the architecture of various complex 
systems, be they of technological, biological, or social in nature  [1–3]. Mathematically, any real-
world network can be represented by a graph 𝒢(𝒱, ℰ), where 𝒱 = {1, 2,⋯ ,𝑁} is the node set 
and ℰ ⊆ 𝒱×𝒱 is the link set. A link, denoted as a node pair (𝑖, 𝑗) with 𝑖, 𝑗 ∈ 𝒱, represents certain 
interaction, association or physical connection between nodes 𝑖  and 𝑗, which could be either 
directed or undirected, weighted or unweighted. For many systems (especially biological 
systems), the discovery and validation of links require significant experimental effort. 
Consequently, many real-world networks mapped out so-far are substantially incomplete  [4,5]. 
For example, a recent estimate indicates that in human cells the available protein-protein 
interaction maps cover less than 20% of all potential protein-protein interactions  [6]. How to 
tease out the missing links based on the discovered ones? Moreover, many systems (especially 
social systems) are very dynamic, as new links are added to the network over time. How to 
predict the likelihood of a future interaction between two currently unconnected nodes based on 
the current snapshot of the network? Both problems are commonly known as the link prediction 
problem  [7–10].  
An accurate link prediction method will substantially reduce the experimental effort required to 
establish the network’s topology and/or accelerate mutually beneficial interactions that would 
have taken much longer to form serendipitously. Obviously, link prediction has many real-world 
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applications  [11,12]. In biomedicine, link prediction can be used to infer protein-protein 
interactions or drug-target interactions  [13–15]. In e-commerce, it can help build better 
recommender systems, e.g., Amazon’s “people who bought this also bought” feature  [16,17]. 
On social media, it can help build potential connections such as the “people you may know” 
feature on Facebook and LinkedIn  [18]. In criminal intelligence analysis, link prediction can 
assist in identifying hidden co-participation in illicit activities  [19].  

Numerous methods, such as similarity-based algorithms  [20–22], maximum likelihood 
algorithms  [23], and probabilistic models  [24–26], have been developed to solve the link 
prediction problem. Yet, those methods are typically designed for undirected networks. Also, 
their performances differ greatly for networks from different domains. Note that, to quantify the 
performance of any link prediction method, the standard AUC statistic, i.e., the area under the 
receiver operating characteristic curve  [7,23], is typically employed. Basically, we divide the 
link set ℰ  into two parts: (i) a fraction 𝑓 of links as the test or probe set ℰ4 , which will be 
removed from the network; and (ii) the remaining fraction (1 − 𝑓) of links as the training set ℰ6, 
which will be used to recover the removed links. The AUC statistic is defined to be the 
probability that a randomly chosen link in the probe set ℰ4 (a true positive) is given a higher 
score by the link prediction method than that of a randomly chosen nonexistent link (a true 
negative). Apparently, AUC = 0.5 serves as the baseline performance of random guess, and the 
degree to which the AUC exceeds 0.5 indicates how much better a link prediction method is than 
random guess. 

We still lack a powerful link prediction method that works for general directed or undirected 
complex networks, regardless of their technological, biological, or social nature. Here, we fill 
this gap by developing a novel link prediction method that works for generic complex networks. 
Our key idea is to treat the adjacency matrix of a network as the pixel matrix of a binary image. 
In other words, present (or absent) links will be treated as pixels of value 0 (or 1), respectively. 
By perturbing the original input in many different ways through randomly removing present 
links, we obtain a pool of perturbed input images. Those perturbed images will be fed into a deep 
generative model to create fake images that look similar to the input ones. Those fake images 
(networks) will be used as training set for link prediction in the original image (network).  
For the deep generative model (DGM), here we leverage generative adversarial networks (GANs) 
that consist of two deep artificial neural networks (the generator and the discriminator, 
respectively) contesting with each other in a game theory framework  [27,28]. The generator 
takes random noise from a known distribution as input and transforms them into fake images 
through a deconvolutional neural network. The discriminator is a binary classifier (based on a 
convolutional neural network), which determines whether a given image looks like a real one 
from the input dataset or like a fake one artificially created by the generator. Over the course of 
training iterations, the discriminator learns to tell real images from fake ones. At the same time, 
the generator uses feedback from the discriminator to learn how to produce convincing fake 
images to fool the discriminator so that it can’t distinguish from real.  
To demonstrate our DGM-based link prediction, let’s consider a toy example: a small directed 
network of 28 nodes and 118 links, whose adjacency matrix looks like a binary image of letter E 
with 12 missing pixels (Fig.1). First, we create 𝑀  perturbed binary images by randomly 
removing a fraction 𝑞 of pixels of value 0 (i.e., those present links) from the original image 
(network). Second, we use the 𝑀 perturbed binary images as input to train GANs, which will 
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eventually generate 𝑆 fake grayscale images that look similar to the input ones. (In this example 
we choose 𝑀 = 5,000, 𝑞 = 0.1, and 𝑆 = 500.) Note that the existent likelihood of the link 
between nodes 𝑖 and 𝑗, denoted as 𝛼AB , in the corresponding fake network is simply given by 
𝛼AB = 1 − 𝑃AB, where 𝑃AB is the rescaled pixel value (ranging from 0 to 1) in each fake grayscale 
image. Finally, we take the average value 𝛼AB = 1 − 𝑃AB  over all the 𝑆 fake images to get the 
overall existent likelihood of the link (𝑖, 𝑗). Note that in this toy example all the 12 missing links 
display higher 𝛼AB than that of nonexistent links, so they are successfully recovered.   

Fig.1 may remind us the classical image inpainting problem, where we need to reconstitute or 
retouch the missing or damaged regions of an image to make it more legible and to restore its 
unity  [29]. We emphasize that the link prediction problem addressed here is fundamentally 
different from the image inpainting problem. For image inpainting, we generally know the 
locations of the damaged regions of an image. While for link prediction, we don’t know which 
links are missing in a network. In fact, teasing them out is exactly the task of link prediction.  
At the first glance, our DGM-based link prediction method seems to heavily rely on the existing 
patterns in the adjacency matrix of the original network. After all, we are treating a network as 
an image. But do we have to sophisticatedly label the nodes in the network so that the resulting 
adjacency matrix (or the binary image) displays certain pattern? To address this concern, we 
perform the following numerical experiment. We start from a network with an appropriate node 
labeling such that the adjacency matrix looks exactly as the binary image of letter E without any 
missing pixels. Then we relabel 𝜂 fraction of the nodes in the network so that the binary image 
associated with its adjacency matrix looks much more random than the letter E. Note that the 
network structure is fixed, and we just label the nodes differently so that the resulting adjacency 
matrices (or binary images) look quite different. We then compare the performance of our 
method at different 𝜂 values, as well as the performance of two classical link prediction methods 
for directed networks that do not depend on the node labeling at all. We find that for this small 
directed network the performance of our method degrades only slightly even after we relabel 
25% nodes (Fig.2A). When we relabel more nodes, the performance is actually quite stable. 
Even if we relabel all the nodes, the AUC of our method is still about 0.9, which is higher than 
that of other link prediction methods for directed networks, such as the preferential attachment 
(PA)  [20] based method (with AUC~0.85) and the low-rank matrix completion (LRMC)  [30] 
method (with AUC~0.7).   

The results presented in Fig.2A indicate that the performance of our method does not heavily 
rely on the node labeling or the existence of structural features in the network. However, to reach 
the optimal performance of link prediction, one should still leverage any existing structural 
features in the network and label the nodes accordingly. This can be achieved by extracting 
community structure in the network  [31–35], for example, using the classical Louvain 
method  [36]. To test this simple idea, we consider the limiting case --- random graphs generated 
from the classical Erdős–Rényi (ER) model, where any two of 𝑁 nodes are randomly connected 
with probability 𝑝  [37]. By definition, in the large 𝑁 limit, ER random graphs do not display any 
structural features and hence all link prediction methods are doomed to fail. For small 𝑁, a 
computer-generated ER random graph might display certain structural features, and link 
prediction should still be very difficult, if not impossible. We apply our method as well as 
various traditional link prediction method to ER random graphs (𝑁 = 48) at different connection 
probability 𝑝 and with random node labeling.  We find that our method has AUC~0.5, i.e., it 
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behaves like random guess. In fact, no link prediction method performs significantly better than 
random guess, and some traditional methods even perform worse than random guess, especially 
for networks with lower connection probability (Fig.2B). However, applying the Louvain 
method first will capture some patterns in the adjacency matrices, which will significantly 
improve the AUC of our method (Fig.2B; paired-sample t-test). Real-world complex networks 
certainly display more prominent structural features than ER random graphs. Our numerical 
experiments suggest that those features should be exploited for link prediction. 

To demonstrate the advantage of our method in real-world applications, we systematically 
compare the performance of our method with that of several classical methods in link prediction 
for a wide range of real networks, from social, economic, technological to biological networks. 
For undirected networks (Fig.3A), we find that generally global similarity indices (e.g., Katz, 
ACT) and stochastic block model (SBM) based link prediction methods perform better than local 
similarity indices (e.g., CN, PA, RA) based methods, because more topological information has 
been taken into account. But the performances of those methods vary a lot over different network 
domains. Some of them actually perform even worse than random guess, especially when the 
training set is small (corresponding to large 𝑓). By contrast, our DGM-based method displays 
very robust and high performance for various undirected networks. For directed networks 
(Fig.3B), most of the classical methods are actually not applicable. We compare the performance 
of our method with those of PA and LRMC. Again, we find that our method displays robust and 
high performance for various directed networks.  

We emphasize that, since our DGM-based link prediction essentially treats a network as an 
image, it can be easily parallelized by splitting a large network (image) into different small 
subnetworks (subimages) and then performing link prediction for each subnetwork (subimage) in 
parallel. We find that this actually does not decrease the overall AUC, compared with the result 
of treating the large network as a whole. Furthermore, we can focus on any specific subnetwork 
of interest and just predict the missing links in that subnetwork. To test this idea, we perform link 
prediction for 200 subnetworks of size 60 randomly selected from two large directed networks: 
Facebook wall posts and Google+. We find our method shows much higher AUC than other 
methods (Fig.4). This result suggests that our method holds great promise in link prediction for 
large real-world networks.  

In summary, our DGM-based link prediction shows superior performance against classical link 
prediction methods for various types of networks, be they of technological, biological, or social 
in nature. Since our method treats the adjacency matrix of a network as an image, it can be 
naturally extended to solve the link prediction problem for bipartite graphs, multi-layer networks 
and multiplex networks, where the adjacency matrices have certain inherent structure. With 
small modification, it can also be used to perform link prediction in weighted graphs. In 
principle, any DGM can be utilized in our method. But we find that, for the link prediction 
purpose, GANs perform much better than other DGMs, e.g., variational autoencoder  [38] and  
pixelRNN  [39]. There are several hyperparameters in training the GANs. In this work, we use 
the same set of hyperparameters for all the networks to show a conservative AUC estimation of 
our method. The performance of our method can certainly be further improved by carefully 
tuning those hyperparameters for a specific network of interest. Moreover, we anticipate that 
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exploiting graphics process unit parallelism to train the GANs  [40] will certainly speed up our 
link prediction method.  
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Fig. 1. Schematic demonstration of our link prediction method on a directed network. The 
adjacency matrix of this directed network (with 28 nodes and 118 links) looks like the binary 
image of letter E with 12 missing pixels. Note that 5 isolated nodes are not shown in the network 
presentation. We perturb the original network (image) by removing 5 links at random in 𝑀 
different ways to obtain a pool of perturbed networks (images) 𝐼A	(𝑖 = 1,… ,𝑀) (𝑀 = 5000 for 
this example). This input dataset will be fed into the generative adversarial networks (GANs) 
that consist of two deep artificial neural networks: generator and discriminator. The generator 
takes the noise drawn from a uniform distribution as input and produces fake images. The 
discriminator is a binary classifier that tells whether a given image is a real one from the input 
dataset or a fake one produced by the generator. Over the course of training iterations, the 
generator can produce convincing fake images 𝑃 from the feedback offered by the discriminator. 
The pixel value 𝑃AB in the fake grayscale image 𝑃 can be used to calculate the existent probability 
of a link between a node pair: 𝛼AB = 1 − 𝑃AB . The final existent probability is calculated by 
averaging 𝛼AB over 𝑆	(𝑆 = 500) generated fake networks.  
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Fig. 2. Stability of the DGM-based link prediction method. A: A randomly selected fraction 
of 𝜂 nodes are relabeled in a directed network whose original adjacency matrix looks exactly as 
the binary image of letter E. Then we randomly divide the links into two parts: a fraction of 10% 
links chosen as the probe set and the remaining 90% fraction of links as the training set. We 
perform link prediction using three different methods: DGM, PA, LRMC. In this example, we 
choose 𝑀 = 1000 for our DGM-based method. Even after we relabel all the nodes so that the 
adjacency matrix doesn’t display prominent features, the median AUC of our DGM-based 
method is still around 0.9, while it is 0.85 for the PA method and 0.7 for the LRMC method.  
Inset: The adjacent matrices corresponding to different relabeling fractions, where black pixels 
represent existing links. B: AUC of DGM-based and other traditional models in the link 
prediction of Erdős–Rényi (ER) random graphs with different connection probability 𝑝. The 
adjacent matrices (before and after node relabeling) at different connection probabilities are also 
shown.  CN: common neighbors; PA: preferential attachment; RA: resource allocation; JC: 
Jaccard index; KATZ: Katz index; ACT: average commute time; SBM: stochastic block model 
(LRMC: the low rank matrix completion method has very low AUC, so it is not shown here). 
Asterisks in panel B shows whether the AUC of our DGM-based link prediction method is 
significantly higher than that of the other three traditional algorithms (paired-sample t-test). 
Significance levels: p-value<0.05(*), <0.01(**), <0.001(***).  
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Fig. 3. The DGM-based link prediction displays very robust and high performance for both 
undirected and directed real-world networks. DGM: deep generative model based link 
prediction; CN: common neighbors; PA: preferential attachment; RA: resource allocation; JC: 
Jaccard index; KATZ: Katz index; ACT: average commute time; SBM: stochastic block model; 
LR: low rank matrix completion. A: Undirected networks. Top: Terrorist association network, 
Zachary karate club, Protein-protein interaction (PPI) network (a subnetwork of protein 
interactions in S. cerevisiae). Bottom: Medieval river trade network in Russia, Internet topology 
(at the PoP level), Contiguous states in USA. B: Directed networks. Top: Consulting (a social 
network of a consulting company), cat cortex (the connection network of cat cortical areas), PPI 
(a subnetwork chosen from the network of protein interactions in Humans (Homo sapiens). 
Bottom: Seagrass food web, St. Martin food web, Sioux Falls traffic network. AUC of our 
DGM-based method is the average AUC over the last 20 epochs of the total 150 epochs for all 
of networks. Here an epoch is one full training cycle on the training set. For all the undirected 
real networks, we apply the Louvain method first to label the nodes appropriately. Directed 
networks are labeled by the method proposed in  [41]. 

 

 

Fig. 4. The DGM-based link prediction method can infer missing links of arbitrarily 
selected subnetworks within a large network with higher accuracy than other methods. We 
perform link prediction for 200 randomly selected subnetworks (of size 60) chosen from two 
large directed networks: A, Facebook wall posts; and B, Google+, respectively. We randomly 
divide the links of the relabeled networks into two parts: a fraction of 10% links are chosen as 
probe set and the remaining 90% fraction of links as training set (here, each subnetwork contains 
15 links at least).  PA: preferential attachment index, LRMC: low rank matrix completion. Insets: 
adjacency matrices of the networks. Asterisks at the top of each panel shows whether the AUC 
of our DGM-based link prediction model is significantly higher than that of the other two 
traditional algorithms (paired-sample t-test). Significance levels: p-value<0.05(*), <0.01(**), 
<0.001(***).  
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