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Abstract  
Identification of co-expressed genes within a given experimental or biological context can provide 

evidence for genetic or physical interactions between genes. Thus, detection of co-expression has 

become a routine step in large-scale analyses of gene expression data. In this work, we show that 

application of the most commonly used methods to identify co-expressed gene clusters produce 

results that do not match the biological expectations of co-expressed gene clusters. Specifically, 

clusters generated using these methods are not discrete and can contain up to 50% unreliably 

assigned genes. Consequently, downstream analyses on these clusters, such as functional term 

enrichment analysis, suffer from high error rates. We present clust, an automated method that solves 

this problem by extracting clusters from gene expression datasets that match the biological 

expectations of co-expressed genes. Using 100 gene expression datasets from five model organisms 

we demonstrate that the statistical properties of clusters generated by clust are better than those 

produced by other methods. We further show that this improvement results in a concomitant 

improvement in detection of enriched functional terms.   
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Introduction 
Gene transcription is dynamically and coordinately regulated in all living organisms. Such coordinate 

regulation is manifest as concordant changes in the transcript abundance of genes in time series and 

perturbation-response datasets. Gene transcription is regulated by the binding of transcription factors 

to DNA/chromatin elements located in promoter or enhancer regions of genes. Typically, transcription 

factors comprise ~10% of the total number of genes in a genome, and complex spatio-temporal 

patterns of transcription are achieved through the combinatorial action of these genes in regulatory 

networks. The combinatorial nature of these networks means that their behaviour is inherently 

conditional. That is, genes that appear co-expressed under one condition are not necessarily co-

expressed under all conditions. A corollary of this is that within any one experimental context (e.g. time 

series spanning some biological process or perturbation-response experiment) not all genes will be 

behaving coordinately. Instead, subsets of genes have the right combination of regulators to behave 

coordinately during the experimental context while others are following patterns of regulation that are 

independent of the experimental design. Thus, within a given observation window (i.e. experimental 

context) it is not expected that all genes can be assigned to a limited set of coordinate behaviours 

(Nilsson, et al., 2009; Pierson, et al., 2015). 

Given that only subsets of genes are likely to be co-expressed within a particular context, it follows 

that identification of these subsets is a data extraction problem and not a data partitioning problem. 

That is, the aim is to identify and extract the cohorts of genes that are behaving coordinately from the 

complete set of genes that are detected within a particular context, and is not to partition the complete 

set of genes into a set of gene clusters. In practice, clustering methods have been widely applied to 

gene expression data with the expectation that they will identify the complete set of discrete cohorts of 

genes that have co-ordinated behaviours (i.e. the clusters of co-expressed genes), and that the all of 

genes that exhibit those behaviours will be assigned to the correct cluster. However, the vast majority 

of methods that aim to identify cohorts of co-expressed genes are based on data partitioning (e.g. 
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Markov clustering (Enright, et al., 2002), k-means (MacQueen, 1967), hierarchical clustering (Eisen, et 

al., 1998), and self-organising maps (Kohonen, 1982)). These approaches attempt to assign all 

detected genes to a finite set of clusters, with the number of clusters determined by numerical 

optimisation of a data partitioning metric (Ronan, et al., 2016). Thus, genes that are not co-expressed 

in the context under investigation are also assigned to their “best-fitting” cluster such that the majority 

of clusters will contain both co-expressed and non-co-expressed genes. This result does not adhere to 

the expectation of the biological properties of a co-expressed gene cluster. i.e. that each cluster 

contains only those genes that exhibit co-ordinate behaviour in the experimental or biological context 

under question and that no two clusters should have an identical profile. 

Here we show through analysis of 100 real biological datasets from five model organisms that 

application of data partitioning-based clustering methods to gene expression data generates clusters 

that include substantial numbers of unreliably assigned genes, i.e. genes that should have been 

excluded. Such unreliable content comprises up to about 50% of these clusters. To address this 

problem we provide a novel method called Clust for cluster extraction from gene expression data. 

Clust is designed to produce co-expressed clusters of genes that satisfy the biological expectations of 

a co-expressed gene cluster. We show that Clust satisfies these expectations while producing co-

expressed clusters with lower levels of dispersion than any data partitioning method. We also show 

that the clusters produced by Clust do not contain unreliably clustered genes typical of data 

partitioning methods. Furthermore, through functional term enrichment analysis we show that 

application of Clust results in clusters that contain the largest number of reliable enriched functional 

terms. 

Results 
Problem definition, aim and approach 
Gene expression datasets (RNAseq and microarray) contain quantitative estimates (observations) of 

mRNA abundance for a set of genes at multiple experimentally, spatially, or temporally discrete 
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conditions. Across these conditions, it is expected that the mRNA abundance of transcriptionally co-

regulated genes will exhibit coordinate behaviour. These co-regulated cohorts of genes include those 

that are inherent modules of the system being studied, as well as those that may be conditional on 

applied experimental perturbations. The observations also include transcript abundance estimates for 

genes that are behaving independently in the experimental series. Furthermore., for genes that are 

transcriptionally co-regulated, variance in RNA processing and half-life cause fluctuations in transcript 

abundance such that abundance estimates for are inherently noisy. Thus, the goal of gene expression 

clustering is to identify and extract the discrete cohorts of genes whose transcripts are behaving 

coordinately (albeit with biological noise) across the observations under consideration. 

Fig. 1 presents simulated gene expression data to illustrate the problem of extracting distinct cohorts 

of co-expressed genes. Each simulated dataset contains 500 genes, with 100 genes in each of three 

distinct clusters and 200 genes that do not belong to any cluster. Fig. 1a shows the same clusters 

simulated with increasing levels of biological noise (D1 to D4) and Fig. 1b shows the desired results. 

That is, to extract three distinct clusters of genes (C1 to C3) while discarding the genes that behave 

independently. In conflict with the desired goal, data partitioning methods require all genes to be 

included in one of the clusters. For example, application of k-means (the most commonly used method 

for analysing gene expression datasets) recovers the three simulated profiles. However, each cluster 

also contains a large cohort of genes that do not share the same expression profile. This inclusion 

results in clusters with high levels of dispersion and high levels of inter-cluster similarity, such that 

many genes that are assigned to a given cluster fit entirely within the profile of, and thus can be 

justifiably assigned to, one or more other clusters (Fig. 1c). This result violates the expectations of co-

expressed gene clusters, and produces clusters whose gene assignment is unreliable. Clust is 

designed to address this problem by extracting the largest and least dispersed set of clusters whose 

profiles are distinct and exclude those genes that do not belong to these clusters. That is, to identify 
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and extract the complete set of genes that are exhibiting coordinate behaviour in the experimental 

series under consideration. 

Data sources and comparative methods 
To demonstrate the performance characteristics of clust on real biological datasets, the method was 

applied to 100 different gene expression datasets (Supplementary Table S1). These datasets 

comprised ten microarray datasets and ten RNAseq datasets from each of five different model 

organisms; Homo sapiens, Mus musculus, Drosophila melanogaster, Arabidopsis thaliana, and 

Saccharomyces cerevisiae. To put these performance characteristics in context, five of the most 

commonly used co-expression clustering methods (k-means, hierarchical clustering (HC), self-

organising maps (SOMs), Markov clustering (MCL), and WGCNA) were also applied to these 

datasets. For each of these additional methods, the best-practice operating procedures were followed 

as described in Methods. 

Clust robustly produces tight and non-overlapping clusters 
As clust is a cluster extraction method, it does not necessarily assign all genes to clusters. On average 

across the 100 test datasets clust assigned 50% of the input genes to clusters (Fig. 2a), and produced 

sets of clusters that have significantly lower dispersion than those produced by MCL (p-value 2.5×10-

31), k-means (p-value 4.6×10-7), HC (p-value 2.4×10-13), WGCNA (p-value 3.1×10-64), or SOMs (p-

value 4.8×10-24) (Fig. 2b). Clusters produced by clust are discrete, such that genes assigned to one 

cluster do not fit within the profile boundaries of any other cluster (JI = 0 for all clusters, Fig. 2c). This 

is not the case for data partitioning methods, where 10% to 50% of the genes that are included in a 

given cluster also fit within the boundaries of at least one other cluster (Fig. 2c). Thus, application of 

data partitioning methods to gene expression data produces clusters that are not discrete and contain 

between 10 and 50% unreliably assigned genes (Supplementary Table S2). 

In addition to producing datasets that are both lower in dispersion and discrete, the distribution of the 

properties of clust clusters is also unimodal (Fig. 2d-f and Supplementary Table S3). In contrast, 
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cluster dispersion is multimodal for MCL, HC, WCGNA, and SOMs (Fig. 2d); cluster overlap is multi-

modal or uniformly distributed for MCL, KM, HC and SOMs (Fig. 2e); cluster size is biased towards 

small clusters for MCL and WCGNA (Fig. 2f). Thus, the individual clusters returned by data partitioning 

methods are inconsistent and vary considerably in their quality. In contrast, the quality of clusters 

produced by clust is unimodal such that all clusters can be considered equally valid. This property of 

clust clusters is independent of the number of genes in a given cluster (Supplementary Figures S1 and 

S2). In contrast, the properties of clusters returned by data partitioning methods display a significant 

dependency on cluster size, such that larger clusters have both higher dispersion and a higher 

proportion of genes that fit within the boundaries of other clusters (Supplementary Figure S1). 

None of the six methods, including clust, behaves differently on datasets from different species 

(Supplementary Figures S3 and S4). Therefore, the species from which the data was produced is not 

a factor that affects the performance of any of these clustering methods. However, the dispersion of 

clusters produced by k-means, HC, and SOMs, is dependent on the number conditions under 

consideration such that the more conditions being considered the worse the results of the clustering 

(Supplementary Figure S5). In contrast, the behaviour of clust is unaffected by the number of genes or 

the number of conditions that are under consideration (Supplementary Figures S5, S6, S7, and S8). 

Thus, unlike all of the other tested methods the behaviour of clust is consistent for different types or 

quantities or input data. 

Clust produces clusters which are rich in robustly enriched functional terms 
One of the most commonly applied tests to co-expressed clusters of genes is functional term 

enrichment, as a cluster of co-expressed genes is expected to be enriched with genes that have 

related biological roles. As clust assigns on average 50% of genes to clusters, it was investigated how 

this reduction in gene number affects the detection of functional term enrichment. To do this, each of 

the methods were evaluated for their ability to detect enrichment of GO terms in the Arabidopsis 

thaliana and Saccharomyces cerevisiae gene expression datasets. These datasets were selected 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2017. ; https://doi.org/10.1101/221309doi: bioRxiv preprint 

https://doi.org/10.1101/221309
http://creativecommons.org/licenses/by/4.0/


7 

 

because of the rich GO term annotation of these two species genomes, and the consistent gene name 

annotation of between datasets. To simplify data visualisation, the GO term enrichment results from 

WCGNA, the worst performing method, was excluded from Venn diagrams and can be found in the 

Supplementary Tables S4 and S5. 

Of the 6,321 significantly enriched GO terms detected by all methods (excluding WCGNA), 3,288 

(52%) were detected by two or more methods and 861 GO terms (14%) were detected by all methods 

(Fig. 3a). Given that the results were considerably different between methods, it is reasonable to 

assume that GO terms detected by two or more methods for a given input dataset are those that are 

more likely to be correct, however there was no significant difference between methods in their ability 

to recover these GO terms (Fig. 3b). Thus, while clust only assigns 50% of genes to clusters, this 

reduction in gene content does not reduce the number of detected enriched functional terms 

compared to other methods. 

To determine whether the qualitative difference in GO term discovery between methods was due to 

unreliably assigned genes, the clusters produced by the data partitioning methods we further analysed 

both with all of the unreliably assigned genes removed (the stringent set), and with all genes that fit 

within the boundaries of the cluster included (the expanded set) (Supplementary Figure S9). Those 

functional terms that remained significantly associated with a cluster irrespective of whether the 

stringent or expanded version of the cluster was analysed were deemed robust to unreliable gene 

content. On average for the data partitioning methods, between 20% and 95% of GO terms are 

unreliably assigned to clusters (Fig. 3c). As before, those GO terms that were detected by two or more 

methods were considered more likely to be correct, and comparison between the methods revealed 

that clust recovers largest proportion of these terms (Fig. 3d). Thus, the enriched functional terms 

associated with co-expressed gene clusters generated by clust are more likely to be correct than 

those associated with clusters produced by other methods. 
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Discussion 
Co-expression clustering is a routinely used step in data exploration for gene expression analysis. 

Here we show that the most commonly used methods for conducting co-expression analysis do not 

match the biological expectations of a co-expressed cluster of genes, producing clusters that are 

highly dispersed and contain large proportions of genes that could be equally assigned to other 

clusters within the same dataset. Moreover, the methods behave inconsistently, with substantial 

differences in clustering performance attributable to differences in datatype or data quantity. We 

present clust, as a method designed to solve all of these problems. Clust was compared with five 

commonly used clustering methods (MCL, k-means, HC, WGCNA, and SOMs) by application to 100 

different microarray and RNA-seq gene expression datasets from five model species. In contrast to 

the other tested methods, clust behaviour is consistent and is unaffected by species, datatype, 

number of genes, or number of conditions. Thus, clust is also robust to increases in data quantity 

without sacrificing the quality of the results. 

The most commonly conducted post-clustering analysis is to detect enrichment of functional terms 

within clustered sets of co-expressed genes. We show that conducting such analyses on clusters 

produced using the most commonly used methods for co-expressed gene clustering results in 20% 

and 95% of enriched functional terms being unreliably assigned to clusters. This observation has 

implications for the utility of downstream analysis conducted on these clusters. For example, putative 

regulatory relationships are often inferred by identifying regulatory genes that occur in clusters that are 

enriched for specific functional terms. Thus, unreliability of enriched functional term assignment likely 

contributes to the high false positive discovery rate in the discovery rate of regulatory interactions from 

co-expression data (Faith, et al., 2007). As clust is designed to solve the problem of reliability of gene 

assignment to clusters, it does not suffer from such unreliability in enriched functional terms, and 

therefore represents a solution to this problem. Moreover, clust detects the largest number of reliably 

assigned enriched functional terms of all the methods tested.  
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Methods 
Overview of the clust cluster extraction method 
Clust has a pipeline of steps that extract final optimised clusters of co-expressed genes from a gene 

expression dataset. First, clust employs a number of base clustering methods (e.g. k-means 

clustering, hierarchical clustering, and self-organising maps) to produce initial sets of clusters. Each 

method is subject to a wide parameter sweep so that multiple clustering results from each method are 

generated. These initial clusters are provided as input to construct consensus “seed” clusters using Bi-

CoPaM (Abu-Jamous, et al., 2013). All seed clusters are evaluated by the M-N distance (MND) metric 

(Abu-Jamous, et al., 2015) which consider both within-cluster dispersion and cluster size, and the set 

of non-overlapping clusters that minimise MND and maximise cluster size are selected as elite seed 

clusters. The final step of the algorithm removes outliers from elite seed clusters using a Tukey filter, 

defines the cluster profile based on the range of expression values observed within the cluster, and 

then assigns all genes from the input dataset that fit within this cluster profile. The full details of clust 

are provided in Supplementary Text S1, a standalone Python implementation of Clust is available at 

https://github.com/BaselAbujamous/clust. 

Selection of 100 gene expression datasets 
The 100 gene expression datasets were downloaded from the Gene Expression Omnibus (GEO) 

repository on 2nd of July 2017 (NCBI Resource Coordinators, 2017). For each one of the five model 

species, ten microarray datasets and ten RNAseq datasets were downloaded. In all cases the most 

recently published datasets for each of these species was selected, given that the dataset had at least 

4 different conditions (time-points or treatments) and no more than 50 samples including replicates. 

RNAseq datasets were chosen only if the resulting TPM, RPKM, FPKM, or CPM quantitation files 

were available from the GEO repository. Microarray datasets were a mix of both one-colour or two-

colour microarrays. The complete list of the 100 datasets and their properties is available in 

Supplementary Table S1. 

Implementation of clust and comparative methods 
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k-means was run using the Python sklearn.cluster implementation. The Python mcl package was used 

to run MCL (van Dongen, 2001). The Python scipy.cluster.hierarchy package was used to run HC 

clustering. The blockwiseModules module of the R WGCNA library was used to run WGCNA. The 

Python sompy package was used to run SOMs. The Python package clust 1.2.0 was used to run clust. 

Each of the methods was run using their default parameters. However, all of them, except for MCL, 

require pre-setting the number of clusters (k). When k is unknown, it is a common practice to test a 

range of k values and to choose the one which optimises some cluster validation index. Therefore, we 

applied each of methods with all k values from 2 to 50 and evaluated them by using the widely used 

cluster validation index, the Davies–Bouldin (DB) index (Davies & Bouldin, 1979). For each dataset, 

the cluster set generated from the k value that minimises this index was selected for analysis. 

Cluster dispersion metric (MSE) 
The mean squared error (MSE) metric is used to measure within-cluster dispersion. If the cluster has 

N genes and the dataset has D dimensions, the MSE value for that cluster will be: 

��� � 1
� ��	
���  ��
�

�

���

, 

where ��� is a vector of the gene expression profile of the ��� gene in this cluster, �� is a vector of the 

average expression profile of all genes in this cluster, and 
���  ��
 is the Euclidean distance between 

these two vectors. Note that the MSE value here is normalised by the number of genes in the cluster. 

When calculating the MSE value for a whole clustering result (a set of clusters), it is calculated as the 

weighted average of the MSE values of the each of the clusters, where the weight is the size (number 

of genes) in each of the clusters. 

Cluster similarity metric (JI) 
The Jaccard Index (JI) metric is used to measure the similarity amongst the clusters in a clustering 

result (Jaccard, 1901). JI is calculated as the ratio between the number of “overlap genes” and the 

number of all genes in clusters. “Overlap genes” are those genes which are included in a cluster while 
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their expression profiles also fit within the boundaries of at least one other cluster. The upper and the 

lower boundaries of a cluster at any given dimension (condition) are respectively calculated as the 

maximum and the minimum expression values of all genes in that cluster after trimming the most 

extreme 1% values to reduce the effect of outliers. 

GO term enrichment analysis 
The GO term annotations for Arabidopsis thaliana and Saccharomyces cerevisiae were downloaded 

from the Gene Ontology Consortium’s online repository at http://www.geneontology.org (Ashburner, et 

al., 2000; The Gene Ontology Consortium, 2017). Significantly enriched GO terms were taken as 

those that obtained an adjusted hypergeometric test p-value ≤ 0.001. 

Figure legends 
Figure 1. Expectations and outcomes for application of data-partitioning methods to 
co-expression clustering. 
(a & b) Simulated gene expression data for 500 genes with increasing noise (D1 – D4). (a) All genes. 

(b) profiles of the genes in each of the three simulated clusters as well as the extra unclustered genes 

at each one of the four levels of dispersion. The horizontal axis of each plot represents the six different 

conditions/samples, while the vertical axis represents gene expression values. (c) The results of 

applying a partitioning method (k-means in this case) to the same simulated datasets. (d) Heat-maps 

that show the percentage of genes in a cluster that also fit well within each one of the other clusters. 

Figure 2. Evaluation of the performance of clustering methods.  
(a-c) Evaluation of clustering performance over all 100 datasets. (a) the percentage of input genes 

that were included in clusters; (b) the average dispersion of clusters measured by weighted-averaging 

of individual cluster MSE values; (c) percentage of the overlap amongst clusters, as measured by JI 

index. (d-e) Distributions of individual cluster properties for all 100 datasets. MSE values (d), JI values 

(e), and cluster sizes (f). (Supplemental Tables S2 and S3 and Supplemental Figures S1 to S8). 

Figure 3. Evaluation of GO term enrichment in the results of the clustering methods. 
(a) Venn diagram demonstrating substantial differences in enriched GO terms between methods. The 

numbers on this diagram represent the number of GO terms detected as significantly enriched across 
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the 20 selected datasets. The union of these sets includes 6321 terms, 3033 of which (48%) are 

exclusive to a single method. (b) The percentage of reliable GO terms (i.e. those detected by two or 

more methods) detected by each method. There is no significant difference between methods 

(Supplementary Table S4). (c) F-scores quantifying the similarity between the set of GO terms 

detected as enriched in the original clusters and the set of GO terms detected as enriched in clusters 

after taking into account unreliably assigned genes (Supplementary Table S4). (d) as in (b) but 

considering robust GO terms. Clust shows significantly higher values than HC (p = 0.009) and SOMs 

(p = 0.0009). Although clust also shows higher average values than MCL and k-means, but they are 

not significantly higher at a p-value threshold of 0.01. 
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Figures 
Figure 1 
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Figure 3 
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