
Adaptive modeling and inference of higher-order coordination
in neuronal assemblies: a dynamic greedy estimation
approach

Shoutik Mukherjee1,2 and Behtash Babadi1,2*

1 Department of Electrical and Computer Engineering, University of Maryland, College
Park, MD, USA
2 Institute for Systems Research, University of Maryland, College Park, MD, USA

* behtash@umd.edu

Abstract

Central in the study of population codes, coordinated ensemble spiking activity is
widely observable in neural recordings with hypothesized roles in robust stimulus
representation, interareal communication, and learning and memory formation.
Model-free measures of synchrony characterize coherent pairwise activity but not
higher-order interactions, a limitation transcended by statistical models of ensemble
spiking activity. However, existing model-based analyses often impose assumptions
about the relevance of higher-order interactions and require repeated trials to
characterize dynamics in the correlational structure of ensemble activity. To address
these shortcomings, we propose an adaptive greedy filtering algorithm based on a
discretized mark point-process model of ensemble spiking and a corresponding
statistical inference framework to identify significant higher-order coordination. In the
course of developing a precise statistical test, we show that confidence intervals can be
constructed for greedily estimated parameters. We demonstrate the utility of our
proposed methods on simulated neuronal assemblies. Applied to multi-electrode
recordings from human and rat cortical assemblies, our proposed methods provide new
insights into the dynamics underlying localized population activity during transitions
between brain states.

Author summary

Simultaneous ensemble spiking is hypothesized to have important roles in neural
encoding; however, neurons can also spike simultaneously by chance. In order to
characterize the potentially time-varying higher-order correlational structure of
ensemble spiking, we propose an adaptive greedy filtering algorithm that estimates the
rate of all reliably-occurring simultaneous ensemble spiking events. Moreover, we
propose an accompanying statistical inference framework to distinguish the chance
occurrence of simultaneous spiking events from coordinated higher-order spiking. We
demonstrate the proposed methods accurately differentiate coordinated simultaneous
spiking from chance occurrences in simulated data. In application to human and rat
cortical data, the proposed methods reveal time-varying dynamics in higher-order
coordination that coincide with changing brain states.
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Introduction 1

Synchronous neuronal ensemble activity is central in the study of neural population 2

codes. Coordinated ensemble spiking has been observed in a variety of brain areas, 3

prompting a variety of hypotheses about its role in cognitive function. For instance, 4

studies have documented synchronous spiking at all levels of the mammalian visual 5

pathway [1–3]. Synchronized thalamic population activity has also been widely observed, 6

a phenomenon to which visual cortical neurons have been found sensitive, suggesting the 7

importance of synchronized neuronal activity in thalamocortical communication [4, 5]. 8

Synchronized spiking has, more broadly, been hypothesized to influence inter-areal 9

communication and the flow of neural information [6–10]. The study of coordinated 10

neural activity is also closely tied to oscillatory activity and memory. Synchronized 11

hippocampal and hippocampal-cortical activity are thought to have significant roles in 12

memory formation, working memory tasks, and encoding information for spatial 13

navigation [11–13]. Coordinated ensemble spiking has additionally been postulated to 14

be mediated by oscillations in local field potentials [14–16]. 15

The prevalence of coordinated spiking and its functional implications for a range of 16

neural processes have motivated both model-free and model-based approaches to 17

quantifying spiking synchrony. Perhaps the most intuitive model-free metric is the 18

pairwise correlations of spike trains smoothed by a Gaussian (or exponential) 19

kernel [17,18]. Other model-free measures include a range of spike train distance 20

metrics that also perform pairwise comparisons [19]. Though the coherence of pairwise 21

activity can be described, such measures do not capture higher-order coordination, and 22

are limited in the ability to model dynamics in or determine the significance of pairwise 23

coherence without repeated trials. 24

Statistical models of neuronal ensemble activity transcend the limitation of 25

model-free metrics to pairwise comparisons. Two widely used approaches are the 26

maximum entropy models and point process generalized linear models (GLM) [20,21]. 27

Maximum entropy models describe the state of the neural population only in terms of 28

its instantaneous correlational structure [22,23]. Models are estimated to match 29

observed firing rates and all pairwise (and potentially higher order) correlations 30

simultaneously. The suitability of the maximum entropy model formulation for 31

analyzing coordinated spiking has motivated several extensions. For instance, Bayesian 32

state-space filtering algorithms have been developed to capture dynamics in the strength 33

of higher-order spiking interactions [24,25]. A stimulus-dependent maximum entropy 34

model has also been proposed to address potential synchrony-modulating factors [26]. 35

Extensions also include efforts to address the computational complexity associated with 36

analyzing higher-order interactions amongst large neuronal assemblies [27,28]. 37

Point process GLMs are a common alternative to maximum entropy models for 38

ensemble spiking [29,30] that can characterize the influence of past population activity 39

and other relevant covariates. Though useful in estimating functional 40

connectivity [31,32], each neuron must be assumed conditional independent due to 41

regularity conditions that prohibit simultaneous spiking events [33–35]. This can be 42

circumvented by using an equivalent marked point processes (MkPP) representation 43

that explicitly models each disjoint simultaneous spiking event [34]. MkPP 44

representations of ensemble activity have also been utilized to analyze neuronal 45

population coding in unsorted spiking data [36,37]. A related approach models disjoint 46

simultaneous spiking events as log-linear combinations of point process models that 47

permits an intuitive representation of excess or suppressed synchrony [15,35]. 48

The aforementioned statistical models enable the analysis of higher-order 49

coordination in ensemble spiking, though each with their respective limitations. 50

Dynamics in the correlational structure of maximum entropy models may be tracked 51

with state-space filtering algorithms and credible intervals can be constructed to assess 52
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the statistical significance of correlations; however, the influence of past population 53

activity on the ensemble state is neglected, and assumptions on the relevance of 54

higher-order interactions are typically imposed for tractability of model estimation. 55

Log-linear point process models can track dynamics in coherent spiking while 56

incorporating the effects of temporal dynamics of population activity, and confidence 57

intervals may be approximated for statistical inference; the necessity of a priori 58

assumptions on the relevance of higher-order interactions still, however, remains. 59

Additionally, model-fitting in both approaches requires multiple repeated trials to 60

capture dynamics in correlational structure, thus limiting their applicability to 61

continuously recording spiking data. A discretized MkPP model is capable of capturing 62

greater detail in the effects of past population activity on coordinated spiking, though 63

these effects are assumed to be static. To our knowledge, the tractability of the MkPP 64

model for ensemble spiking has not been addressed, and a corresponding statistical 65

inference framework is lacking. 66

We address these gaps by proposing an adaptive greedy filtering algorithm based on 67

the discretized MkPP formulation in [34] to model dynamics in higher-order spiking 68

coordination in single-trial recordings while capturing the influence of past ensemble 69

activity. Incorporating similar data-driven restrictions on modeled interactions as 70

in [27], we also address the question of tractability of the discretized MkPP formulation. 71

Furthermore, we build on recent theoretical results related to Adaptive Granger 72

Causality (AGC) analysis [31] to provide a precise statistical framework to detect 73

significant coordinated spiking activity of arbitrary order. We demonstrate our 74

proposed method’s utility in tracking dynamics in synchronous activity with statistical 75

confidence on simulated ensemble spiking. Applying our method to continuous 76

multi-electrode recordings of human cortical assemblies during anesthesia and to rat 77

cortical assemblies during sleep provides novel insights into coordinated spiking 78

dynamics that underlie transitions between brain states. 79

Materials and methods 80

We first summarize essential components of the proposed methods for inferring latent 81

higher-order spiking coordination in order to contextualize our results. The primary 82

contribution of this work is a framework for the dynamic and statistically precise 83

inference of latent coordinated spiking in neuronal assemblies using their simultaneous 84

spiking representation (Fig. 1, bottom panel); the following subsections describe each 85

analysis stage. Key notation used throughout the remainder of the paper is summarized 86

in Table 1. Algorithm development and theoretical results are comprehensively 87

addressed in supporting information (S1 Appendix). Software implementations in 88

MATLAB v2017b of the algorithms discussed here are available at 89

https://github.com/ShoutikM/AdaptiveHigherOrderCoordination with 90

DOI:10.5281/zenodo.10009981. 91

Discretized marked point process likelihood model 92

To characterize coordinated spiking, it is necessary to use an appropriate representation 93

of neuronal ensemble spiking. Because multivariate point processes as defined in 94

literature [33] do not permit simultaneous events at arbitrarily small time scales, point 95

process models of ensemble spiking treat neurons as conditionally independent elements 96

of a multivariate process. To avoid this assumption, Solo introduced a theoretical model 97

for simultaneous spiking events based on marked point processes (MkPP) that explicitly 98

model each possible ensemble spiking event [38]. Due to the convenience of its disjoint 99
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Fig 1. Ensemble spiking is mapped to a disjoint representation of simultaneous spiking events. The proposed methods
(grey box) are used to infer the strength of higher-order coordination amongst C neurons in a dynamic fashion.

Table 1. Summary of key notation

Notation Definition

nt =
[
n

(1)
t , . . . , n

(C)
t

]>
Ensemble spiking observation at time bin t of C neurons

λ
(c)
t ∆ Conditional Intensity Function (CIF) of cth neuron

n∗t =
[
n∗

(1)
t , . . . , n∗

(C∗)
t

]>
Marked observations at time bin t of C∗ = 2C − 1 marks

λ∗
(m)
t ∆ CIF of mth mark

n
(g)
t Ground process,

∑C∗

m=1 n
∗(g)
t

λ∗
(g)
t ∆ CIF of the ground process,

∑C∗

m=1 λ
∗(m)
t ∆

µt =
[
µ

(1)
t , . . . , µ

(C∗)
t

]>
Base rate parameters of mark events

ωt =
[
ω

(1)>

t ,ω
(2)>

t , . . . ,ω
(C∗)>

t

]>
Model parameters of history-dependent model

u
(m)
t Log-odds of mth mark event vs. no spiking event

u
(m)
0,t Log-odds of mth mark event vs. no spiking event (reduced model)

γ
(m)
t = u

(m)
t − u(m)

0,t Exogenous factor for mth mark
β Forgetting factor, 0 < β < 1
W Window length

decomposition, MkPP representations have been used by Kass et al. in [35] and Ba et 100

al. in [34] to model simultaneous spiking in neuronal assemblies. 101

Here, we utilize a discrete-time MkPP representation of ensemble neuronal activity. 102

For an assembly of C neurons, the C-variate spiking process, binned with small bin size 103

∆, at time bin index t is denoted by nt := [n
(1)
t , n

(2)
t , . . . , n

(C)
t ]>, where each component 104

is the spiking process of one neuron. Conventional discrete point process models treat 105

the components as conditionally independent Bernoulli observations. Given our interest 106

in simultaneous spikes, we instead treat nt as multivariate Bernoulli observations. The 107

spiking process nt is mapped to a C∗-variate process n∗t := [n∗t
(1), n∗t

(2), . . . , n∗t
(C∗)]>, 108

which are the binned observations of a marked point process whose marks count the 109

number of exactly one of C∗ := 2C − 1 disjoint non-zero spiking events; we refer to n∗t 110

as the marked Bernoulli process, distinguishing it from the multivariate Bernoulli 111
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process nt. We define the mark space K := {1, . . . , C∗} [33]. The example in Fig. 1 112

shows the activity of C = 3 neurons mapped to a marked process with C∗ = 7 marks. 113

At each time tj such that ntj 6= 0, the sole non-zero element of n∗tj indicates the mark. 114

We also define the binned ground process n
(g)
t that takes value 1 at each such tj and is 115

zero otherwise [33]; the ground process indicates the occurrence of any spiking event 116

and is represented by n
(g)
t :=

∑C∗

m=1 n
∗
t

(m). 117

The marked process representation is not uniquely defined, but can be done so in a 118

convenient fashion: treating the components of nt as the bits of a C-bit binary number, 119

the mark indexed by the decimal equivalent of a particular realization of nt will 120

corresponded to that realization. By the disjointness of the marked representation, the 121

spiking process of the cth neuron can be recovered as the sum of all marked process 122

whose index, in binary, takes value 1 at the cth bit. For instance, in Fig. 1, the spiking 123

activity of neuron 3 (in blue) is the sum of simultaneous spiking event processes 4–7. 124

The conditional intensity functions (CIFs) of nt and n∗t are approximated by the 125

probabilities of observing an event at time bin t given ensemble spiking history. That is, 126

λ
(c)
t ∆ = P[n

(c)
t = 1|Ht], λ∗t

(m)∆ = P[n∗t
(m) = 1|Ht], (1)

for c = 1, . . . , C and m = 1, . . . , C∗. We can relate λ
(c)
t ∆ to λ∗t

(m)∆ in the same manner 127

as n
(c)
t to n∗t

(m), and obtain the CIF of the ground process λ∗t
(g)∆ =

∑C∗

m=1 λ
∗
t

(m)∆. 128

The marked process permits a generative description of simultaneous spiking events: 129

ensemble spiking events are characterized by the ground process, occurring with 130

probability λ∗t
(g)∆; the event is then assigned to the mth mark (i.e. the mth

131

simultaneous spiking outcome) with conditional probability
λ∗t

(m)∆

λ∗t
(g)∆

. Thus, at time t the 132

likelihood of ensemble event n∗t is given by: 133

p(n∗t ) =
C∗∏
m=1

(
λ∗t

(m)∆

λ∗t
(g)∆

)n∗t (m) (
λ∗t

(g)∆
)n(g)

t
(

1− λ∗t
(g)∆

)1−n(g)
t

. (2)

The likelihood in Eq. (2) is used to form a multinomial generalized linear model 134

(mGLM) with multinomial logistic link function of which we consider two versions. 135

The first, more general version utilizes the ensemble history as covariates in the 136

mGLM. Letting the covariate vector xt be the ensemble history up to some fixed lag at 137

time t (augmented by a constant element of 1), the model is parameterized by 138

ωt :=
[
ω

(1)>

t ,ω
(2)>

t , . . . ,ω
(C∗)>

t

]>, where the parameters for the mth mark 139

ω
(m)
t :=

[
µ

(m)
t ,θ

(m)>

t

]> consists of an ensemble history-modulation vector θ(m)
t and the 140

baseline firing parameter, µ(m)
t . The CIF of the mth mark is hence defined as: 141

λ∗t
(m)∆ :=

ex
>
t ω

(m)
t

1 +
∑C∗

j=1 e
x>t ω

(j)
t

, m = 1, 2, · · · , C∗; (3)

equivalently, the log-odds of the mth mark occurring versus no spiking event occurring 142

are x>t ω
(m)
t = log

(
λ∗t

(m)∆

1− λ∗t
(g)∆

)
. 143

The second version of the mGLM makes the simplifying assumption that there is no 144

history dependence. The resulting model depends only on contemporaneous spiking, 145

permitting compact parameterization by the baseline firing parameters 146

µt = [µ
(1)
t , µ

(2)
t , . . . , µ

(C∗)
t ]>. In the history-independent model, the log-odds of the mth

147

mark occurring versus no spiking event occurring are: 148

µ
(m)
t = log

(
λ∗t

(m)∆

1− λ∗t
(g)∆

)
. (4)
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The log-likelihood can be expressed in a fashion resembling the maximum entropy 149

model [22,23]. For the history-independent case, the log-likelihood of n∗t is 150

log p(n∗t ) = µ>t n
∗
t − ψ(µt), where ψ(µt) := log

(
1 +

C∗∑
m=1

eµ
(m)
t

)
, (5)

while the history-dependent formulation admits a similar expression by simply replacing 151

µ
(m)
t with x>t ω

(m)
t . 152

Adaptive estimation of marked point process models 153

In contrast with conventional mGLM models, here the parameters are allowed to change 154

in time. Hence, we use adaptive algorithms to capture the dynamics of the 155

history-dependent and history-independent models. However, analyzing large neuronal 156

assemblies raises the issue of tractability since the number of parameters to be 157

estimated scales exponentially with C. Since it is likely that some marks will not 158

contain any events, we employ a thresholding rule similar to [27], considering only 159

“reliable interactions”, i.e. the subset of the mark space K̄ = {m ∈ K :
∑
t n
∗
t

(m) > Nthr} 160

for some pre-defined constant Nthr > 0, and treating the rates of the remaining marked 161

processes as negligible due to their infrequency. For generality and clarity in notation, 162

subsequent discussions are in terms of the full mark space K. 163

The parameters of the history-dependent discretized MkPP model are obtained by 164

solving a sequence of maximum likelihood problems, formulated as follows. We assume 165

that the parameters ωt admit piece-wise constant dynamics and are constant over 166

consecutive windows of length W ; additionally, observations are assumed conditionally 167

independent across time bins. The ensemble history up to lag p defines the covariates as 168

xt := [1, n
(1)
t−1, . . . , n

(1)
t−p, . . . , n

(C)
t−1, . . . , n

(C)
t−p]

>. The set of history covariate vectors at 169

the ith window are denoted by Xi = [x1+i(W−1), . . . ,xiW ]>. Note that since the 170

mapping from n∗t to nt is injective, the influence of past spiking activity can be 171

equivalently captured by defining history covariates in terms of either; however, using 172

nt reduces the dimensionality of ωt and quantifies the influence of past spiking activity 173

directly rather than through categorical variables. Let n∗(m)
i = [n

∗(m)
1+W (i−1), . . . , n

∗(m)
iW ]> 174

denote the sequence of outcomes of the mth mark in the ith window. The log-likelihood 175

of the ith window is thus given by 176

`i(ωi) :=
C∗∑
m=1

n∗i
(m)>Xiω

(m)
i −

iW∑
j=1+(i−1)W

log

(
1 +

C∗∑
m=1

exj
>ω

(m)
i

)
. (6)

Motivated by the RLS objective function [39], a forgetting factor mechanism is utilized 177

to combine the log-likelihoods up to the kth window, capturing the dynamics in each 178

mark’s rates. For a forgetting factor 0 ≤ β < 1, the adaptively-weighted log-likelihood 179

at window k is thus defined as: 180

`βk(ωk) := (1− β)
k∑
i=1

βk−i`i(ωk). (7)

Parameter estimation is hence performed by solving the sequence of maximum 181

likelihood problems: 182

ω̂k := arg max
ωk

`βk(ωk), k = 1, 2, · · · ,K. (8)

To efficiently solve the sequence of problems in Eq. (8) in an online fashion, we use 183

the Adaptive Orthogonal Matching Pursuit (AdOMP) [40], an adaptive version of the 184
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Orthogonal Matching Pursuit (OMP) [41] [42]. The AdOMP and OMP both iteratively 185

identify the parameter support set (the non-zero components) of fixed size (a 186

hyperparameter for which we cross-validate) to encourage sparsity, thus capturing the 187

inherent sparsity of network interactions based on past ensemble activity [43–45]. 188

However, AdOMP permits the support set to change between windows. Moreover, 189

greedy estimation over a sparse subset of parameters mitigates the intractability of the 190

estimation problem for large neuronal assemblies where regularization-based constraints 191

still require optimization over all parameters. The AdOMP relies on efficient evaluation 192

of the gradient ∇ω`βk(ωk) at the lth iterate ω̂(l),k, to determine the next addition to the 193

parameter support set and to solve the new maximization problem via gradient descent. 194

Hence, its recursive computation is crucial for the algorithm to operate in an online 195

fashion. To this end, we utilize a recursive update rule to compute the gradient at the 196

kth window, generalizing the adaptive filtering techniques employed in [46] for Bernoulli 197

observations to a multivariate setting. A complete derivation of the recursive update 198

rule and the utilization of the gradient in AdOMP is provided in supporting information 199

(S1 Appendix). 200

The sequence of maximum likelihood problems that must be solved to obtain the 201

history-independent model takes a similar form as in Eqs. (6) – (8) under the same 202

assumption of piece-wise constant dynamics of µt. Defining n̄∗i := 1
W

∑iW
j=(i−1)W+1 n

∗
j , 203

the equivalent of the ith window log-likelihood in Eq. (6) is given by 204

`i(µi) = W (µ>i n̄
∗
i − ψ(µi)). Hence, the adaptively-weighted log-likelihood at the kth 205

window is: 206

`βk(µk) := (1− β)
k∑
i=1

βk−i`i(µk)

= (1− β)

k∑
i=1

Wβk−i(µ>k n̄
∗
i − ψ(µk)).

(9)

The sequence of maximum likelihood estimates 207

µ̂k = arg max
µk

`βk(µk), k = 1, 2, · · · ,K (10)

are obtained by gradient descent. The gradient of the history-independent log-likelihood 208

in Eq. (9), while involving a weighted summation of the terms n̄∗i for which a simple 209

recursion is derived, can be computed directly. The procedure for computing the 210

maximum-likelihood estimates of the history-independent model is detailed in 211

supporting information (S1 Appendix). 212

Statistical inference of higher-order coordination 213

Coordinated spiking can indicate relationships between components of a neuronal 214

assembly and, potentially, effects of unobserved processes. However, independent 215

neurons can also spike concurrently by chance, necessitating statistical inference to 216

distinguish between excessive (or suppressed) and chance simultaneous spiking. To this 217

end, we quantify the two alternatives as nested hypotheses and prove that an adaptive 218

de-biased deviance test used for identifying significant Granger-causal influences [31] is 219

applicable to our setting, thus establishing a precise statistical inference framework. 220

Here, we focused on characterizing the significance of rth-order simultaneous spiking 221

and have formulated the hypothesis test accordingly; however, similarly constructed null 222

hypotheses can be used to test the significance of any set of simultaneous spiking events 223

using the same inference procedure (see supporting information S1 Appendix). For 224

cogency, we focus on the statistical inference procedure for history-dependent MkPP 225

models; differences for the history-independent model are addressed in supporting 226
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information (S1 Appendix). However, the complementary nature of the two models are 227

summarized here. Theoretical results pertaining to the precise inference framework are 228

summarized here, and comprehensively described in supporting information (S1 229

Appendix). 230

Formulating nested hypotheses to test for rth-order coordination 231

The significance of r-wise simultaneous spiking for r ≥ 2 is tested by considering the 232

two alternatives: 233

H0 : rth-order simultaneous spikes occur as frequently as they would between
independent units, given ensemble spiking history

H1 : rth-order simultaneous spikes occur at a significantly different rate than they
would between independent units, given ensemble spiking history

(11)
A similar formulation was used in [35] to determine whether one mark occurs at a 234

significantly different rate than expected. The likelihood of the mark was modeled as 235

the product of marginal likelihoods and an additional multiplicative factor. Noting that 236

the additional factor takes value 1 if the neurons are truly independent, the null 237

hypothesis was quantified accordingly. Instead, we estimate a reduced model that 238

assumes rth-order interactions are chance occurrences by constraining the base rate 239

parameters for each rth-order mark. For the mth mark, let 240

u
(m)
t := xt

>ω
(m)
k = µ

(m)
k + x̄>t θ

(m)
k . (12)

We decompose the base rate parameter as 241

µ
(m)
k = µ

(m)
0,k + γ

(m)
k , (13)

where µ
(m)
0,k is rate under the null hypothesis and γ

(m)
k is analogous to the additional 242

multiplicative factor in [35] that captures potential exogenous effects after conditioning 243

on ensemble spiking history. 244

The reduced model is estimated by solving the sequence of maximum likelihood 245

problems ω̂(R)
k := arg max

ω
(R)
k

`βk(ω
(R)
k ) with the base rate parameters of rth-order events 246

constrained to their values under the null hypothesis. Let 247

Kr :=

{
m ∈ K :

C∑
c=1

mc = r

}
, (14)

where mc is the cth least significant bit of m in binary. Then, to obtain the reduced 248

model for any m ∈ Kr, we fix µ
(m)
k to µ

(m)
0,k and optimize the remaining parameters. To 249

explicitly obtain the constraints, first recall that xt>ω
(m)
k is the log-odds of n∗(m)

t = 1 250

versus n(g)
t = 0 given ensemble spiking history. Under the assumption that the neurons 251

are independent, the probabilities of each event are given, respectively, by 252
P[n∗t

(m) = 1|Ht] =
∏

ca:mca=1

(
λ

(ca)
t ∆

) ∏
cb:mcb

=0

(
1− λ(cb)

t ∆
)
, and

P[n
(g)
t = 0|Ht] =

C∏
c=1

(
1− λ(c)

t ∆
)
.

(15)

Evaluating the log-ratio of these two probabilities at the full model estimate ω̂k, we 253

obtain that 254

u
(m)
0,t :=

∑
c:mc=1

log

(
λ̂

(c)
t ∆

1− λ̂(c)
t ∆

)
. (16)
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Attributing the difference between u
(m)
t and u

(m)
0,t only to exogenous factors, we estimate 255

the exogenous factors at the kth window as 256

γ̂
(m)
k =

1

W

kW∑
t=(k−1)W+1

(
u

(m)
t − u(m)

0,t

)
. (17)

Thus, for the reduced model, the value of µ(m)
k is constrained to µ̂

(m)
k − γ̂(m)

k for m ∈ Kr. 257

The hypotheses are then quantitatively stated as: 258

H0 : ωk = ω̂
(R)
k , H1 : ωk 6= ω̂

(R)
k . (18)

To control the possible abrupt variations of γ̂(m)
k across windows, we apply Kalman 259

forward/backward smoothing to the exogenous factor and use the smoothed values, γ̃(m)
k , 260

in lieu of γ̂(m)
k . The procedure is given in more details in supporting information (S1 261

Appendix). 262

Precise statistical inference using deviance differences 263

The use of the deviance difference test statistic has been established in classical 264

statistical methodology [47,48] as a common procedure for likelihood ratio tests between 265

two nested hypotheses. However, such a test is ill-suited to our setting due to the 266

highly-dependent covariates and forgetting-factor mechanism in the data log-likelihood. 267

These issues were addressed in a related context [31] for the inference of Granger-causal 268

links by defining the adaptive de-biased deviance difference and characterizing its 269

limiting distribution under presence and absence of Granger-causal links. We similarly 270

utilize the adaptive de-biased deviance difference, 271

D
(r)
k,β

(
ω̂

(F )
k , ω̂

(R)
k

)
:=

(
1 + β

1− β

)[
2
(
`βk(ω̂

(F )
k )− `βk(ω̂

(R)
k )

)
−
(
B

(F )
k −B

(R)
k

)]
, (19)

as the test statistic, where B
(F )
k and B

(R)
k are the respective biases of the full and 272

reduced models. The full and reduced model log-likelihoods can be efficiently computed 273

online in a similar manner as the gradients (see supporting information S1 Appendix). 274

We precisely characterize the limiting behavior of the deviance difference in Eq. (19) 275

under both the null and alternative hypotheses, showing that as β → 1: 276

i) if rth-order coordination matches independent rth-order interactions given ensemble 277

spiking history, then D
(r)
k,β

(
ω̂

(F )
k , ω̂

(R)
k

) d−→ χ2(M (r)), i.e. chi-square, and 278

ii) if rth-order coordination diverges from independent rth-order interactions given 279

ensemble spiking history, and assuming the base rate parameters of rth-order 280

interactions scale at least as O
(√

1−β
1+β

)
, then D

(r)
k,β

(
ω̂

(F )
k , ω̂

(R)
k

) d−→ χ2(M (r), ν
(r)
k ), 281

i.e. non-central chi-square, 282

where ν
(r)
k is the non-centrality parameter at time k that depends only on the true 283

parameters, and M (r) = |Kr| is the difference in the cardinalities of the full and reduced 284

support sets. Our theoretical results are comprehensively discussed in supporting 285

information (S1 Appendix). 286

In order to fully characterize the limiting distribution of D
(r)
k,β under H1, we must 287

estimate the non-centrality parameter for each window. Assuming it evolves smoothly 288

in time, we use a state-space smoothing algorithm [31] to estimate ν
(r)
k from the 289
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observed D
(r)
k,β values. Hence, in addition to identifying significant coordination, we also 290

quantify the degree of significance using Youden’s J-statistic 291

J
(r)
k := 1− α− F

χ2(M(d),ν̂
(r)
k )

(
F−1
χ2(M(d))

(1− α)
)

(20)

for significance level α, where F (·) denotes the CDF. Values of J
(r)
k close to 1 imply 292

that the rejection of the null is a stronger indication of coordination than for smaller 293

values of J
(r)
k . Thus, the J-statistic characterizes the test in terms of both type I and 294

type II errors. By convention, we take J
(r)
k = 0 when H0 is not rejected at the kth 295

window. Under the alternative, it is possible to observe either significant excess or 296

suppressed coordination; this can be reflected in the J-statistic by incorporating the net 297

exogenous effect on rth-order coordination and using a signed J-statistic 298

J
(r)
k · sgn

(∑
m∈Kr

γ̂
(m)
k

)
. The full procedure for identifying significant rth-order 299

coordinated spiking is summarized by Algorithm 1. 300

Algorithm 1 Dynamic inference of rth-order spiking coordination

Input: {n∗k}Kk=1, {Xk}Kk=1, r, β, α

Output: {J (r)
k }Kk=1, {ν̂(r)

k }Kk=1, {D(r)
k,β}Kk=1

1: Kr = {m ∈ K :
∑C
c=1mc = r} and M (r) = |Kr|

2: for k = 1 to K do
3: hk = 0
4: Estimate ω̂

(F )
k using AdOMP; evaluate `βk(ω̂

(F )
k ) and B

(F )
k

5: for m ∈ Kr do
6: Evaluate {u(m)

t }kWt=(k−1)W+1 and {u(m)
0,t }kWt=(k−1)W+1

7: Set γ̂
(m)
k = 1

W

∑kW
t=(k−1)W+1

(
u

(m)
t − u(m)

0,t

)
and µ

(m)
0,k = µ̂

(m)
k − γ̂(m)

k

8: end for
9: Estimate ω̂

(R)
k using AdOMP with constraint µ

(m)
k = µ

(m)
0,k for m ∈ Kr

10: Evaluate `βk(ω̂
(R)
k ), B

(R)
k , and D

(r)
k,β(ω̂

(F )
k , ω̂

(R)
k )

11: if F−1
χ2(M(r))

(1− α) < D
(r)
k,β(ω̂

(F )
k , ω̂

(R)
k ) then

12: hk = sgn
(∑

m∈Kr
γ̂

(m)
k

)
13: end if
14: end for
15: Estimate {ν̂(r)

k }Kk=1 via non-central χ2 filtering/smoothing

16: J
(r)
k = hk × (1− α− Fχ2(M(r),ν̂k)(F

−1
χ2(M(r))

(1− α)))

17: return {J (r)
k }Kk=1, {ν̂(r)

k }Kk=1, {D(r)
k,β}Kk=1

In establishing the limiting behavior of D
(r)
k,β , we also proved a result of independent 301

interest; namely, we generalized asymptotic properties of de-sparsified `1-regularized 302

estimates [49] to de-sparsified greedy estimates by showing that the de-sparsified 303

AdOMP estimate behaves asymptotically like the maximum likelihood estimate. 304

Crucially, this allows for the construction of confidence intervals around greedily 305

estimated parameters thus enabling precise statistical inference. 306

Complementary characterizations of higher-order coordination by 307

history-independent and history-dependent models 308

The history-independent model is a special case of the history-dependent model; hence, 309

the statistical inference procedure summarized by Algorithm 1 can be appropriately 310
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modified. This specialization is expounded in supporting information (S1 Appendix). 311

However, the interpretation of statistically significant results obtained using 312

history-independent analysis is distinct from but complementary to the interpretation of 313

statistically significant results obtained using history-dependent model. Let the base 314

rate parameter and exogenous effect for the history-independent model be denoted by 315

µk and γk; and the same for the history-dependent model by µk,H and γk,H, with 316

history-modulation parameter θk. Then, the reduced model constraints imply 317

γk = γk,H + x̄>t θk. If the observed rate of higher-order events is equal to that of 318

independent neurons, γk = 0; however, higher-order interactions may still be 319

coordinated, i.e. γk,H = −x̄>t θk 6= 0. Conversely, the observed rate of higher-order 320

events may differ from that of independent neurons, i.e., γk 6= 0. If γk,H = 0, observed 321

coordination can be attributed to the effects of ensemble history; otherwise, observed 322

coordination was driven by an unobserved process. Thus, history-independent analysis 323

reveals if the observed rate of simultaneous spiking events deviates from the expected 324

rate in a group in independent neurons, while history-dependent analysis reveals if the 325

observed rate of simultaneous events cannot be attributed to endogenous network 326

effects. 327

Results 328

The proposed methods for analyzing higher-order spiking coordination were validated 329

through simulations. First, we empirically verified our theoretical results characterizing 330

the limiting behavior of the adaptive debiased deviance difference on simulated spiking. 331

Next, we demonstrated the utility of the analyses on simulated ensemble spiking data, 332

showing that the ground-truth latent dynamics in higher-order coordinated spiking can 333

be recovered with statistical confidence and with greater accuracy than existing 334

single-trial metrics. Then, the proposed methods were applied to continuous 335

multi-electrode recordings of human cortical assemblies during anesthesia and to rat 336

cortical assemblies during sleep in order to infer latent dynamics in coordinated spiking 337

during transitions between brain states. 338

Empirical Validation of the Limiting Behavior of Deviance 339

Differences 340

We first validated the proposed statistical test for rth-order coordinated spiking by 341

empirically verifying the limiting distributions of the adaptive debiased deviance 342

difference derived under the null and alternative hypotheses. We simulated and 343

analyzed 50 realizations of a 5-neuron ensemble spiking process; the spiking activity was 344

generated by a marked Bernoulli process, as described by Eq. (2). Each realization was 345

4000 samples long with dynamics in 3rd-order spiking coordination. Namely, a step 346

function was used to exogenously facilitate 3rd-order spiking during the second half of 347

each realization. 348

The simulated spiking data were analyzed by applying Algorithm 1 to each 349

realization; restricted models were only computed for 3rd-order spiking coordination. A 350

threshold of Nthr = 1 was used to pruned marked events that occurred no more than 351

once per realization; this excluded 5th order events from the estimated model. The 352

window size over which parameters were assumed constant was set to W = 10 in order 353

to enable stable estimation at each window while still allowing for fast changes. The 354

forgetting factor was set to β = 0.99. For the purpose of validating the limiting 355

distributions, a forgetting factor close to 1 was desirable; however, β = 0.99 is also a 356

practical choice for the forgetting factor that serves to illustrate the utility of the 357

limiting distributions when analyzing physiological data. Indeed, the hyperparameter 358
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choices (W,β) = (10, 0.99) were used in the applications to physiological data presented 359

later. Hyperparameter choices for analysis are discussed in the context of two additional 360

simulations. 361

The limiting distribution under the null hypothesis was validated by compiling 362

adaptive de-biased deviance differences that were computed during the first half of each 363

realization and corresponded to small estimated non-centrality parameter values. Their 364

distribution, depicted by the blue histogram in Fig. 2, closely matched the theoretical 365

distribution of deviance differences under the null hypothesis, i.e. a χ2 distribution with 366

M = 10 degrees of freedom. 367

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0 100 200 300 400 500 600 700
0

0.005

0.01

0.015

PD
F

PD
F

Deviance Difference Deviance Difference

Null Distribution Alternative Distribution

Theoretical vs. Empirical Deviance Difference Distribution

Fig 2. Theoretical versus empirical distributions of the adaptive de-biased deviance difference
under the null (blue) and alternative (red) hypotheses. Empirical distributions of adaptive
de-biased deviance differences were compiled from history-dependent analyses of 50 realizations
of a discretized marked point process simulating the ensemble spiking of 5 neurons with
exogenously induced 3rd-order spiking dynamics. The distributions were compared to the
probability distribution functions (PDF) of a χ2 distribution with M = 10 degrees of freedom
(left), and a non-central χ2 distribution with M = 10 degrees of freedom and non-centrality
parameter ν = 327 (right), corresponding respectively to the limiting distribution under the
null and alternative hypotheses.

The limiting distribution under the alternative hypothesis was validated by 368

compiling adaptive de-biased deviance differences that were computed during the 369

second half of one particular realization and hence corresponded to similar estimated 370

non-centrality parameter values. Their distribution, depicted by the red histogram in 371

Fig. 2, closely matched the theoretical distribution of deviance differences under the 372

alternative hypothesis, a non-central χ2 distribution with M = 10 degrees of freedom 373

and non-centrality parameter ν = 327. The non-centrality parameter of the theoretical 374

distribution was determined by computing the median of the aforementioned estimates. 375

Simulated Ensemble Spiking: Example 1 376

We next demonstrated the utility of the proposed methods in application to two sets of 377

simulated ensemble spiking data with dynamic latent higher-order coordination. In the 378

first example, spiking activity of 5 neurons was simulated for 16000 samples. Spiking 379

activity (Fig. 3A) included 3rd-order events exogenously facilitated and suppressed in 380

alternation by a square wave and 4th-order events induced through endogenous effects of 381

ensemble spiking history throughout the simulated duration. The latent spiking 382

coordination was evident when visualizing the sums of all rth-order events in Fig. 3B. 383

Four epochs of the simulation were defined by the periods of 3rd-order facilitation and 384

suppression, shown in Fig. 3C, and are indicated by vertical dashed lines common 385

across all panels. 386

History-independent and history-dependent analyses of higher-order coordination 387

were applied to the simulated spiking data using the same hyperparameters. A 388

conservative threshold of Nthr = 1 was chosen to prune marked events that occurred 389

unreliably over the simulated duration. The window size over which parameters were 390
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Fig 3. Analysis of ensemble spiking with 3rd-order coordination induced exogenously by a
square wave. A. Simulated ensemble spiking of five neurons. B. Sum of the rth-order
simultaneous spiking events for r = 2, 3, 4, 5. C. Spiking coordination varies across 4 epochs
defined by the exogenous process that alternatingly facilitated and suppressed 3rd-order events.
These are demarcated by vertical dashed lines. D. Significant rth-order coordination neglecting
ensemble history. E. Significant rth-order coordination based on history-dependent ensemble
spiking model. Statistical testing in D–E performed at level α = 0.01. F. Average Pearson
correlation with 95% confidence interval. G. Average spiking regularity: coefficient of variation
±2 SEM. H. Average mark CIF differences of 3rd-order (green) spiking interactions ±2 SEM.

assumed constant was set to W = 10 in order to enable stable estimation at each 391

window while still allowing for fast changes. Fixing W , several candidate values for the 392

forgetting factor were considered to obtain the most appropriate effective integration 393

window, Neff = O( W
1−β ) [46], and was set to β = 0.975. The effect of varying the 394

forgetting factor are presented in supporting information (S1 Appendix). In summary, 395

for simulations the best choice of β corresponded to Neff ≈ τ
10 , where τ denotes the 396

duration of the shortest latent state. For the present simulation, τ = 4000, the 397

half-period of the square wave that defined alternating states of 3rd-order facilitation 398

and suppression; hence, Neff = 400. Statistical tests were performed at level α = 0.01. 399
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History-independent inference of higher-order synchrony (Fig. 3D) accurately 400

characterized the periods of facilitated 3rd-order coordinated spiking and correctly 401

assessed the rates of 4th-order spiking events to be significantly higher than expected 402

amongst independent neurons, indicated by J-statistic values close to +1. However, 403

3rd-order suppression was not detected as a statistically significant, likely reflecting that 404

the expected rate of 3rd-order was low to begin with and therefore difficult to 405

distinguish. In complement, history-dependent inference of higher-order coordination 406

(Fig. 3E) correctly attributed 4th-order spiking, which occurred at a statistically 407

significantly high rate, to endogenous network effects captured by ensemble spiking 408

history regressors while detecting that 3rd-order spiking was exogenously facilitated. 409

For comparison, three single-trial measures of coordinated spiking were utilized. The 410

first is the average Pearson correlation between smoothed spiking responses. The second 411

is the spiking regularity, quantified by the average coefficient of variation (ratio of the 412

standard deviation to the mean inter-spike interval) [50]. A ratio close to 1 indicates 413

Poisson spiking statistics; larger ratios indicate greater variability due to self-exciting 414

dynamics while smaller ratios indicate regularity in spiking (i.e. globally coordinated 415

spiking). Both measures were computed over non-overlapping windows of 200 samples 416

to track dynamics, which while not identical are of a similar order of magnitude as Neff. 417

The third measure is the average difference between rth-order mark CIFs and 418

probabilities of rth-order independent interactions, generalizing the measure employed 419

in [34] to higher-order simultaneous spiking. Other existing model-based analyses 420

require multiple trial repetitions and were thus unsuited to the single-trial simulation 421

setting. 422

In application to simulated ensemble spiking data, the three control measures were 423

unable to capture the latent dynamics in spiking coordination. Significant pairwise 424

correlations (Fig. 3F) were detected throughout the simulated duration, indicating only 425

that several pairs of neurons were spiking concurrently, but were insensitive to the 426

changes between facilitative and suppressive states of the exogenous process. Similarly, 427

the spiking variability measure (Fig. 3G) indicated Poisson-like spiking statistics 428

throughout the simulation without reflecting any latent dynamics. The average mark 429

CIF differences of 3rd-order events (Fig. 3H) weakly reflected the dynamics of the 430

exogenous process, but closer inspection (Fig. 3H inset) reveals the oscillatory nature 431

and wide confidence intervals of this sample-by-sample measure which pose challenges in 432

interpreting the analysis. 433

Simulated Ensemble Spiking: Example 2 434

The second simulated example utilized an autoregressive process instead of a square 435

wave to induce exogenous 3rd-order coordinated spiking in a 5-neuron assembly. 436

Ensemble spiking was simulated for 12000 samples (Fig. 4A) with 3rd-order events 437

exogenously induced by one realization of an autoregressive process. Additionally, 438

4th-order events were induced through endogenous effects for the first and last 439

4000-samples periods of the simulated duration, but occurred with chance-level 440

probability otherwise. The sums of all rth-order events (Fig. 4B) reflected the latent 441

spiking coordination. Coordinated 3rd-order spiking was most evidently facilitated 442

during an interval when the exogenous variable had value greater than 2 (Fig. 4C); the 443

interval is indicated by vertical dashed lines common across all panels. 444

Both history-independent and history-dependent analyses were applied to the second 445

simulated spiking data set using the same hyperparameters. The mark space was again 446

pruned to include only events that occurred more than Nthr = 1 times; parameters were 447

assumed constant over windows of W = 10 samples; and statistical tests were performed 448

at level α = 0.01. The forgetting factor was varied as previously described (supporting 449

information S1 Appendix) and set to β = 0.95, which corresponded to an effective 450
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Fig 4. Analysis of ensemble spiking with 3rd-order coordination induced exogenously by an
autoregressive process. A. Simulated ensemble spiking of five neurons. B. Sum of the rth-order
simultaneous spiking events for r = 2, 3, 4, 5. C. An autoregressive process was used to
exogenously induce 3rd-order spiking coordination. The effect was most evident when the
exogenous variable had value larger than 2 over an interval is demarcated by vertical dashed
lines. D. Significant rth-order coordination neglecting ensemble history. E. Significant rth-order
coordination based on history-dependent ensemble spiking model. Statistical testing in D–E
performed at level α = 0.01. F. Average Pearson correlation with 95% confidence interval. G.
Average spiking regularity: coefficient of variation ±2 SEM. H. Average mark CIF differences
of 3rd- (green) and 4th-order (teal) spiking interactions ±2 SEM.

integration window Neff = 200. We noted that the exogenous autoregressive process 451
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most persistently facilitated 3rd-order coordinated spiking for a duration of ∼ 4000 452

samples; and within that duration, two subintervals of ∼ 2000 samples separated at 453

time index ∼ 8000 can be discerned upon visual inspection (Fig. 4C). Hence, taking 454

τ = 2000, the choice of β = 0.95 satisfies the criterion that Neff ≈ τ
10 . 455

The history-independent analysis of higher-order coordination correctly detected 456

statistically significant 3rd-order coordination during the interval in which the exogenous 457

variable was greater than 2 and 4th-order coordination when they were induced by 458

ensemble spiking history (Fig. 4D). The history-dependent analysis also correctly 459

identified the exogenous facilitation of 3rd-order events while attributing 4th-order 460

coordination to endogenous effects (Fig. 4E). For comparison, the average Pearson 461

correlation, average spiking regularity, and average mark CIF differences were computed 462

in identical fashion as for the first simulation. The average Pearson correlation exhibited 463

indicated significant pairwise correlations concurrently with both exogenously induced 464

3rd-order events and endogenously induced 4th-order events (Fig. 4F); however, these 465

two facets of latent higher-order coordination could not be disambiguated. In contrast, 466

the average spiking regularity did not exhibit any dynamics; Poisson-like spiking 467

statistics were indicated throughout the simulated duration (Fig. 4G). The average 468

mark CIF differences for 3rd- and 4th-order marks both weakly indicated the latent 469

higher-order coordination (Fig. 4H). In addition to previously issues concerning large 470

confidence intervals and oscillatory nature, deviant average mark CIF differences for 3rd- 471

and 4th-order events appear identical despite being induced in different manners. This 472

illustrates that the average mark CIF differences only indicate when rates of rth-order 473

events deviate from the expected rate and cannot further address latent structure. 474

Ensemble Spiking in Anesthetized Humans 475

In the first application to recorded spiking data, we analyzed microelectrode recordings 476

of human cortical neurons during the transition into propofol-induced general 477

anesthesia. Commonly used in surgical procedures, general anesthesia is a drug-induced 478

neurophysiological state of sedation and unconsciousness. In a study of the transition 479

into unconsciousness, simultaneous recordings of single-neurons, LFP, and 480

electrocorticograms were acquired to analyze changes to neural activity and functional 481

connectivity over multiple spatial scales (full details of the experimental procedure are 482

described in [51]). To complement previous analysis of pairwise spiking correlations, we 483

employed the proposed methods for characterizing higher-order coordinated spiking. 484

Spiking data from the microelectrode recordings of one subject were analyzed, 485

focusing specifically on the 8 neurons with the highest average firing rate over the 1000 486

second recording. Multi-unit spike recordings were originally oversampled at 1kHz, but 487

downsampled by a factor of 50 to reduce computational complexity. Hence, the 488

definition of simultaneous spiking in this analysis was taken to be the occurrence of 489

spiking events across multiple neurons within at least 50ms of each other. Ensemble 490

spiking activity is shown in Fig. 5A, aligned to the loss of consciousness (LOC) at 0s 491

when propofol was first administered; the effect was evident from the rapid decrease in 492

spiking. Spiking activity recovered and after 250s propofol was administered again. In 493

order to analyze higher-order coordination with the proposed methods, the mark space 494

of C∗ = 28 − 1 possible simultaneous spiking events, K, was pruned to the set of reliable 495

interactions K̄ that occurred more than Nthr = 15 times; that is, simultaneous spiking 496

events with average rates less than 0.015Hz were treated as negligible. The cardinality 497

of the set of reliable interactions, defined with a conservative threshold, was 498

|K̄| ≈ 0.16 · C∗. The sums of all rth-order events (Fig. 5B) show that up to 4th-order 499

coordinated spiking occurred reliably, though less frequently after LOC. 500

History-independent and history-dependent analyses were performed using the same 501

hyperparameters. The window over which parameters were assumed constant was set to 502

October 16, 2023 16/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.16.562647doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.16.562647
http://creativecommons.org/licenses/by/4.0/


-1

0

1

A

B

C

D

ne
ur

on
 in

de
x

r

1

8

2
3
4
5

r

2
3
4
5

r

2
3
4
5

6
7
8

6
7
8

6
7
8

0 s-450 s 500 s

Jk
(r): History-Dependent

Jk
(r): History-Independent

rth -order Event Raster

Spike Raster

E Avg. Correlation

0

1

F Avg. Spiking Regularity

0

1

2

Fig 5. Higher-order spiking coordination analysis of human cortical neurons during anesthesia.
A. Ensemble spiking of 8 neurons aligned to loss of consciousness (LOC) at 0s induced by
administering propofol. A second administration of propofol occurred at ∼ 250s. B. Sum of
the rth-order simultaneous spiking events for r = 2, . . . , 8. C. Significant rth-order coordination
neglecting ensemble history. D. Significant rth-order coordination based on history-dependent
ensemble spiking model. Statistical testing in C–D performed at level α = 0.01. E. Average
Pearson correlation with 95% confidence interval. F. Average spiking regularity: coefficient of
variation ±2 SEM.

W = 10. The forgetting factor, β = 0.99, was selected so that Neff ≈ τ
5 ; here, we used 503

τ = 5000, the approximate number of samples between the two administrations of 504

propofol. For applications to recorded data, choosing β such that Neff ≈ τ
10 (as was 505

done for simulated data) yielded inferred higher-order coordination that was statistically 506

weak (as quantified by J-statistics) and transient, resembling simulated examples where 507

Neff was mismatched to the duration of latent states (supporting information S1 508

Appendix). We speculate that a shorter effective integration was appropriate in 509

simulations because the assemblies were comprised of 5 neurons with similar firing rates, 510

which facilitated tracking latent dynamics. This contrasts with the variability in firing 511

rates that can be observed in Fig. 5A. Finally, statistical inference was performed at 512

level α = 0.01. 513

Applying history-independent higher-order coordination analysis revealed sustained 514

significantly high rates of 2nd-, 3rd-, and 4th-order events prior to LOC (Fig. 5C). 515

Moreover, conditioning on ensemble spiking history indicated that 3rd- and 4th-order 516

events were exogenously facilitated, while 2nd-order events were exogenously suppressed 517

(Fig. 5D). This latent structure was disrupted immediately following LOC; as spiking 518

activity diminished, no higher-order coordination was detected. However, as spiking 519

activity recovered, 3rd- and 4th-order events (but not 2nd-order events) occurred at 520

significantly high rates. As the second administration of propofol again diminished 521

spiking activity, the rate of 4th-order events became insignificantly different from the 522
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expect rate amongst independent neurons and did not recover. However, transient 523

3rd-order spiking after the second administration continued that the history-independent 524

analysis detected as statistically significant. Third-order spiking was sustained at a 525

significantly high rate once ensemble spiking activity recovered. Notably, none of the 526

higher-order coordinated spiking after LOC was exogenously induced. 527

The dynamics in higher-order spiking coordination described by the proposed 528

methods were poorly reflected by the average Pearson correlation and average spiking 529

regularity. Both measures were computed over windows of 200 samples in order to track 530

changes during the transition into anesthesia. Average correlations seemed to be 531

significantly greater than zero for longer intervals after LOC than during consciousness, 532

but trends in the average correlation were difficult to distinguish (Fig. 5E). The average 533

spiking regularity measure indicated Poisson-like spiking statistics throughout, 534

contrasting the dynamics of higher-order coordination described by the proposed 535

analyses. Average spiking regularity was ill-suited to analyzing dynamics after LOC due 536

to the reduced spiking activity; this was reflected by abrupt changes and wide 537

confidence intervals (Fig. 5E). 538

In summary, history-independent and history-dependent analyses of ensemble 539

spiking during the transition into anesthesia revealed the rapid onset of differences in 540

latent higher-order coordination that distinguished consciousness from anesthesia. 541

Specifically, comparisons between the history-independent and history-dependent results 542

suggest that exogenous influences on the higher-order interactions of small neuronal 543

assemblies during consciousness are disrupted during anesthesia. These results are 544

corroborated by previous analyses of these data [51] that indicated a rapid state change 545

in which local network interactions were preserve but spatially distant network 546

interactions were disrupted during anesthesia. Previous studies have shown that 547

propofol acts by enhancing GABAergic circuits whose recurrent dynamics contribute to 548

inducing synchronized slow-wave oscillatory activity [51–55]. Ensemble spiking history 549

regressors likely accounted for these recurrent dynamics in the history-dependent model 550

so that no exogenous effects were detected. 551

Ensemble Spiking in Sleeping Rats 552

We additionally analyzed ensemble spiking data recorded from rat cortical neurons 553

during sleep. Sleep consists of cyclical transitions between brain states that maintain 554

homeostatic neural activity distinct from waking states; however, both the purpose and 555

mechanisms of these transitions remain unclear. We analyzed large-scale spike 556

recordings from frontal and motor cortices during sleep obtained to study the effects of 557

different sleep stages on the firing rate dynamics of putatively excitatory (pE) 558

pyramidal neurons and putatively inhibitory (pI) interneurons [56,57]. By examining 559

neuronal activity recorded during several instances of rapid eye movement (REM), 560

non-REM (nREM), and microarousal states over multiple sleep cycles, the study sought 561

to address homeostatic effects of sleep. Instead, we sought to use the proposed analyses 562

of higher-order spiking coordination to study the dynamics during transitions into sleep 563

and between REM and nREM states in one sleep cycle. 564

We analyzed spiking data during one 182s long sleep cycle from one animal in which 565

at least 10 pE and pI neurons were identified, selecting the 10 neurons of each class with 566

the highest average firing rate. Recordings were originally oversampled at 20kHz, but 567

downsampled to 200Hz to reduce computational complexity. Simultaneous spiking in 568

this analysis hence equated to the occurrence of spiking events across multiple neurons 569

within at least 5ms of each other. Ensemble spiking activity of pE and pI neurons were 570

analyzed separately; the activity of each population during the sleep cycle is shown in 571

Fig. 6A and Fig. 6G, respectively, annotated by arousal states. The cycle analyzed 572

consisted of a 66s wake-period, a transient 1s nREM period, a 46s REM period, a 29s 573

October 16, 2023 18/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.16.562647doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.16.562647
http://creativecommons.org/licenses/by/4.0/


nREM period, and finally a 40s wake-period. 574

A
ne

ur
on

 in
de

x

r

1

10

2
3

r 2
3

r 2
3

Jk
(r): History-Dependent

Jk
(r): History-Independent

rth -order Event Raster

pE Neurons: Spike Raster

Avg. Correlation

Avg. Spiking Regularity

0.75

0

1

0

2

Wake WakeREM nREM

-1

0

1

G

ne
ur

on
 in

de
x

r

1

10

2
3

r 2
3

r 2
3

Jk
(r): History-Dependent

Jk
(r): History-Independent

rth -order Event Raster

pI Neurons: Spike Raster

Avg. Correlation

Avg. Spiking Regularity

0.75

0

1

0

2

Wake WakeREM nREM

B H

C I

D J

E K

F L

0 s 66 s 113 s 142 s 182 s 0 s 66 s 113 s 142 s 182 s

Fig 6. Higher-order spiking coordination analysis of excitatory (pE) and inhibitory (pI) rat cortical neurons during one sleep
cycle. Left and right columns show analyses of pE and pI neurons, respectively. A. Ensemble spiking of 10 pE neurons. B. Sum
of the rth-order simultaneous spiking events for r = 2, 3. C. Significant rth-order coordination neglecting ensemble history. D.
Significant rth-order coordination based on history-dependent ensemble spiking model. E. Average Pearson correlation with 95%
confidence interval. F. Average spiking regularity: coefficient of variation ±2 SEM. G. Ensemble spiking of 10 pI neurons. H.
Sum of the rth-order simultaneous spiking events for r = 2, 3. I. Significant rth-order coordination neglecting ensemble history. J.
Significant rth-order coordination based on history-dependent ensemble spiking model. K. Average Pearson correlation with 95%
confidence interval. L. Average spiking regularity: coefficient of variation ±2 SEM. Statistical testing in C–D, I–J performed
at level α = 0.01.

For tractable analysis, the mark spaces of C∗ = 210 − 1 possible simultaneous 575

spiking events, K, of both populations were pruned to the set of reliable interactions K̄ 576

that occurred more than Nthr = 10 times; that is, simultaneous spiking events with 577

average rates less than 0.055Hz were treated as negligible. The cardinality of the set of 578

reliable interactions amongst pE neurons was |K̄pE| ≈ 0.017 · C∗ and amongst pI 579

neurons was |K̄pI| ≈ 0.058 · C∗. The sums of all rth-order events (Fig. 6B,H) show that 580

up to 3rd-order coordinated spiking occurred reliably amongst pI neurons while only up 581

to 2nd-order interactions occurred reliably amongst pE neurons. The same effective 582

integration windows were used for history-independent and history-dependent analyses 583

of both neuronal populations; with W = 10, the forgetting factor β = 0.99 so that 584

Neff = τ
5 , where τ ≈ 5000 was the duration of the second nREM interval. Statistical 585

inference was performed at level α = 0.01. 586

Applying the history-independent and history-dependent analyses of higher-order 587

coordination to the ensemble spiking of pE neurons in concert identified intervals of 588

significantly higher rates of 2nd-order events that could be attributed to effects of 589

ensemble spiking history (Fig. 6C–D). Most of the detected intervals were not 590

sustained during either REM or nREM sleep; rather, they were aligned to the 591

transitions between states. However, pI neurons exhibited more structured higher-order 592

coordination. History-independent analysis of pI neurons revealed that 2nd-order events 593

had significantly higher rates during two intervals; the first was during the wake-period, 594

and the second started at the end of the first wake-period and ending at the transition 595

from REM to nREM sleep (Fig. 6I). While during the first of these intervals the 596
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facilitation of 2nd-order events could largely be attributed to ensemble history effects, 597

there was a shift in the exogenous effects on 2nd-order during the second interval (Fig. 598

6J). That is, after the transition from the wake state to REM sleep, the exogenous 599

suppression of 2nd-order events gradually shifted to exogenous facilitation by the middle 600

of the REM period that persisted into the nREM period. Exogenous 2nd-order 601

coordination was no longer detected strongly after the first half of the nREM period, 602

but exogenous suppression emerged again in the second wake-period. 603

In addition to dynamics in 2nd-order coordination, pI neurons also exhibited 604

significant 3rd-order coordination. The rate of 3rd-order events was significantly high 605

during the first wake period and REM sleep; though significantly higher at the start of 606

nREM sleep, only statistically weak and transiently high rates were detected during the 607

middle and end of nREM sleep. However, in the second wake period, the rate of 608

3rd-order coordinated events again became significantly high (Fig. 6I). Notably, the high 609

rate of 3rd-order events during REM was distinctive because it was exogenously 610

facilitated, whereas 3rd-order events during other periods occurred at significantly high 611

rates because of endogenous effects (Fig. 6J). 612

In contrast to the proposed analyses, neither the average Pearson correlation nor 613

average spiking regularity, computed over windows of 200 samples, reflected similar 614

latent dynamics of higher-order coordination amongst pE or pI neurons. For pE 615

neurons, pairwise correlations were close to 0 for much of the sleep cycle with the 616

exception of a few windows (Fig. 6E). However, the spiking regularity was significantly 617

less than 1 for much of the sleep cycle (Fig. 6F); the implication of globally coordinated 618

ensemble spiking is at odds with the absence of reliably occurring higher-order spiking 619

events amongst pE neurons. For pI neurons, the average correlation was significantly 620

higher than 0 during the first and second wake periods, mirroring the significantly high 621

rates of higher-order events during these intervals; however, excepting a few windows, 622

the average correlation did not significantly differ from 0 during REM sleep (Fig. 6K), 623

presenting an inconsistency with the rates of higher-order events. Meanwhile, the 624

average spiking regularity did not differ significantly from 1 for most of the sleep cycle, 625

indicating Poisson-like spiking activity (Fig. 6L); this contrasts sharply from the 626

reliable occurrence of higher-order events. 627

Summarily, applying the history-independent and history-dependent analyses of 628

higher-order spiking coordination revealed distinctive latent dynamics amongst pE and 629

pI neurons during the same sleep cycle. Intervals of significant 2nd-order spiking 630

coordination amongst pE neurons were attributable to the effects of ensemble spiking 631

history and occurred around the transitions between arousal states rather than being 632

sustained during the arousal states, possibly relating to a hypothesis that transition 633

periods are themselves distinct states [58]. In contrast, 2nd- and 3rd-order spiking events 634

amongst pI neurons were detected to be exogenously coordinated, especially during 635

sleep states. The observed changes in higher-order coordination of pI neurons during 636

REM sleep are consistent with previous results that have shown excitation of pI 637

neuronal activity and coordination during REM sleep [59,60]. Additionally, the detected 638

exogenous influences on pI neurons may be explained by studies that have indicated 639

signatures of REM sleep can be found in hippocampal neurons prior to cortical 640

neurons [61,62]. 641

Discussion and concluding remarks 642

Relations to other models of coordinated spiking activity 643

The proposed algorithms integrate some notable functionalities of existing maximum 644

entropy model variations with the GLM framework, and are tailored for the analysis of 645
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continuously acquired neuronal data. As Truccolo’s comparisons in [20] suggest, GLMs 646

account for temporal dynamics explicitly in modeling ensemble spiking, and thus are 647

arguably more predictive than maximum entropy models. Within the context of the 648

MkPP mGLM we utilized, temporal dynamics of neuronal spiking were modeled as 649

relevant covariates in the estimation of ensemble spiking events. Such a model can be 650

simplified to exclude spiking history, as demonstrated by the history-independent model; 651

and can be expanded to model the influence of stimuli, as previously addressed for 652

maximum entropy models [26]. 653

Due to the large number of possible interactions, challenges in the tractability of 654

synchrony analyses are inherent, particularly when modeling the effects of relevant 655

covariates. Incorporating the emphasis on reliable interactions, as proposed in [27], 656

model complexity may be managed in a data-driven fashion. The proposed adaptive 657

greedy filtering algorithm for sparse model estimation ensures only the salient effects of 658

covariates are captured. The adaptive filtering algorithm also characterizes dynamics in 659

network correlational structure, analogous to Bayesian state space filtering 660

algorithms [24,25], and is thus applicable in the analysis of non-stationary neuronal 661

processes. In lieu of constructing credible intervals around the aforementioned Bayesian 662

estimates, we utilize a statistical test for which the test statistic’s limiting distribution is 663

precisely characterized. Unlike existing analyses, the proposed statistical tests do not 664

require repeated trials of data to detect coordinated spiking activity, and are thus 665

suitable for the analysis of continuous recordings of ensemble neuronal spiking. 666

Extending previous results in high-dimensional statistics, we have shown in Theorem 667

1 that the elegant procedure of [49] for LASSO estimation may be adapted to 668

de-sparsify OMP estimates, and that de-sparsified estimates are asymptotically normal. 669

In reviewing the existing literature, we noted a paucity in work on variable selection 670

algorithms concerning the construction of confidence intervals. The OMP has been 671

shown to have similar consistency properties as LASSO regression under appropriate 672

conditions [41, 42]; however, in settings with large quantities of data, the latter becomes 673

intractable. The result established by Theorem 1 enables the construction of confidence 674

intervals around OMP-estimated parameters in order to provide analogous methods of 675

statistical inference as LASSO for an algorithm suitable in settings with large data sets, 676

addressing this gap in the high-dimensional statistics literature. 677

Novel Insights into Coordinated Network Activity 678

The proposed modeling and statistical inference framework constitute a novel approach 679

to studying coordinated neuronal spiking by enabling the adaptive analysis of 680

continuously acquired or single-trial data. The applications presented in this work 681

demonstrate that tracking dynamics in higher-order coordinated spiking activity 682

provides new perspectives on the latent structure of neuronal assemblies during fast 683

state transitions. 684

Analyzing spontaneous ensemble spiking recorded during the transition into 685

propofol-induced anesthesia provided greater detail about the correlation structure of 686

local neuronal networks during both the conscious and unconscious states, revealing 687

that simultaneous spiking activity is induced differently in each state. Similarly, 688

analyzing two populations of neurons in rat motor cortex during one sleep cycle 689

revealed distinctions in latent higher-order coordinated structure between them. While 690

periods of endogenously facilitated simultaneous spiking in excitatory neurons aligned 691

mainly with state transitions, higher-order interactions between inhibitory neurons were 692

most prominently exogenously coordinated during sleep. The ability to track dynamics 693

and detect exogenous influences on ensemble spiking with statistical confidence provides 694

a new approach to probing the neural mechanisms underlying transitions between and 695

characteristics of arousal states. 696
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Extensions 697

The proposed statistical inference framework was developed to test for significant 698

coordination of rth-order spiking events, and the presented results demonstrated its 699

efficacy. Specifically, Theorem 2 characterized the limiting distributions for the adaptive 700

de-biased deviance difference test statistic under both outcomes of a nested hypothesis 701

test in which the null hypothesis restricted parameters to impose conditionally 702

independent rth-order spiking. However, a nested null hypothesis can, in principle, be 703

constructed to impose different assumptions. An immediate extension of the proposed 704

analysis could include spatial information, for example, so that a null hypothesis 705

assumes rth-order spiking amongst a spatially localized subset of a recorded neuronal 706

assembly is conditionally independent. The proposed inference framework was hence 707

established to readily extend to any nested hypothesis test in Corollary 2.2. 708

An important consequence of this corollary result is that it provides a theoretical 709

foundation for adaptive Granger causality using greedy algorithms. Since the proposed 710

methods utilize a multinomial extension of generalized linear models, Corollary 2.2 711

establishes the asymptotic result in [31] for greedy parameter estimates in the limiting 712

case of a single-neuron model. Notably though, Corollary 2.2 also implies that a nested 713

hypothesis test can be formulated to determine if exogenous signals, such as sensory 714

stimuli or concurrent activity in other brain regions, have Granger-causal effects on a 715

neuronal network or its subsets. Thus, the methods proposed in the present study can 716

be extended to investigate the local network effects of global neural dynamics. 717

Supporting information 718

S1 Appendix. Algorithms, Derivations, and Theoretical Results 719
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