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Abstract 14 

Neural circuits with multiple discrete attractor states could support a variety of cognitive tasks according 15 

to both empirical data and model simulations. We assess the conditions for such multistability in neural 16 

systems, using a firing-rate model framework, in which clusters of neurons with net self-excitation are 17 

represented as units, which interact with each other through random connections. We focus on 18 

conditions in which individual units lack sufficient self-excitation to become bistable on their own. 19 

Rather, multistability can arise via recurrent input from other units as a network effect for subsets of 20 

units, whose net input to each other when active is sufficiently positive to maintain such activity. In 21 

terms of the strength of within-unit self-excitation and standard-deviation of random cross-connections, 22 

the region of multistability depends on the firing-rate curve of units. Indeed, bistability can arise with 23 
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zero self-excitation, purely through zero-mean random cross-connections, if the firing-rate curve rises 24 

supralinearly at low inputs from a value near zero at zero input. We simulate and analyze finite systems, 25 

showing that the probability of multistability can peak at intermediate system size, and connect with 26 

other literature analyzing similar systems in the infinite-size limit. We find regions of multistability with a 27 

bimodal distribution for the number of active units in a stable state. Finally, we find evidence for a log-28 

normal distribution of sizes of attractor basins, which can appear as Zipf’s Law when sampled as the 29 

proportion of trials within which random initial conditions lead to a particular stable state of the system.   30 

 31 

Keywords: Attractor basin; mean field; fixed points; bistable. 32 

 33 

Statements and Declarations. 34 

The work was supported by a grant from the National Institutes of Health, R01 NS104818, by the Swartz 35 

Foundation, and by the Neuroscience Graduate Program of Brandeis University. 36 

 37 

Author Contributions. 38 

All authors contributed to the writing and editing of the manuscript and approved the final version. 39 

Simulations were carried out by Jordan Breffle, analysis by Subhadra Mokhashe, Siwei Qiu, and Paul 40 

Miller. The first draft was written by Paul Miller, who also conceived of the project. 41 

 42 

  43 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.05.543727doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.05.543727
http://creativecommons.org/licenses/by-nc/4.0/


 3 

1. Introduction 44 

An extensive literature in neuroscience suggests that neural activity can proceed through sequences of 45 

distinct states during sensory processing, motor output, or memory-based decision making (Abeles et 46 

al., 1995; Benozzo et al., 2021; Escola et al., 2011; Jones et al., 2007; La Camera et al., 2019; Mazzucato 47 

et al., 2015; Miller, 2016; Morcos & Harvey, 2016; Rainer & Miller, 2000; Seidemann et al., 1996). The 48 

distinct states are revealed as patterns of neural activity that remain relatively stable for durations much 49 

longer than those of the rapid transitions between states. Models of the underlying circuitry assume the 50 

states correspond to fixed points (or the remnants of fixed points) of the system (Ballintyn et al., 2019; 51 

La Camera et al., 2019; Mazzucato et al., 2019; Miller, 2013; Miller & Katz, 2010; Rabinovich et al., 2001; 52 

Rabinovich et al., 2014; Recanatesis et al., 2022; Taylor et al., 2022) with the itinerancy from fixed point 53 

to fixed point known as latching dynamics (Boboeva et al., 2021; Lerner et al., 2012, 2014; Lerner & 54 

Shriki, 2014; Linkerhand & Gros, 2013; Russo & Treves, 2012; Song et al., 2014; Treves, 2005). 55 

Transitions between fixed points can be due to their inherent instability when they are saddle points. 56 

Otherwise, in networks where a reduced model of the system possesses multiple stable fixed points, 57 

transitions arise from one or more of (1) an external stimulus, (2) noise fluctuations, or (3) the drift of a 58 

slow variable which impacts a parameter in the reduced model causing it to cross a bifurcation point. 59 

Since the number of stable fixed points becomes a key indicator of the potential information processing 60 

or memory capacity of the network, it is important to understand the conditions under which a system 61 

possess multiple stable fixed points. 62 

Here we use firing-rate models (Wilson & Cowan, 1973), in which each unit represents a cluster 63 

or assembly of similarly responsive neurons with stronger connections within each cluster as observed 64 

in some cortical circuits (Perin et al., 2011; Song et al., 2005). Such assemblies can arise in response to a 65 

lifetime of stimuli via Hebbian plasticity (Hebb, 1949), which increases connection strengths between 66 

excitatory neurons with correlated activity (Bourjaily & Miller, 2011; Brunel, 2003). We assume random 67 
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interactions between such clusters (Stern et al., 2014), representing the result of a history of 68 

uncorrelated stimuli. 69 

Each isolated stable fixed point in a system is an attractor state, with a basin of attraction 70 

determined by the set of initial conditions that result in neural activity settling at (after being “attracted 71 

to”) the fixed point. Systems with many such attractor states have provided the framework for 72 

understanding pattern completion and separation of new inputs following memory encoding of stimuli, 73 

since the highly influential work of Hopfield and others (Anishchenko & Treves, 2006; Battaglia & Treves, 74 

1998; Hopfield, 1982; Hopfield, 1984; Treves, 1990; Zurada et al., 1996). Indeed, there is abundant 75 

evidence of such attractor states in neural circuits (Daelli & Treves, 2010; Fuster, 1973; Goldberg et al., 76 

2004; Golos et al., 2015; Wills et al., 2005), perhaps most obvious to us when an ambiguous stimulus can 77 

cause perceptual alternation due to activity flipping between two (quasi-stable) attractor states 78 

(Moreno-Bote et al., 2007). However, while the number of stable states in systems such as the Hopfield 79 

network (Hopfield, 1982; Hopfield, 1984) have been characterized (Amit et al., 1985a, 1985b; Folli et al., 80 

2016), the connections between units in such networks are correlated (in fact, the connectivity matrix is 81 

symmetric), so it is unclear to what extent multiple attractor states would arise in a nonsymmetric 82 

random network.  83 

Work by others (Stern et al., 2014) showed that when each unit has sufficient self-excitation to 84 

become bistable (and therefore become in essence a memory element in of itself) multiple attractor 85 

states are possible in a network with non-symmetrically randomly connected units. Such a result is trivial 86 

in the limit of zero cross-connection strength, in which case a system of 𝑁 bistable units possesses 2! 87 

stable states. In the randomly connected system, studied in the large-𝑁  limit, increased strength of 88 

random cross-connections decreases the number of multistable states, eventually rendering the system 89 

chaotic as all fixed points become unstable. With weaker self-connections, the network would be either 90 

quiescent or, given sufficient cross-connection strength, chaotic (Sompolinsky et al., 1988).  91 
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Here we find that such results depend on the form of the input-output function (the firing-rate, 92 

or f-I curve) of a neuron. Indeed, if we assume neurons have low firing rates in the absence of input, 93 

random non-symmetric cross-connections can lead to multistability, even when individual units have 94 

zero self-excitation. 95 

In the following sections, we first present simulations showing the types of activity possible and 96 

their observed coexistence in networks of up to 1000 randomly coupled units. We then show the phase 97 

diagrams in the large-𝑁 limit of such systems. Finally, we present results for systems with binary 98 

activation functions, for which we develop an alternative mean-field analytic approach that we use for 99 

finite- as well as infinite-𝑁 systems. Also, given the more rapid simulations when activations are binary, 100 

we provide a more thorough analysis of the attractor states in such systems. 101 

 102 

2. Simulations of Finite Networks 103 

We simulated networks of 𝑁 randomly connected firing rate units with response function 𝑓(𝑥) 104 

representing their output to total input, 𝑥. The total input, 𝑥", to the 𝑖-th unit is described by the 105 

dynamical equation with time constant, 𝜏: 106 

 𝜏𝑥̇" = −𝑥" + 𝑠𝑓(𝑥") +
𝑔
√𝑁

0𝐽"#𝑓2𝑥#3
"$#

+ 𝐼%&'()&  (1) 

where 𝑠 and 𝑔 are parameters that scale the self-connection and cross-connection strengths, 107 

respectively, and 𝐽"# 	is the matrix of normalized cross-connection strengths drawn from a normal 108 

distribution with zero mean and unit variance. 𝐼%&'()&  is a constant input that inhibits or excites the 109 

whole network (equivalent to a shift in threshold, 𝑥*+) and is kept at zero unless stated otherwise. 110 

We simulated models with distinct single-unit response functions, 𝑓(𝑥),  in order to assess its 111 

role in network dynamics: 112 
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1) Hyperbolic tangent: 𝑓(𝑥) = tanh(𝑥) and our model is identical to that of (Stern et al., 2014). 113 

We also compare more general forms, 𝑓(𝑥) = tanh :,-,!"
∆
; to connect results to those of the logistic 114 

function with less symmetry in the firing rates (i.e., units require net excitatory input to reach half their 115 

maximum rate if 𝑥*+ > 0). 116 

2) Logistic function: 𝑓(𝑥) = /

/01
#!"$%
∆

 where 𝑥*+ is a threshold input required for the firing rate of 117 

a unit to reach half of its maximum value and ∆ is inversely proportional to the steepness of the 118 

response function. 119 

3) Binary output via the Heaviside function: 𝑓(𝑥) = 𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑥 − 𝑥*+), which is equivalent to 120 

the logistic function in the limit ∆→ 0. 121 

In all systems we adjusted the threshold parameter, 𝑥*+, for a given steepness of response 122 

function (i.e., a given value of ∆), such that in the absence of cross-connections (𝑔 = 0) the system 123 

becomes multistable, because each unit is bistable, at 𝑠 = 1. This allows us to compare results across 124 

systems with different single-unit response functions, 𝑓(𝑥) (Figure 1, see Appendix A).  125 

 126 

 

 
 
 
 
Figure 1. Single-unit response functions, 𝒇(𝒙), produce bistability at 𝒔 = 𝟏. A. Logistic function 
shown with slope parameter, ∆= 0.1, and threshold, 𝑥*+ = 0.681. B. Tanh function with ∆= 1, and 
threshold, 𝑥*+ = 0. C. Heaviside function with binary response, equivalent to the logistic function 
with ∆= 0, and 𝑥*+ = 1. Feedback curves, 𝐼	 = 	𝑠𝑓 shown as dashed lines with blue 𝑠 = 0.5, red 𝑠 =
1, and yellow 𝑠 = 1.5 demonstrate the bifurcation from an inactive state to bistability at 𝑠 = 1. Note 
that the bifurcation is a saddle-node in A and C but a pitch-fork in B. 
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2.1. Observed forms of simulated network dynamics with logistic function responses 127 

We define the network state by its long-term activity, which can be either constant, oscillating, or 128 

chaotic. We separate out constant (stable) states into two types: those that include active units and 129 

those with only inactive units (and are quiescent). We therefore obtain four labels for final states: 130 

quiescence, stable activity, limit cycle, and chaos.  131 

In many networks we find, by varying initial conditions, the existence of more than one type of 132 

state in a single network. Some networks have multiple forms of all four activity types, such as the 133 

example network in Figure 2A-D. This example network of logistic units (𝑁 = 100, 𝑠 = 0, 𝑔 = 3.25, and 134 

∆	= 0.1) has a stable quiescent state, two stable active states, two unique stable limit cycles, and a 135 

chaotic attractor. Example trials leading to each of these distinct states in the same network are shown 136 

as a subset of units’ firing rates (Figure 2A) and in principle component space (Figure 2B). These states 137 

have similar root mean squared (RMS) firing rates, except for the quiescent state (Figure 2C). 138 

Perturbation analysis confirms the classification of each of the trials in Figure 2A-C (Figure 2D). For each 139 

trial, we simulated 100 perturbations and calculated the median RMS deviation of the perturbed 140 

simulation from the original simulation. Analysis of the cross connections of the example network in 141 

Figure 2A-D shows that it is not an outlier from an expected random network (Supplemental Figure 1), 142 

suggesting this combination of mixed activity states may be a common occurrence. We performed the 143 

same perturbation-based classification of activity states for 100 different random networks at the same 144 

parameter values and found that all networks show at least two forms of activity (Figure 2E).  145 

 Of particular interest are systems without self-connections, (𝑠 = 0, such as that shown in Figure 146 

2), for which there is a well-established single transition from quiescence to chaos at 𝑔 = 1, when 147 

𝑓(𝑥) = tanh	(𝑥) (Sompolinsky et al., 1988). When, instead, we use the logistic function, 𝑓(𝑥) =148 

/

/01
#!"$%
∆

, which is simply a scaled and shifted transformation of the tanh function to non-negative values 149 

of firing rate, we find a richer set of states in our simulations. Perhaps surprising, circuits without self- 150 
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connections can exhibit multiple stable states: sometimes having only  a low activity state (a quiescent 151 

state) with a state of higher net activity (an active state) such as the example network in Figure 3A.  152 

 

Figure 2: All activity regimes can be observed in a single random network. A. Different initial 
conditions in the same network can lead to a quiescent state, two stable active states, two stable 
limit cycles, and chaotic activity. For each example condition, the firing rates of a subset of units is 
plotted for either the beginning or end of the trial. The parameters for this network are 𝑁 = 100, 
𝑠 = 0.0, 𝑔 = 3.25, and 𝛥 = 0.1, with a logistic FI curve. B. The first three principal components 
from PCA of the firing rates from the trials in A. Each color is a different trial. All trials converge to 
one of the six different activity regimes show in A. The last 100 𝜏 of each trial is plotted to show the 
steady state activity. C. The root mean squared (RMS) firing rates of the network for each of the 6 
example simulations. Colors correspond to those in B. The mean and standard deviation of the last 
100 𝜏 of each simulation is plotted. “OFF” = quiescent state. “ON” = stable active state. D. For each 
trial 100 perturbations of it were simulated and the RMS deviation from the unperturbed simulation 
of the firing rates of all units in the network was calculated across the time from perturbation. 
Colors correspond to the trial colors in B and C. Dashed line indicates the initial perturbation 
magnitude. The median value of the 100 perturbations is plotted. E. A diverse array of mixed 
activity regimes is found across 100 random networks for the same parameters as the example 
network in A-D. Black indicates that the network had at least one out of 100 trials with the 
indicated activity type. All 100 networks had at least two types of activity.  Seven out of the 100 
networks had all four activity types (the top seven rows). 
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Indeed, we find that for a given random instantiation of the connectivity matrix, as we scale all  153 

connections by 𝑔, there is, for all 500 total networks tested in Figure 3, some range of connection 154 

strengths for which the network is multistable. Supplemental Figure 2 shows how dynamics beyond the 155 

existence of multistability changes as 𝑔 is scaled.  156 

We wondered whether such states were the results of a finite size effect, so varied the size of 157 

the network (changing 𝑁). We found that the range of 𝑔 over which we see such multistability at 𝑠 = 0 158 

narrows with increased 𝑁 (Figure 3C), and converges to the same set of values centered on 𝑔 = 1.55 159 

 

Figure 3: Smaller networks are multistable at larger g values. A. An example network (logistic units, 𝛥 =
0.2, 𝑁 = 100) that has only the quiescent attractor and one active point attractor, even with no self-
connections (𝑠 = 0, 𝑔 = 2.0). Left, a subset of units’ firing rates in a trial that converges to the quiescent 
attractor. Right, a trial that converges to an active point attractor. B. 100 random networks of logistic units 
(𝛥 = 0.2) with no self-connections (𝑠 = 0) of varying size (𝑁 = 	10, 100, 500) were simulated across 𝑔 
values. The same network can gain and lose mulistability as g is scaled. Color scale indicates number of 
point attractors found within 100 trials. White indicates 𝑔 values that were not simulated due to 
computational limits, wherein each network was allotted 24 hours of cpu time. Networks tended to reach 
their limit after a series of g values in which the network failed to converge to a fixed point on any trial 
(shown in blue), indicating the likely end of the networks’ region of multistability. C. The fraction of the 
simulated g values at which each network in B was multistable. Bars show mean and SEM. D. Fraction of 
networks that were multistable across the tested 𝑔 values for 𝑁 = 10, 50, 100, 500, 1000.  E. The median 
g value at which each network was stable. This converges to 𝑔 = 1.55 (dotted line) as network size 
increases. F. Fraction of networks that are multistable at 𝑔 = 1.55 increases with N. 
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(Figure 3D-F). These and other results prompted us to investigate the phase space of the corresponding 160 

infinite-𝑁 systems via mean field theory and stability analysis (Section 3). 161 

 162 

2.2. Phase diagram from simulations of finite networks 163 

To assess the likelihood of systems reaching a given type of state across phase space, we simulated 100 164 

networks for each given set of parameters and commenced simulations of each network from 200 initial 165 

conditions. Full details of simulation methods are provided in Appendix 1.  166 

 In Figure 4 we show that systems with 𝑓(𝑥) = /

/01
#!"$%
∆

 can have multistability at 𝑠 < 1, such 167 

that increasing the cross-coupling strength, 𝑔, increases the fraction of multistable networks for large 168 

ranges of 𝑠 and 𝑔. The observed multistability at low 𝑠 that arises with increasing 𝑔 is most apparent in 169 

binary systems (logistic 𝑓(𝑥) with ∆	= 0, 𝑥*+ = 1) and is not so apparent for systems with 𝑓(𝑥) =170 

tanh	(𝑥). As might be expected, multistability for the logistic function with a steeper slope (∆	= 0.1) is 171 

more similar to that of the binary function, and the logistic function with the shallower slope (∆	= 0.2) is 172 

more similar to the tanh function. 173 

 While the impact of the response function, 𝑓(𝑥), on the results in Figure 3 suggest our findings 174 

arise from more than a finite size effect, we wanted to test that possibility further. Therefore, we 175 

assessed, for different networks with 𝑠 < 1,  how the probability of multistability depends on network 176 

size. Our goal is to see how reliably cross-connections whose random strengths have a mean of zero 177 

could, with increasing standard deviation, 𝑔, generate multistability that is absent with low 𝑔. 178 

Simulation results of Figure 3 suggest a peak as a function of network size, 𝑁, in the likelihood of 179 

reaching multiple final states from a fixed (large) number of initial conditions for some parameters. 180 

However, without the exhaustive sampling of initial conditions, which becomes unfeasible at large 𝑁, 181 

our lack of multistability at large-𝑁 is not conclusive of its absence. To proceed further, we calculate 182 
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results for the infinite-𝑁 system in Section 3 and develop analysis of binary networks that allows for 183 

finite-𝑁 approximations in Section 4.   184 

  185 

2.3. Distribution of size of basins of attraction 186 

A major goal in our simulations of neural circuits was to assess the number of stable states they 187 

contained as a marker of their information-carrying capacity. In systems with zero cross-connection and 188 

strong enough self-interaction (𝑠 > 1) that each unit could be independently bistable, the number of 189 

 

Figure 4: Multistability across phase space. Simulation results showing the fraction of networks at 
different values of 𝑠 and 𝑔 with multistability. For each parameter point 100 random networks were 
simulated for 200 random initial conditions.  Networks with 10 (left), 50, (center), and 100 (right) units 
were simulated with the tanh (top), logistic (middle), and binary (bottom) FI curves. 
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states is trivially 2!, the maximal possible for our systems. However, without cross-connections, the 190 

ability of such circuits to process information in a history dependent manner vanishes. Also, given the 191 

unlikeliness that neural circuits operate in a regime with distinct bistable units, our focus was on circuits 192 

with 𝑠 < 1 such that individual units were not bistable, but with sufficiently strong 𝑔 > 0 such that the 193 

network could be multistable. For the results in this subsection, we focus on such systems with binary 194 

units, 𝑓(𝑥) = 𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑥 − 𝑥*+), with 𝑥*+ = 1. 195 

 

Figure 5.  Zipf-like behavior is suggested by the data but likely explained by a log-normal 
distribution.  A. The numbers of initial conditions leading to each discovered attractor state 
(indicating size of basin of attraction) are recorded in an example network of size 𝑁 = 200, with 
results ordered on a log-log scale. B. Simulations of random sampling from a log-normal distribution 
of sizes of attractor basins, as suggested by analysis, can account for the observed linearity on the log-
log scale.  

 196 

 For small circuits, 𝑁 < ~25, one can sample initial conditions systematically with each of the 2! 197 

combinations of high/low activity per unit tested, but for larger networks one can sample only a subset 198 

of all the possible initial conditions. We find that some states have vastly more initial conditions 199 

reaching them compared to others. Indeed, if we take the number of randomly chosen initial conditions 200 

that reach a particular fixed point as an indication of the size of the corresponding basin of attraction, 201 

we find what appears to be a power law (Figure 5). Such a result suggests that in the absence of 202 

A B
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exhaustive sampling, we will inevitably miss some of the smallest basins of attraction (note that the 203 

frequency of visits ranges over 5 orders of magnitude in Figure 5A).  204 

The suggestion of Zipf’s Law in Figure 5A led us to consider theoretical reasons for producing 205 

such a distribution. Our conclusion is that the apparent power-law is an artefact produced by sampling a 206 

log-normal distribution with a very large width. Our reasoning is as follows. For any stable state some 207 

units can have a level of input such that the unit could be stably active or inactive (assuming no change 208 

in input from others). If 𝑁 is large, the switching of such a unit does not strongly change the net input to 209 

all other units, so another stable state is reached. Such a switch to a different state indicates the 210 

crossing to a different basin of attraction. Across all of the distinct states in the network, the number of 211 

units with inputs in the bistable range allowing for such stable switching is distributed as a Binomial (if 212 

we ignore correlations), which is approximately a Normal distribution at large 𝑁. Or, equivalently, the 213 

number of units that can be switched in any state without changing to a different basin of attraction 214 

follows a Normal distribution across states. Additionally, the number of combinations of switching a unit 215 

without producing a new stable state is approximately exponential in the number that can be 216 

individually switched. Combining the two heuristics would suggest a log-normal distribution of sizes of 217 

basins of attraction.  218 

To test if our results in Figure 5A were compatible with a log-normal distribution, we generated 219 

102 samples from a fictitious system with 102 states whose sizes, 𝑥, were distributed as 𝑃(𝑥) ∝220 

exp U− [45(,)-8]'

:;'
V, with 𝜇 = 30 and 𝜎 = 6. Such a system was chosen to resemble the statistics, in terms 221 

of numbers of states selected and maximum number of selections for any network of one of our random 222 

systems with 𝑁 = 200.  223 

The results of our random sampling of a fictitious log-normal system in Figure 5B, indicate that 224 

the observation of Zipf’s Law from sampling basins of attraction is, indeed, compatible with a log-normal 225 

distribution of attractor-basin sizes. The reason being that many of the small basins, whose expected 226 
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number of visits is less than one, either do not appear in the sampling at all, or appear once or twice, 227 

and therefore increase the number of low-frequency states in a manner that “straightens out” the 228 

inverted parabola that would be seen following an exhaustive sampling of the entire state space. 229 

In summary, the observed frequency of visits of different attractor states follows an 230 

approximate power law, but such behavior is most likely the consequence of sub-sampling of a 231 

distribution which is approximately log-normal. 232 

 233 

3. Mean-field theory 234 

We followed the methods of others (Ahmadian et al., 2015; Stern et al., 2014) to develop a mean-field 235 

theory for the large-𝑁 limit (𝑁 → ∞) of each system. The following description of the method has a 236 

slightly different emphasis from those of others, in part to connect to the alternative methods of section 237 

4, and in part because our focus is on the existence of multiple stable fixed points rather than on the 238 

more general dynamics of the system. 239 

In the large-𝑁 limit, because each individual connection strength scales to zero, the impact of 240 

small motifs (e.g., small subsets of units with net positive interactions) and correlations in activity 241 

between units becomes negligible. Therefore, the existence and stability of any state can be assessed by 242 

assuming all units receive input sampled from the same distribution arising from the sum of connection 243 

strengths multiplied by the activities of units. In small systems, the common scenario that units with 244 

positive connections are more likely to be coactive together, renders the simplifying assumption 245 

inaccurate. The large-𝑁 limit is also then (as stated in (Stern et al., 2014)) equivalent to averaging over 246 

all realizations of the connectivity matrix, 𝐽"#, which removes any correlation between individual units.  247 

 In the absence of any unit-specific identity, the unit label can be dropped from the formalism 248 

and the dynamical mean field equation is one for the distribution of activations represented by the 249 
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variable 𝒙(𝑡) in the face of a distribution of inputs given by a new variable, 𝜼(𝑡), which we call the 250 

“field”:  251 

 𝑑𝒙
𝑑𝑡

= −𝒙 + 𝑠𝑓(𝒙) + 𝜼(𝑡). (2) 

Self-consistency requires that the field, 𝜼(𝑡), is produced by the sum of the product of distribution of 252 

activities, 𝑓2𝒙(𝑡)3 (which result from the distribution of activation variable, 𝒙(𝑡)) multiplied by the 253 

connectivity matrix. Given the Central Limit Theorem, 𝜼 is distributed as a Gaussian (a result justified 254 

more rigorously by others (Sompolinsky & Crisanti, 2018)) and given the lack of correlations between 255 

activity and connectivity in the large-𝑁 limit, we have: 256 

 〈𝜼〉 = 〈𝑓(𝒙)〉〈𝑔𝐽〉 = 0 (3) 

and  257 

 〈𝜼:〉 = 〈𝑓:(𝒙)〉〈𝑔:𝐽:〉 = 𝑔:〈𝑓:(𝒙)〉, (4) 

where we have used 𝐽 to represent the 𝑁 → ∞ limit of /
√!
∑ 𝐽"#!
#=/,#$" . 258 

 Fixed points of the dynamics (Eq. 2) arise for the distribution of activations, 𝒙, where  259 

 𝒙 − 𝑠𝑓(𝒙) = 𝜼. (5) 

We define the variance of the zero-mean Gaussian distribution of 𝜼  as 𝜎:, such that  260 

 
𝑃(𝜂) =

1
√2𝜋𝜎:

𝑒𝑥𝑝 b−
𝜂:

2𝜎:
c, (6) 

where 𝜎: must be calculated self-consistently from Eq. 4. For the system to possess multiple attractor 261 

states, the above set of equations (2)-(6) must have multiple solutions, and those solutions must 262 

correspond to stable states.  263 

Multiple solutions arise from Eq. (5) if the function 𝑥 − 𝑠𝑓(𝑥) is non-monotonic. Given the 264 

neural response function, 𝑓(𝑥), has zero slope at very negative or very positive 𝑥, the function 𝑥 −265 

𝑠𝑓(𝑥) has slope of +1 at these extremes and is therefore non-monotonic if for any value of 𝑥 we have 266 

𝑓?(𝑥) > 1/𝑠. That is, multistability is possible if 𝑠 > max 𝑓?(𝑥). Hence the result in (Stern et al., 2014) 267 
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that if 𝑓(𝑥) = tanh(𝑥)	with a maximum gradient of 1, multistability is only possible if 𝑠 > 1. For 𝑓(𝑥) =268 

/

/01
#!"$%
∆

 the requirement is 𝑠 > 4∆. 269 

It is important to note that multiple self-consistent solutions of Eq. (4) for the variance of the 270 

field, 𝜼, are also possible. Indeed, for the logistic input-output function, a solution with low variance 271 

corresponding to a quiescent, or low-activity state (in which activities of units are tightly clustered 272 

around 𝑓(0)) can coexist with a solution of greater input-variance. We assess both the stability of the 273 

solution with minimal activation (and therefore minimal variance of the field) as well as the existence of 274 

and stability of distinct solutions with higher activation when determining which states exist for a given 275 

set of parameters (see Appendix 3 for methods).  276 

 277 

3.1. Phase diagram for networks with logistic single-unit response functions 278 

In Figure 6, we show how the phase diagram depends on the slope of the input-output function, 𝑓(𝑥) =279 

/

/01
#!"$%
∆

, with the panels from A to F depicting results of increasing steepness (by lowering ∆). The final 280 

panel (∆= 0) is produced by methods described in the next section. In all cases 𝑥*+ is adjusted according 281 

to Eq. A1, to ensure single-unit bistability at 𝑠 = 1. As can be seen, the minimum level of 𝑠 allowing for 282 

multiple stable active states falls in proportion to ∆, and in the range 4∆< 𝑠 < 1, the system is 283 

quiescent at 𝑔 = 0, but with increasing 𝑔 becomes multistable. In all cases, and for all values of 𝑠, the 284 

expected transition to chaos arises with large enough 𝑔, though that transition is not always visible in 285 

the parameter ranges shown.  286 

In systems with 0 < ∆< 0.25 (Figure 6 B-E) we find ranges of parameters for which the field, 𝜼, 287 

does indeed have two self-consistent solutions. Most commonly, at low 𝑠, the cyan regions indicate the 288 

presence of a stable quiescent state with an unstable active state, that is the coexistence of inactivity 289 
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and chaos in a given network. In a smaller range of parameters, the yellow region (Figure 6B) indicates 290 

the coexistence of a stable quiescent state with a stable active state. Such multistability exists even in  291 

 the absence of cross-connections (𝑠 = 0) and concurs with our simulation results in Section 2.1. Indeed, 292 

the region of multistability spans the value of 𝑔 = 1.55, observed at larger-𝑁 in simulations. Therefore, 293 

even without the self-excitation needed for individual units to be bistable with sufficient input, the 294 

network can possess multiple stable states, with the two distinct states resulting from and causing two 295 

distinct population-mean (and mean-square) firing rates and two distinct population input distributions.   296 

 297 
3.1.1 Accounting for extreme tails of a Gaussian in the Infinite System 298 

Our definition of the quiescent state contains a requirement that all units have activity of less than half 299 

of their maximum. In practice, in systems where bistability is possible (4∆< 𝑠 < 1) the quiescent state 300 

 

Figure 6. Multiple coexisting states in the infinite system with logistic input-output functions. A-F. 
Increasing steepness of the f-I curve is achieved by reducing ∆, with maximum slope 1/(4∆). Key: 
black, chaos only; dark blue, quiescence + chaos; cyan, quiescence only; yellow, quiescence + single 
multi-unit active state; orange, multiple states all active; red, quiescence + multiple active states; 
crimson, chaos + multiple active states. 

A B C

D E F

∆= 0.25 ∆= 0.2 ∆= 0.15

∆= 0.1 ∆= 0.05 ∆≈ 0
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requires that all units are stable on the lower branch of the bifurcation curve. In the infinite system, any 301 

requirement of all units raises a subtle issue that we address in this subsection (and in Appendix C and 302 

Supplementary Figures 3 and 5).  303 

The field, 𝜼, which indicates the probability of any unit receiving a given input, follows a 304 

Gaussian distribution. When all firing rates are very low, the variance, 𝜎:, of the Gaussian distribution 305 

for 𝜂 is very low but is non-zero. The probability of a unit receiving input with a magnitude 𝑍𝜎, that is 306 

many times, 𝑍, greater than the standard deviation, 𝜎, is vanishingly small (e. g. if 𝑍 = 6 the probability 307 

is less than 10-@ and if 𝑍 = 9 the probability is less than 10-/A). However, for any finite 𝑍 the 308 

probability is strictly non-zero for any finite-level of input, so an infinite system will always have units 309 

whose inputs exceed that value. Therefore, in a system in which 𝑠 > 4∆, the quiescent state is unstable 310 

for an infinite system, unless 𝑔 = 0 precisely. Yet, for any biologically feasible circuit we can define a 311 

𝑍B),	and require the bifurcation points, 𝜂∗, to be within the range −𝑍B),𝜎 ≤ 𝜂∗ ≤ 𝑍B),𝜎, in order for 312 

the quiescent state to be defined as unstable. In this manner, we can study a system in which we have 313 

ignored correlations (an approach strictly only correct in the infinite-𝑁 limit) but at the same time define 314 

states that would be present in a large finite system with results accurate (to 1 part in 1000) for sizes up 315 

to 𝑁 = 10D (with 𝑍B), = 6) or even 𝑁 = 10/E (with 𝑍B), = 9). 316 

  A similar issue arises when we consider whether a system has multiple stable active states. The 317 

number of such states depends (exponentially) on the number of units receiving input between the two 318 

bifurcation points of 𝒙(𝜼) such that the unit could be either active or inactive for that level of input.  319 

Whenever there is a pair of bifurcation points (4∆< 𝑠 < 1), the argument from the previous paragraph 320 

again indicates that in an infinite system there is always a unit with input in that range. However, while 321 

in the infinite system the network is multistable, for any realistic system—even a large one—it may be 322 

very unlikely that any unit receives sufficiently extreme input, so we use the same value of 𝑍B), to 323 

indicate multistability as we do for stability of the quiescent state.  324 
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Therefore, in Supplementary Figure 3, we replot the phase diagrams for distinct levels of 𝑍B),, 325 

while using a standard of 𝑍B), = 6 for most phase diagrams. For example, with 𝑍B), = 6, a large 326 

network of 10D units would only have a probability of 0.001 of behaving differently from that indicated 327 

in the phase diagram (or a network of 10F units would have a 1 in a million chance of behaving 328 

differently—the fewer the units in a network, the less likely at least one of those units receives 329 

excessively high input). In the limit of 𝑍B), → ∞, the system has a discontinuity moving away from the 330 

y-axis, as even while the region of multistability approaches 𝑔 = 0 (for 4∆< 𝑠 < 1) throughout this 331 

paper we have set the threshold, 𝑥*+, such that disconnected units are only bistable if 𝑠 > 1. 332 

By contrast, when analyzing the network with tanh units of low ∆ and higher 𝑥*+—that is a 333 

steeper f-I curve, but with single-unit bifurcation maintained at 𝑠 = 1—the output of units with zero 334 

input is close to -1, rather than 0. Such maximally negative output produces a larger variance of inputs 335 

across units, such that multistability is more common at very low cross-connection strength 336 

(Supplementary Figure 4). Therefore, while the choice of  𝑍B), still impacts the phase diagram for those 337 

reasons discussed above, it does so to a much smaller extent for tanh units (Supplementary Figure 5). 338 

 339 

3.2. Multistability without self-connections 340 

Multistability without self-connections (i.e., with 𝑠 = 0) is present in all networks with logistic response 341 

functions if we allow 𝑥*+ to vary (or equivalently apply uniform input). To demonstrate this, in Figure 7A 342 

we show the phase diagram as a function of 𝑥*+ and 𝑔 for a system with 𝑠 = 0 and ∆= 0.25—in this 343 

case 𝑓(𝑥) = /
:
[1 + tanh(𝑥)]. Systems with different ∆ produce identical figures if the two axes are 344 

scaled by the same factor as ∆. As can be seen, the region of coexistence of quiescence with chaos is 345 

contiguous with and extends a region of coexistence of quiescence with an active stable state. These 346 

two regions, which depend on multiple stable solutions for the self-consistency of the field, 𝜼, are not 347 

present if the response function is 𝑓(𝑥) = tanh	(𝑥) (Figure 7B).  348 
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Figure 7. Phase diagram without self-connections.  A. Network with logistic units does not require 
self-connections to be multistable. B. Network with tanh units is only monostable or chaotic without 
self-connections. (Black = chaotic; dark blue = chaotic + stable quiescence; cyan = stable quiescence 
only; yellow = stable quiescence + stable active state.) 

 349 

The two response functions, 𝑓(𝑥) = /

/01
#!"$%
∆

 and 𝑓(𝑥) = tanh	(,-,!"
∆
), have a key difference 350 

that leads to them producing qualitatively different behavior. For the logistic function, the minimal 351 

absolute value of 𝑓(𝑥) coincides with the minimal gradient of the function (if |𝑓(𝑥)| is low then 𝑓′(𝑥) is 352 

low) whereas for the tanh function the opposite is true (if |𝑓(𝑥)| is low then 𝑓′(𝑥) is near its maximum). 353 

Hence for the logistic function, it is possible for a narrow range of inputs to produce a stable narrow set 354 

of low firing rates (maintaining low inputs) while a solution with a large range of inputs leads to some 355 

much larger stable firing rates (maintaining high inputs) given the supralinearity of the response 356 

function. However, for the tanh function, the marginal feedback decreases with a change in rate from 357 

zero, so only one solution can exist.  358 

 359 

4. Analysis of networks of units with binary response functions 360 

For a system with binary units, 𝑓(𝑥) = 𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑥 − 𝑥*+), the analysis simplifies, because a state is 361 

stable if all active units have input from other active units exceeding 𝑥*+ − 𝑠 and all inactive units have 362 

summed input from the active units less than 𝑥*+. We define 𝑘 as the number of active units, each with 363 
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an activity of 1, so the above requirements on network inputs correspond to the sum of 𝑘 − 1 of the 364 

connection strengths to each of 𝑘 active units and to the sum of 𝑘 connection strengths to each of the 365 

𝑁 − 𝑘 inactive units.  366 

 Our main approximation is to treat these sums of connections strengths as independent draws 367 

from a Gaussian distribution with mean of zero and whose variance is G
'(H-/)
!

 and G
'H
!

 respectively. We 368 

then assume a solution with 𝑘 active units exists if, given 𝑁 independent draws from a Gaussian of unit 369 

variance, the top 𝑘 draws, when multiplied by pG
'(H-/)
!

 are greater than 𝑥*+ − 𝑠 (high input to active 370 

units) while the remaining  𝑁 − 𝑘 draws, when multiplied by pG
'H
!

 are less than 𝑥*+. This is equivalent to 371 

the requirement that the (𝑘 + 1)*+ greatest sample out of 𝑁 samples, 𝑋H0/,!,  from a unit-variance, 372 

zero-mean Gaussian distribution lies in the range: 373 

 
(𝑥*+ − 𝑠)r

𝑁
𝑔:(𝑘 − 1)

< 𝑋H0/,! < 𝑥*+r
𝑁
𝑔:𝑘

, (7) 

where we have assumed 𝑥*+ − 𝑠 > 0 and 𝑥*+ > 0 (which holds in our standard system with 𝑥*+ = 1 so 374 

long as 𝑠 < 1, and which is the parameter region in which we have greatest interest). 375 

 Such a requirement can be calculated using the methods of order statistics (David & Nagaraja, 376 

2003), which we follow for the Gaussian distribution, defining   377 

𝑃(𝑥) =
1
√2𝜋

𝑒-,' :⁄ 	378 

𝑃0(𝑥) = s 𝑃(𝑥?)𝑑𝑥?
J

,
=
1
2
𝑒𝑟𝑓𝑐 v

𝑥
√2
w	379 

𝑃-(𝑥) = s 𝑃(𝑥?)𝑑𝑥?
,

-J
= 1 − 𝑃0(𝑥) =

1
2
+
1
2
𝑒𝑟𝑓 v

𝑥
√2
w. 380 

such that 381 

 𝑃2𝑋H0/,! = 𝑥3 = 𝑁 :𝑁 − 1𝑘 ;𝑃(𝑥)[𝑃0(𝑥)]H[𝑃-(𝑥)]!-H-/. (8) 
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Therefore, we have a stable state with 𝑘 of 𝑁 units active with a probability 𝑃(𝑘, 𝑁) given by: 382 

 

𝑃(𝑘, 𝑁) = 𝑁 :𝑁 − 1𝑘 ; s 𝑃(𝑥)[𝑃0(𝑥)]H[𝑃-(𝑥)]!-H-/

,!"K
!
G'H

(,!"-L)K
!

G'(H-/)

𝑑𝑥. (9) 

We then calculate the probability a system has at least one stable state with multiple active units, and 383 

so is multistable (as the quiescent state is always stable for 𝑥*+ > 0) for a given system size, 𝑁, via: 384 

 
𝑃(𝑁) = 1 −x[1 − 𝑃(𝑘,𝑁)]

!

H=/

, (10) 

(there is only an absence of multistability if it is absent for all possible 𝑘). Again, (10) is an approximation 385 

as it assumes 𝑃(𝑘, 𝑁) is independent for different values of 𝑘. We will see that in the large-𝑁 limit the 386 

approximation becomes exact, as 𝑃(𝑘, 𝑁) becomes either 0 or 1, so that 𝑃(𝑁) is also either 0 or 1, and 387 

we have multistability with probability 1 if and only if it arises with probability 1 for some value of 𝑘, 388 

that is 𝑃(𝑁) = max𝑃(𝑘, 𝑁). 389 

 390 

4.1. Finite-𝑁 results of analysis with binary units 391 

Our simulation results presented in Section 2 (Figure 4) suggest that, for some parameters, networks of 392 

intermediate size have the greatest probability of multistability. Given the increasing likelihood of 393 

missing stable states as 𝑁 increases using simulation methods, that simulation result may be incorrect 394 

due to undersampling at large 𝑁.  Therefore, we use our approximate analytical methods for networks 395 

with binary units to address the 𝑁-dependence of the probability of multistability, by solving Equations 396 

(8)-(10) above.  397 
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Figure 8.  Numbers of stable states in finite binary networks.  A-C. Expected number of stable states 
with 𝑘 active units when 𝑁 = 6 (green), 𝑁 = 12 (yellow), 𝑁 = 18, blue. Continuous lines from Eq. 9, 
points from simulations. D-F.  Probability a network is multistable as a function of network size, 𝑁. 
Top curve uses Eq. 10, lower curve uses max𝑃(𝑘, 𝑁). Crosses are simulated data points in all panels, 
and are an undercount at large 𝑁. 

 398 

 In Figure 8A-C, we show that for small networks of 𝑁 = 6, 𝑁 = 12, and 𝑁 = 18, for which we 399 

can exhaustively test all initial conditions and therefore find all stable states in simulations, the 400 

approximate analytical method (solid line, which plots Eq. 9) compares well with the simulated data 401 

(crosses). Moreover, in Figure 8D-F, when we use Eq. 10 (red lines) to estimate the probability the 402 

network is multistable, the simulated results (crosses) are remarkably close to the analytic 403 

approximation. Such a result is surprising, as one would expect a positive correlation across networks 404 

and the numbers of stable states. The blue lines in Figure 8D-F are the results for a correlation of +1, in 405 

which the network’s probability of multistability is simply the maximum across possible states and is 406 

much farther from the data than the analysis assuming zero correlation (the red line). Nevertheless, 407 

across all methods, in Figure 8D-E, we do indeed find that the probability of multistability peaks at 408 

A B C

D E F

! = 0.5, ' = 1.2 ! = 0.5, ' = 1 ! = 0.75, ' = 1

! = 0.5, ' = 1.2 ! = 0.5, ' = 1 ! = 0.75, ' = 1

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.05.543727doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.05.543727
http://creativecommons.org/licenses/by-nc/4.0/


 24 

intermediate network size, remarkably reaching values of approximately 1 for 𝑠 = 0.5, 𝑔 = 1.2, before 409 

falling to zero at large network size (𝑁 > 30000). 410 

 411 

4.2. Large-𝑁 limit of system with binary units 412 

In the large-𝑁 limit, the above equations (8)-(9) can be simplified. First, we note that 413 

 :𝑁 − 1𝑘 ; [𝑃0(𝑥)]H[𝑃-(𝑥)]!-H-/ = :𝑁 − 1𝑘 ; [𝑃0(𝑥)]H[1 − 𝑃0(𝑥)](!-/)-H (11) 

is the Binomial probability for achieving 𝑘 outcomes from 𝑁 − 1 independent selections, with individual 414 

probability of outcome, 𝑃0(𝑥). In general, the probability has a peak at the integer value of 𝑘 closest to 415 

(𝑁 − 1)𝑃0(𝑥), with a standard deviation of y(𝑁 − 1)𝑃0(𝑥)[1 − 𝑃0(𝑥)]. 416 

If we define 𝑓 = H
!
≅ H-/

!
 with 𝑘 ≫ 1 as well as 𝑁 ≫ 1, then the integration limits for 𝑃(𝑘, 𝑁) become 417 

,!"-L
G p/

M
 and ,!"

G p/
M

 . Also, for large 𝑁, the Binomial probability term approaches a Dirac delta-function 418 

at the value of 𝑓 = 𝑃0(𝑥), as it’s standard deviation in 𝑓 scales as 1 √𝑁⁄ .  419 

Therefore, in the large-𝑁 limit, 𝑃(𝑓) = 1 if the integration range over 𝑥 contains the value 420 

where 𝑓 = 𝑃0(𝑥) and 𝑃(𝑓) = 0 otherwise. Algebraically this becomes a requirement that 𝑓 lies 421 

between two thresholds, Θ/ and Θ:, which each depend on 𝑓:  422 

 
𝑃(𝑓) = 1	if	

1
2
erfc b

𝑥*+
𝑔y2𝑓

c = Θ/ < 𝑓 < Θ: =
1
2
erfc b

𝑥*+ − 𝑠
𝑔y2𝑓

c. (12) 

Figure 9A indicates the region of these inequalities as a function of 𝑓 for the specific values of 𝑥*+ = 1, 423 

𝑠 = 0.5, and  𝑔 = 2.75, with Figure 9B showing that for a wide range of 𝑔 the possible numbers of 424 

active units in a stable state splits into two distinct ranges. Simulation results in Figure 9C demonstrate 425 

such bimodality in numbers of active units for a similar network (𝑠 = 0.75 and  𝑔 = 2.5) with 𝑁 = 400.  426 
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 Given that at 𝑓 = /
:
 it is always true that /

:
erfc v ,!"

GN:M
w < 𝑓 (because of the limited range of the 427 

complementary error function) the criterion for Eq. 12 to have a solution for some value of 𝑓 428 

is the requirement 𝑓 < /
:
erfc v,!"-L

GN:M
w for some 𝑓, which leads to a minimum value of 𝑔 = 𝑔∗ at which 429 

the lines 𝑦 = 𝑥 and 𝑦 = /
:
erfc :,!"-L

G√:,
; meet at a tangent. The critical value occurs where :,!"-L

G
≅ /

:.PE2
; 430 

such that, as a function of 𝑠 and with 𝑥*+ = 1, multistability arises in this system if 𝑔 > 𝑔∗(𝑠) ≅431 

2.457(1 − 𝑠) (Figure 6F). 432 

 Notice that as 𝑠 approaches zero, the range of 𝑓 with allowed solutions shrinks toward the line 433 

where 𝑓 = /
:
erfc v ,!"

GN:M
w. For 𝑔 > 𝑔∗, there are two such solutions, which are distinct crossings of the 434 

line. The distinct solutions indicate two separate ranges for the possible number of active units in stable 435 

attractors. In the example shown in Figure 9B, solutions are possible in two ranges, either with a very 436 

 

Figure 9. Number of active units in stable states is bimodal.  A. The two complementary error 
functions producing the bounds on fraction of active units, 𝑓, from Eq. (12) (infinite system with ∆=
0, 𝑥*+ = 1, 𝑠 = 0.5, and  𝑔 = 2.75). Where the red curve is above the dashed yellow line active units 
are stably active, but otherwise not. Where the blue curve is below the dashed yellow line, inactive 
units are stably inactive, but otherwise not. Note the two distinct ranges of 𝑓 in whch the dashed 
yellow line is above the blue line and below the red line.  B.  Across a range of 𝑔 for the same system 
as A, the allowed range of 𝑓 for which stable solutions are possible, as indicated in yellow, splits in 
two. In the blue region the active units are unstable, while in the green region the inactive units are 
unstable. C.  Simulations of a network (∆= 0, 𝑥*+ = 1, 𝑠 = 0.75, and  𝑔 = 2.5) of size 𝑁 = 400 from 
10E initial conditions of varying numbers of active units lead to final stable states with a bimodal 
distribution in the number of active units. 
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low fraction (<5%) of units active or with a fraction in the range of 30%-40% of units active. The two 437 

distinct ranges are also visible from simulations as a bimodal distribution in the numbers of active units 438 

in stable states following random initial conditions (Figure 9C).  439 

A lower bound on the fraction of active units arises, because with few active units there is too 440 

little network input to activate those units. The upper bound arises because half of the units receive net 441 

negative input, so cannot be stably active if 𝑠 < 1, and only a subset of those units receiving net positive 442 

input receive an amount greater than 1 − 𝑠, as needed to be stably active. The bounded region in which 443 

active units have sufficient input to remain stably active can contain within it a separate bounded region 444 

of instability (Figure 9) because the random network input can be sufficiently strong that some of the 445 

inactive units (of which there are more than there are active units) receive too much input to remain 446 

“off”.  447 

 448 

5. Discussion 449 

Firing rate models of neurons are valuable because they represent the likely states of a neural circuit in a 450 

relatively simple manner and can be solved rapidly. The foundation of a firing rate model is the input-451 

output function of a neuron, which is typically designed to have bounded outputs over the domain of 452 

inputs. For its ease of mathematical manipulation, the hyperbolic tangent function, 𝑓(𝑥) = tanh(𝑥), has 453 

been used with great success, most notably for first demonstrating the transition from quiescence to 454 

chaos as the strength of random cross-connections increases (Sompolinsky et al., 1988; Stern et al., 455 

2014). The negative portion of tanh(𝑥), while it cannot correspond to negative firing rates, could be 456 

considered representative of a group of mixed excitatory-inhibitory neurons in which the mean rate of 457 

inhibitory neurons exceeds that of excitatory neurons.  458 
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Given the function 𝑓(𝑥) = tanh(𝑥) is simply a translated version of the function 𝑓(𝑥) =459 

tanh(𝑥 − 𝑥*+) + 1, one might expect that analysis of a system with units responding via the one 460 

function would provide all the qualitive insight necessary to understand the behavior of a system with 461 

units responding via the other function. However, this is not the case.  A disconnect between the 462 

behavior of a system of neurons with 𝑓(𝑥) = tanh(𝑥) and that of a system with 𝑓(𝑥) = tanh(𝑥) + 1 463 

has been shown by others (Figure 4b of (Touboul & Ermentrout, 2011)) whereby a Hopf bifurcation 464 

disappears as the input-output function of neurons is parametrically shifted up toward non-negative 465 

values. In our analyses, we find two qualitative changes. The first is a shift in phase boundaries leading 466 

to the result that random cross-connections, whose mean value is zero, can produce multistability in a 467 

system in which single units are not in of themselves bistable.  468 

Second, we find the possibility of bistability via distinct stable solutions for the self-consistency 469 

of the field. Alternative self-consistent solutions of the field can lead to multistability arising from 470 

random, zero-mean, cross-connections even in systems without self-connections (Figure 3 and Figure 471 

6B). The distinct self-consistent field solutions, with different variances in the input currents, correspond 472 

to states with distinctly different numbers of active units. Figure 9 indicates a similar bimodality in the 473 

numbers of active units in simulated binary-unit systems and is coupled with an analysis of how such 474 

bimodality arises in the system.   475 

We find a subtlety when taking the infinite limit of our system using the logistic input-output 476 

function, with a strict discontinuity between results with 𝑔 = 0 and those with 𝑔 = 𝜖 (where 𝑔 scales 477 

the strength of cross-connections and 𝜖 is an infinitesimal positive quantity). The reason being that for 478 

non-zero 𝑔, there is a non-zero (even if miniscule) probability that the within-circuit input to a unit, 479 

which is drawn from a Gaussian with width proportional to 𝑔, is sufficiently strong to render that unit 480 

bistable. However, when the bifurcation point is many tens of standard deviations above the zero mean 481 

of the Gaussian distribution, the probability becomes infinitesimal and is irrelevant in any real or 482 
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simulated system, even with billions of units. For similar reasons, the strict mathematical limit has a 483 

discontinuity when altering the width of the logistic function from ∆= 0 to ∆= 𝜖. If, instead of producing 484 

a phase diagram, with a sharp boundary for multistability, we focused on the entropy of the system (the 485 

log of the number of stable states) scaled by system size, 𝑁, such discontinuities would disappear as the 486 

entropy would reduce continuously and smoothly (and rapidly) from the boundaries of multistability 487 

shown in Figure 6, to a tiny value before becoming strictly zero at 𝑔 = 0 or ∆= 0. 488 

 Multistability, when exhibited as a set of discrete stable fixed points, may seem unlikely in any 489 

cortical circuit given that activity is never static in vivo. However, a network based on multiple fixed 490 

points, but with randomly timed transitions between them, can match the observed data in a number of 491 

systems (Ballintyn et al., 2019; Ksander et al., 2021; La Camera et al., 2019; Mazzucato et al., 2019; 492 

Miller, 2016; Miller & Katz, 2010; Moreno-Bote et al., 2007; Recanatesis et al., 2022). Moreover, 493 

analyses of patterns of neural spiking in vivo have, in many cases, shown that a discrete state-based 494 

formalism better matches the data than a formalism assuming continuously changing, graded activity 495 

(Abeles et al., 1995; Miller & Katz, 2010, 2011; Ponce-Alvarez et al., 2012; Sadacca et al., 2016; 496 

Seidemann et al., 1996). 497 

While the strengths of connections between units are treated as independent random variables 498 

for ease of analysis in this paper, in practice there is internal structure in the connectivity among 499 

neurons, even between excitatory pyramidal cells (Song et al., 2005; Stepanyants & Chklovskii, 2005).  500 

Moreover, connections from cortical neurons typically have fixed sign (all excitatory or all inhibitory) 501 

according to neuron class, a feature that can change the behavior of random networks (Rajan & Abbott, 502 

2006). In our work, we consider a firing rate model unit as representing the mean rate of a cluster of 503 

many neurons (as is necessary to omit the pulsatile spike interaction from simulations) so the net 504 

interaction between units can be of either sign according to whether the dominant connections are 505 

excitatory-to-excitatory, or excitatory-to-inhibitory, etc. Moreover, much of the nonrandom cortical 506 
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structure can be accounted for by considering the intra-cluster connectivity to be distinct from the inter-507 

cluster connectivity (Bourjaily & Miller, 2011) as we do here.  508 

Our main conclusion is that multistability can be produced via random, zero-mean cross-509 

connections in neural circuits without the exceptionally strong self-connections needed to produce 510 

bistability in a single cluster of neurons (a unit in a firing-rate model) so long as the neurons without 511 

input have a low firing rate and if rate increases supralinearly with low input. 512 

Code Availability 513 

MATLAB codes used to produce the results in this paper are available for public download at 514 

https://github.com/primon23/Multistability-Paper. 515 
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Appendix 1: Monte Carlo simulation method 520 

Our standard procedure was to simulate 100 different realizations of the connectivity matrix to produce 521 

100 random networks for a given parameter combination. For each connectivity matrix, we then 522 

completed sets of multiple trials, each trial with a distinct initial condition (100 trials for perturbation 523 

analysis in Figure 2 and for scaling 𝑔 in Figure 3; 200 trials for parameter grids in Figure 4; and 106 or 105 524 

trials respectively for the networks with binary units in Figures 8 and 9) . For the small (𝑁 ≤ 25) 525 

networks with binary units in Figure 8 all 2!combinations of initial conditions were used with each unit 526 

at an initial rate of its minimum or maximum.  527 
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The continuous models were simulated using MATLAB’s ode45 function. Each trial was 528 

simulated until either a maximum simulation time was reached (5,000 𝜏 for Figure 3 and 10,000 𝜏 for 529 

Figure 4), or until a stopping condition was reached in the case that the maximum 	𝑥̇"  at a give timestep 530 

was less than 2 ∗ 10-D. If this stopping condition was reached, then the activity was considered to have 531 

reached a stable state because the network possessed a point attractor at that set of firing rates. 532 

Logistic units were classified as active if their firing rate exceeded 0.5. Tanh units were considered active 533 

if the absolute value of their rate exceeded 0.001. For the continuous models, typically the first trial was 534 

initialized with inputs near zero, to test if the quiescent state was stable. For all subsequent trials, the 535 

initial rates of the units were set to a uniform random distribution over 0 to 1 and transformed by a 536 

logistic function with 𝑥*+ = 0.5 and ∆= 0.1. 537 

For the perturbation analysis, each trial of each network was simulated for a full 21,000 𝜏. Then, 538 

at each of 100 linearly spaced time points between 20,000 and 20,800 𝜏 10% of the units’ firing rates 539 

were randomly perturbed upwards or downwards by 10-E and the simulation was then continued from 540 

each such perturbed state for 200 𝜏. The root mean squared (RMS) deviation of the perturbed 541 

simulation from the original simulation quantified the extent to which the perturbation caused a 542 

divergence in activity. The median RMS deviation over the 100 perturbations was then used to classify 543 

each trial as a point attractor, a limit cycle, or chaotic. The median RMS deviation exponentially decayed 544 

for point attractors, exponentially increased for chaos, and increased but reached a plateau at a low 545 

level for limit cycles. Classification thresholds were set based on the R2 of a linear fit to the exponential 546 

RMS deviation and the magnitude of the RMS deviation averaged between 190 to 200 𝜏 post-547 

perturbation.  Trials with final RMS deviations below half the magnitude of the initial perturbation and 548 

with no units having a change in their firing rate exceeding  10-4 in the last 10 𝜏 of the unperturbed 549 

simulation were classified as point attractors. To classify trials as chaotic vs limit cycles, a classification 550 

boundary was determined as a function of each trials’ linear fit R2 and final RMS deviation. Trials above 551 
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the line 𝑅𝑀𝑆	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.025 ∗ 𝑒(-Q./:E∗	S') were classified as chaotic. This boundary allows the 552 

separation between these two dynamics because it accounted for both chaotic trials that very quickly 553 

converged to a large RMS deviation (large RMS deviation and low R2) and chaotic trials that had a slower 554 

exponential increase in their RMS deviation (lower RMS deviation at 190 to 200 𝜏 but high R2). Final 555 

activity states of the unperturbed simulations were used to confirm these classifications. 556 

 557 

Appendix 2: Choice of single-unit input threshold 558 

For comparison across systems with distinct single-unit input-output functions, 𝑓(𝑥), we adjust the 559 

offset, 𝑥*+, such that a single unit becomes bistable with self-connection strength of 𝑠 = 1, in all cases. 560 

For the logistic function, such a requirement means that a saddle-node bifurcation occurs at 𝑠 =561 

1, with unstable and stable fixed points colliding at 𝑥∗ given by −𝑥∗ + 𝑠𝑓(𝑥∗) = 0 such that 𝑥∗ = 𝑓(𝑥∗) 562 

and T
T,
[−𝑥 + 𝑠𝑓(𝑥)],∗ = 0 such that TM(,)

T,
�
,∗
= 1. Combining these equations and using the result for 563 

the logistic function that TM(,)
T,

= /
∆
𝑓(𝑥)[1 − 𝑓(𝑥)] leads to the requirement: 564 

 
𝑥*+ =

1
2
+ r

1
4
− ∆ +	∆ln∆ − 2∆ln�

1
2
+ r

1
4
− ∆�. (A1) 

For the binary response function, 𝑓(𝑥) = 𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑥 − 𝑥*+), we have 𝑥*+ = 1, which can be seen 565 

from the above equation in the limit ∆→ 0. 566 

For the hyperbolic tangent function, 𝑓(𝑥) = tanh :,-,!"
∆
;, a similar derivation leads to  567 

 
𝑥*+ = √1 − ∆ −

∆
2

ln b
1 + √1 − ∆
1 − √1 − ∆

c, (A2) 

which yields 𝑥*+ = 0 if ∆= 1, matching the simplest anti-symmetric response function, 𝑓(𝑥) = tanh(𝑥), 568 

and as with the binary response function, 𝑥*+ = 1 if ∆= 0. 569 

 570 
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Appendix 3: General mean-field methods 571 

To test whether a distribution of the interacting variables, 𝒙, produces a stable fixed point, it is 572 

necessary to obtain information about the eigenvalues of the Jacobian matrix of the dynamical 573 

equations expanded linearly about the fixed point (Strogatz, 2015). If all such eigenvalues have a 574 

negative real part then the fixed point is stable. Linearization around a fixed point, 𝒙∗, yields 575 

 𝑑𝒙
𝑑𝑡

= −𝒙 + 𝑠𝑫𝒙 +
𝑔
√𝑁

𝑱𝑫𝒙 (A3) 

where 𝑫 is a diagonal matrix with elements equal to the corresponding derivatives of the input-output 576 

function, 𝑓′(𝒙∗), and 𝑱 is the unit variance, zero mean, Gaussian connectivity matrix. 577 

We follow the methods of others (Ahmadian et al., 2015; Stern et al., 2014) who showed that 578 

eigenvalues of such a system are found at the complex values, 𝑧, where  579 

𝑇𝑟 U2𝑀U𝑀U
V3
-/
V ≥ 1 580 

with  581 

𝑀U =
:𝑧 + 1 −𝑊W

XX𝑓′(𝒙∗);
𝑔𝑓′(𝒙∗)

. 582 

In the large-𝑁 limit the sum within the Trace become an integral over the distribution of activations, 𝒙, 583 

to yield the criterion (Ahmadian et al., 2015; Stern et al., 2014): 584 

 
s𝑑𝑥 𝑃(𝑥)

𝑔:[𝑓′(𝑥)]:

|𝑧 + 1 − 𝑠𝑓′(𝑥)|:
= s𝑑𝜂 𝑃(𝜂)

𝑔:�𝑓′2𝑥(𝜂)3�:

�𝑧 + 1 − 𝑠𝑓′2𝑥(𝜂)3�
: ≥ 1. (A4) 

As noted by (Stern et al., 2014), for the system to be stable we require that Equation A4 is not satisfied 585 

for any 𝑧 with 𝑅𝑒[𝑧] > 0, which allows us to assess the case where 𝑅𝑒[𝑧] = 0 and note that any non-586 

zero contribution to 𝐼𝑚[𝑧] increases the absolute value of the denominator above, so if there are no 587 

eigenvalues with 𝑧 = 0 there cannot be any on the imaginary axis. Therefore, in general we require, for 588 

there to be no eigenvalues with positive real part that   589 
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 1
√2𝜋𝜎:

s𝑑𝜂 𝑒𝑥𝑝 b−
𝜂:

2𝜎:
c
𝑔:�𝑓′2𝑥(𝜂)3�:

�1 − 𝑠𝑓′2𝑥(𝜂)3�
: < 1, (A5) 

where we have substituted for 𝑃(𝜂) and 𝜎: = 𝑔:〈𝑓:(𝑥)〉. We have also assumed that the function in 590 

the denominator, 1 − 𝑠𝑓′2𝑥(𝜂)3, is positive, as any negative portion of the function means there is a 591 

divergent positive contribution to the integral for some 𝑧 with 𝑅𝑒[𝑧] = 𝑠𝑓′2𝑥(𝜂)3 − 1 > 0. 592 

 We are interested in cases of multistability, where the activations, 𝑥(𝜂), can have more than 593 

one value based on the solutions 𝑥 − 𝑠𝑓(𝑥) = 𝜂 for some values of 𝜂. This requires that 𝑥 − 𝑠𝑓(𝑥) is a 594 

non-monotonic function, which occurs if max	[𝑓′(𝑥)] > 1/𝑠 (to produce a region of negative slope in 595 

the function 𝑥 − 𝑠𝑓(𝑥) ). The need for a region of negative slope arises because in all cases considered 596 

here at large positive or negative values of 𝑥, 𝑓?(𝑥) = 0 and 𝑥 − 𝑠𝑓(𝑥) has a slope of +1. In cases of 597 

multiple solutions for 𝑥(𝜂), care must be taken in the choice of 𝑥(𝜂), as while stability is enhanced by 598 

choosing the solution with the lower value of  𝑓′2𝑥(𝜂)3, such a choice can lead to the lower value of 599 

𝑓:(𝑥) for some input-output functions (but not if 𝑓(𝑥) = tanh	(𝑥)) which can lead to the self-consistent 600 

solution for the distribution of 𝜂 to become too narrow to support multistability, as discussed below.  601 

In the logistic networks, 𝑓(𝑥) = /
/0exp\#!"$#∆ ]

≈ exp :,-,!"
∆
; for 𝑥 ≪ 𝑥*+, is never exactly zero. 602 

Therefore the Gaussian distribution of 𝜂 will always have non-zero variance for 𝑔 > 0 and, even if the 603 

distribution is narrow with very small variance, the distribution always retains some vanishingly small 604 

but non-zero density at the values of 𝜂 required to support multiple solutions of 𝑥(𝜂) if 𝑠 > 4∆. 605 

However, if bifurcation points in 𝑥(𝜂) require levels of the Gaussian-distributed 𝜂 that are many 606 

standard deviations from its mean of zero, such solutions give exponentially small probability of 607 

multistability in a finite network, so are unlikely to be observed in practice. Therefore, we set a 608 

threshold, 𝑍B),𝜎, in terms of the number, 𝑍B),, of standard deviations, 𝜎, of the field of inputs, 𝜂, such 609 

that if both bifurcation points, 𝜂∗, are beyond the threshold ( 𝜂∗ < −𝑍B), or  𝜂∗ > 𝑍B),) we ignore 610 

both the extra solutions and any instability they cause. To clarify the result of such a limit, we show 611 
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results with multiple values of 𝑍B), in Supplemental Figure 3 and Supplemental Figure 5, while using a 612 

default value of 𝑍B), = 6 in other figures. In this manner, we have used the results for an infinite 613 

system in which correlations are absent, but applied them to a system in which the number of units 614 

could range from 10F to 10D to 10/E (as 𝑍B), changes from 3 to 6 to 9) and the results be accurate for 615 

999 networks in 1000 of that size. For further explanation see also the text in Section 3.1. 616 

  617 
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Supplemental figures: 789 

 

 

Supplemental Figure 1: The example network in Fig. 2 is a typical random network.  
A. Distribution of cross connections of the example network in Figure 2. The cross-connection distribution has a 
mean of -0.00053 and standard deviation of 0.10037, which is consistent with the expected mean of 0 and 
standard deviation of 0.1 (KS-test, p = 0.708, KS-statistic = 0.007). B. Eigenvalues of the cross-connection 
matrix. The black circle shows the expected bounds for the large-N limit. C. The first three PCs of the chaotic 
attractor shown in yellow in Figure 2B. Color is simulation time. There is an initial transient that quickly converges 
to the chaotic attractor. Analysis of simulated perturbations shows that it is chaotic (Figure 2D). 
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  792 

 

Supplemental Figure 2: The dynamic regimes of individual networks changes as g is scaled.  
A.  Similar to Figure 3B, but for networks simulated over a smaller range of g-values. 100 random networks 
of logistic units (Δ=0.2) with no self-connections (s=0) of varying size (N=10, 50, 100, 500, 1000) were 
simulated across g values. The same network can gain and lose mulistability as g is scaled. Color scale 
indicates number of point attractors found within 100 trials. White indicates g values that were not 
simulated due to computational limits. B. The same simulations as in A, but where color now indicates the 
classification of the set of activity observed across the 100 simulated trials. 1, no trials converge; 2, stable 
quiescence + some trials fail to converge; 3, only stable quiescence; 4, only a single stable active state; 5, 
some trials don’t converge + stable quiescence + at least one stable active state; 6, stable quiescence + a 
single stable active state; 7, multiple stable active states + no stable quiescence; 8, multiple stable active 
states + stable quiescence; 9, some trials fail to converge + a single stable active states; 10, some trials don’t 
converge + multistable. 
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Supplemental Figure 3.  Impact of the criterion for multistability in networks with logistic units. A-D 
Results with ∆= 0.2 with varying threshold, 𝑍B),, for the number of standard deviations from the 
mean input that a unit must receive before considering a unit in the network to switch state. The 
mathematical limit is shown in D, while A-C indicate the multistable region growing with increased 
𝑍B), . Note that in all cases the system with 𝑔 = 0 on the y-axis can not be multistable for 𝑊W

XX < 1. 
E-H Results for ∆= 0.1. (Black = chaos; dark blue = chaos + quiescent stable; cyan = quiescent only; 
yellow = quiescent + active stable state; orange = multiple active stable states; red = stable quiescent 
+ multiple active stables states; crimson = chaos + multiple stable active states.) 
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Supplemental Figure 4.  Phase diagram for networks with tanh units.  A. Results with ∆= 1 replicate 
those of (Stern et al., 2014).  B-D.  Region of multistability increases to lower 𝑠 while remaining only 
for 𝑠 ≥ 1 on the y-axis. (Black = chaos; cyan = quiescent only; orange = multiple active stable states.) 
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Supplemental Figure 5.  Impact of the criterion for multistability in networks with tanh units.  A-D. 
Results with ∆= 0.8 with varying threshold, 𝑍B),, for the number of standard deviations from the 
mean input that a unit must receive before considering a unit in the network to switch state. The 
mathematical limit is shown in D, which in this case is minimally different from the results with lower 
𝑍B), in (A-C). Note that in all cases the system with 𝑔 = 0 on the y-axis can not be multistable for 
𝑠 < 1.  E-H. Equivalent results for ∆= 0.4, with a tiny, but observable dependence on 𝑍B),. (Black = 
chaos; cyan = quiescent only; orange = multiple active stable states.) 
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